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1 Introduction

The C1,α regularity of the p-Laplacian has been established earlier in, for instance [6,15,19]
in the Euclidean setting. Its sub-elliptic analogue for homgeneous sub-elliptic equations
of p-Laplacian type on the Heisenberg group, was unavailable until [17, 21], in the last
years. It is therefore natural to consider the case of regularity for the corresponding in-
homogeneous equation and this is the purpose of the present contribution.

In this paper, we consider the equation

−divH a(x,Xu) = µ in Ω ⊆Hn, (1.1)

where Ω is a domain and µ is a Radon measure with |µ|(Ω) < ∞ and µ(Hn \ Ω) =
0; hence Eq. (1.1) can be considered as defined in all of Hn. Here we denote Xu =
(X1u, · · · , X2nu) as the horizontal gradient of u : Ω→ R, see Section 2.

We shall take up the following structural assumptions throughout the paper: the con-
tinuous function a : Ω ×R2n → R2n is assumed to be C1 in the gradient variable and
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satisfies the following structure condition for every x, y ∈ Ω and z, ξ ∈ R2n,

(|z|2 + s2)
p−2

2 |ξ|2 ≤
〈

Dza(x, z)ξ, ξ
〉
≤ L(|z|2 + s2)

p−2
2 |ξ|2, (1.2a)

|a(x, z)− a(y, z)| ≤ L′|z|(|z|2 + s2)
p−2

2 |x− y|α, (1.2b)

where L, L′ ≥ 1, s ≥ 0, α ∈ (0, 1] and Dza(x, z) is a symmetric matrix for every x ∈ Ω.
The sub-elliptic p-Laplacian equation with measure data, given by

−divH (|Xu|p−2Xu) = µ, (1.3)

is a prototype of Eq. (1.1) with the condition (1.2) for the case s = 0. The weak solutions
of (1.1) are defined in horizontal Sobolev space HW1,p(Ω); the Lipschitz and Hölder
classes, denoted by same classical notations, are defined with respect to the CC-metric
(x, y) 7→ d(x, y), see Section 2 for details. We shall denote Q = 2n + 2 as the homoge-
neous dimension. Now we state our main result.

Theorem 1.1. Let u ∈ HW1,p(Ω) be a weak solution of Eq. (1.1) with p ≥ 2 and a C1-function
a : Ω × R2n → R2n satisfying the structure condition (1.2). If we have µ = f ∈ Lq

loc(Ω)
for some q > Q, then Xu is locally Hölder continuous and there exists c = c(n, p, L) > 0
and R̄ = R̄(n, p, L, L′, α, q, dist(x0, ∂Ω)) > 0 such that for any x0 ∈ Ω, 0 < R ≤ R̄ and
x, y ∈ BR(x0) ⊂ Ω, the estimate

|Xu(x)−Xu(y)| ≤ cd(x, y)γ

( ˆ
BR(x0)

(|Xu|+ s) dx +
∥∥ f
∥∥1/(p−1)

Lq(BR(x0))

)
, (1.4)

holds for some γ = γ(n, p, L, α, q) ∈ (0, 1). In particular, if a(x, z) is independent of x, then
(1.4) holds for R̄ = R̄(n, p, L, dist(x0, ∂Ω)) > 0 and γ(n, p, L, q) ∈ (0, 1).

The proof of Theorem 1.1 in this paper, relies on novel techniques introduced by
Duzaar-Mingione [7] based on sharp comparison estimates of homogeneous equations
with frozen coefficients, in other words, harmonic replacements. However, in the present
sub-elliptic setting, one encounters extra terms coming from commutators of the hori-
zontal vector fields which lead to estimates that are not always as strong as those in the
Euclidean setting. An instance appears in Proposition 3.1 for the integral decay estimate,
where the extra term in (3.1) appears unavoidably and can not be removed unlike simi-
lar integral estimates obtained previously in the Euclidean setting in [7, 16], see Remark
3.1. Hence, one gets a weaker integral decay estimate of the oscillation of the gradient of
solutions of the in-homogeneous solution. Nevertheless, a perturbation lemma (Lemma
4.2), similar to the standard lemma of Campanato [3, 9], leads to the C1,α-regularity of
weak solutions of Eq. (1.1) by exploiting the high integrability of the data.

We develop necessary notations, definitions and provide previous results on sub-
elliptic equations in Section 2. Then we prove the intermediate estimates in Section 3
and finally, we prove Theorem 1.1 in Section 4.
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2 Preliminaries and previous results

2.1 The Heisenberg group

Here we provide the definition and properties of Heisenberg group that would be useful
in this paper. For more details, we refer to [2, 5], etc. The Heisenberg Group, denoted by
Hn for n ≥ 1, is identified to the Euclidean space R2n+1 with the group operation

x ◦ y :=
(

x1 + y1, · · · , x2n + y2n, t + s +
1
2

n

∑
i=1

(xiyn+i − xn+iyi)
)

(2.1)

for every x = (x1, · · · , x2n, t), y = (y1, · · · , y2n, s) ∈ Hn. Thus, Hn with ◦ of (2.1) forms a
non-Abelian Lie group, whose left invariant vector fields corresponding to the canonical
basis of the Lie algebra, are

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i +

xi

2
∂t,

for every 1 ≤ i ≤ n and the only non zero commutator T = ∂t. We have

[Xi , Xn+i] = T and [Xi , Xj] = 0, ∀j 6= n + i, (2.2)

and we call X1, · · · , X2n as horizontal vector fields and T as the vertical vector field.
Given any scalar function f : Hn → R, we denote X f = (X1 f , · · · , X2n f ) the horizon-

tal gradient and XX f = (Xi(Xj f ))i,j as the horizontal Hessian. Also, the sub-Laplacian
operator is denoted by ∆H f = ∑2n

j=1 XjXj f . For a vector valued function F = ( f1, · · · , f2n) :
Hn → R2n, the horizontal divergence is defined as

divH (F) =
2n

∑
i=1

Xi fi.

The Euclidean gradient of a scalar function g : Rk → R, shall be denoted by ∇g =
(D1g, · · · , Dkg) and the Hessian matrix by D2g.

The Carnot-Carathèodory metric (CC-metric) is defined as the length of the shortest
horizontal curves connecting two points, see [5], and is denoted by d. This is equivalent to
the homogeneous metric, denoted as dHn(x, y) = ‖y−1 ◦ x‖Hn , where the homogeneous
norm for x = (x1, · · · , x2n, t) ∈Hn is

‖x‖Hn :=
( 2n

∑
i=1

x2
i + |t|

) 1
2
. (2.3)

Throughout this article we use the CC-metric balls Br(x) = {y ∈Hn : d(x, y) < r} for
r > 0 and x ∈Hn. However, by virtue of the equivalence of the metrics, all assertions for
CC-balls can be restated to any homogeneous metric balls.
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The Haar measure of Hn is just the Lebesgue measure of R2n+1. For a measurable set
E ⊂Hn, we denote the Lebesgue measure as |E|. For an integrable function f , we denote

( f )E =

ˆ
E

f dx =
1
|E|

ˆ
E

f dx.

The Hausdorff dimension with respect to the metric d is also the homogeneous dimension
of the group Hn, which shall be denoted as Q = 2n + 2, throughout this paper. Thus, for
any CC-metric ball Br, we have that |Br| = c(n)rQ.

For 1 ≤ p < ∞, the Horizontal Sobolev space HW1,p(Ω) consists of functions u ∈
Lp(Ω) such that the distributional horizontal gradient Xu is in Lp(Ω , R2n). HW1,p(Ω) is
a Banach space with respect to the norm

‖u‖HW1,p(Ω) = ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,R2n). (2.4)

We define HW1,p
loc (Ω) as its local variant and HW1,p

0 (Ω) as the closure of C∞
0 (Ω) in

HW1,p(Ω) with respect to the norm in (2.4). The Sobolev Embedding theorem has the
following version in the setting of Heisenberg group, see [4, 5, 12] etc.

Theorem 2.1 (Sobolev Inequality). Given Br ⊂Hn and 1 < q < Q, there exists c = c(n, q) >
0 such that, for every u ∈ HW1,q

0 (Br) we have(ˆ
Br

|u|
Qq

Q−q dx
) Q−q

Qq

≤ c
(ˆ

Br

|Xu|qdx
) 1

q

. (2.5)

Hölder spaces with respect to homogeneous metrics have been defined in Folland-
Stein [8] and therefore, are sometimes known as Folland-Stein classes and denoted by
Γα or Γ 0,α in some literature. However, as in [17, 21], here we continue to maintain the
classical notation and define

C 0,α(Ω) = {u ∈ L∞(Ω) : |u(x)− u(y)| ≤ c d(x, y)α, ∀x, y ∈ Ω} (2.6)

for 0 < α ≤ 1, which are Banach spaces with the norm

‖u‖C 0,α(Ω) = ‖u‖L∞(Ω) + sup
x,y∈Ω

|u(x)− u(y)|
d(x, y)α

. (2.7)

These have standard extensions to classes Ck,α(Ω) for k ∈ N, comprising functions hav-
ing horizontal derivatives up to order k in C 0,α(Ω); their local counterparts are denoted
as Ck,α

loc(Ω). The Morrey embedding theorem is the following.

Theorem 2.2 (Morrey Inequality). Given any Br ⊂Hn and q > Q, there exists c = c(n, q) >
0 such that, for every u ∈ HW1,q

0 (Br) ∩ C(B̄r) we have

|u(x)− u(y)| ≤ cd(x, y)1−Q/q
(ˆ

Br

|Xu|qdx
) 1

q

, ∀x, y ∈ Br. (2.8)
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2.2 Sub-elliptic equations

Here, we enlist some of the properties and results previously known for sub-elliptic equa-
tions of the form (1.1).

First, we recall that the structure condition (1.2) implies the monotonicity and ellip-
ticity inequalities, as follows:〈

a(x, z1)− a(x, z2), z1 − z2
〉
≥ c(|z1|2 + |z2|2 + s2)

p−2
2 |z1 − z2|2, (2.9a)〈

a(x, z), z
〉
≥ c(|z|2 + s2)

p−2
2 |z|2, (2.9b)

for some c = c(n, p, L) > 0. This ensures existence and local uniqueness of weak solution
u ∈ HW1,p(Ω) of Eq. (1.1) from the classical theory of monotone operators, see [14]. We
denote u as the precise representative, hereafter.

The regularity and apriori estimates of the homogeneous equation corresponding to
(1.1) with freezing of the coefficients, is necessary. Therefore, for any x0 ∈ Ω, we consider
the equation

divH a(x0,Xu) = 0 in Ω. (2.10)

The C1,α regulaity of p-Laplacian type equations has been dealt with in [17,21], where
the equation divH (D f (Xu)) = 0 has been considered. Given Dza(x0, z) being symmetric,
all the arguments there also follow in the same way for (2.10) with the growth conditions
(1.2) which is the same as that in [17] and slightly weaker than that in [21] (in fact, (2.10)
has been considered in [18] in a more general setting). The following regularity theorem
is due to [21, Theorem 1.1] and [17, Theorem 1.3].

Theorem 2.3. If u ∈ HW1,p(Ω) is a weak solution of Eq. (2.10) with a(x0, z) satisfying the
condition (1.2) and Dza(x0, z) is a symmetric matrix, then Xu is locally Hölder continuous.
Moreover, there exist constants c = c(n, p, L) > 0 and β = β(n, p, L) ∈ (0, 1) such that the
following holds,

(i) sup
BR/2

|Xu|p ≤ c
ˆ

BR

(|Xu|2 + s2)
p
2 dx, (2.11a)

(ii)
ˆ

B$

|Xu− (Xu)B$ |p dx ≤ c
(
$/R

)β
ˆ

BR

(|Xu|2 + s2)
p
2 dx, (2.11b)

for every concentric B$ ⊆ BR ⊂ Ω and 1 < p < ∞.

In fact, similarly as the Euclidean case, the following local estimate can be shown
by using Sobolev’s inequality and Moser’s iteration on the Caccioppoli type inequalities
of [21], for any 0 < σ < 1 and q > 0,

sup
BσR

|Xu| ≤ c(1− σ)−
Q
q

( ˆ
BR

(|Xu|2 + s2)
q
2 dx

) 1
q

(2.12)
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for some c = c(n, p, L, q) > 0, see [21, p. 12]. Thus, taking q = 1, we can have

sup
BR/2

|Xu| ≤ c
ˆ

BR

(|Xu|+ s) dx. (2.13)

From (2.13) it ie easy to see that for all 0 < r ≤ R/2, we have
ˆ

Br

|Xu| dx ≤ c
( r

R

)Q
ˆ

BR

(|Xu|+ s) dx, (2.14)

where u ∈ C1,β(Ω) is a solution of Eq. (2.10) in the above inequalities.
We recall the notion of De Giorgi’s class of functions in this setting, which would be

required for Proposition 3.1, in Section 3. Given a metric ball Bρ0 ⊂ Hn, the De Giorgi’s
class DG+(Bρ0) consists of functions v ∈ HW1,2(Bρ0) ∩ L∞(Bρ0), which satisfy the in-
equality

ˆ
Bρ′
|X(v− k)+|2dx ≤ γ

(ρ− ρ′)2

ˆ
Bρ

|(v− k)+|2dx + χ2|A+
k,ρ|

1− 2
Q+ε (2.15)

for some γ, χ, ε > 0, where A+
k,ρ = {x ∈ Bρ : (v − k)+ = max(v − k, 0) > 0} for any

arbitrary k ∈ R, the balls Bρ′ , Bρ and Bρ0 are concentric with 0 < ρ′ < ρ ≤ ρ0. The class
DG−(Bρ0) is similarly defined and DG(Bρ0) = DG+(Bρ0) ∩ DG−(Bρ0). All properties of
classical De Giorgi class functions, also hold for these classes.

We end this section by introducing the sub-elliptic Wolff potential given by

Wµ
β,p(x0, R) :=

ˆ R

0

( |µ|(B$(x0))

$Q−βp

) 1
p−1 d$

$
, ∀β ∈ (0, Q/p], (2.16)

and recalling following lemma of the density of Wolff potential, see [7] for proof.

Lemma 2.1. Given any H > 1, x0 ∈ Ω and r > 0, if ri = r/Hi for every i ∈ {0, 1, 2, · · · },
then we have

∞

∑
i=0

(
|µ|(Bri(x0))

rQ−1
i

) 1
p−1

≤
(

2
Q−1
p−1

log(2)
+

H
Q−1
p−1

log(H)

)
Wµ

1
p ,p

(x0, 2r). (2.17)

3 Estimates of the horizontal gradient

In this section, we show several comparison estimates along the lines of [7,13] ultimately
leading to a pointwise estimate of the horizontal gradient. Here onwards we fix x0 ∈ Ω
and denote B$ = B$(x0) for every $ > 0. Also, we denote all constants as c, the values
of which may vary from line to line but they are positive and dependent only on n, p, L,
unless explicitly specified otherwise.

In the following, first we show the integral oscillation decay estimate of solutions of
Eq. (2.10), analogous to that of the Euclidean setting in [7, 16] etc.
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Proposition 3.1. Let Br0 ⊂ Ω and u ∈ C1,β(Ω) be a solution of Eq. (2.10), with β =
β(n, p, L) ∈ (0, 1). Then there exists c = c(n, p, L) > 0, such that for all 0 < $ < r < r0, we
have ˆ

B$

|Xu− (Xu)B$ | dx ≤ c
($

r

)β [ ˆ
Br

|Xu− (Xu)Br | dx + χrβ
]

(3.1)

with χ = (s + M(r0))/rβ
0 , where

M(r0) = max
1≤i≤2n

sup
Br0

|Xiu|.

Proof. Given Br0 ⊂ Ω, let us denote

M(ρ) = max
1≤i≤2n

sup
Bρ

|Xiu|

and
ω(ρ) = max

1≤i≤2n
oscBρ Xiu and I(ρ) =

ˆ
Bρ

|Xu− (Xu)Bρ | dx (3.2)

for every 0 < ρ < r0. Hence, note that ω(ρ) ≤ 2M(ρ). Now, we recall the oscillation
lemma proved in [17, Theorem 4.1], that there exists m = m(n, p, L) ≥ 0 such that for
every 0 < r ≤ r0/16, we have

ω(r) ≤ (1− 2−m)ω(8r) + 2m(s + M(r0))
( r

r0

)β
, (3.3)

for some β = β(n, p, L) ∈ (0, 1/p). A standard iteration on (3.3), see for instance [11,
Lemma 7.3], implies that for every 0 < $ < r ≤ r0, we have

ω($) ≤ c
[ ($

r

)β
ω(r) + χ$β

]
= c

($

r

)β [
ω(r) + χrβ

]
, (3.4)

where χ = (s + M(r0))/rβ
0 and c = c(n, p, L) > 0. If $ ≤ δr for some δ ∈ (0, 1), it is easy

to see from (3.4), that for some c = c(n, p, L) > 0, we have

I($) ≤ cω($) ≤ c δ−β
($

r

)β
[ω(δr) + χrβ]. (3.5)

Now we claim that, there exists δ = δ(n, p, L) ∈ (0, 1) such that, the inequality

ω(δr) ≤ c[I(r) + χrβ] (3.6)

holds for some c = c(n, p, L) > 0. Then (3.5) and (3.6) together, yields (3.1); hence proving
the claim (3.6) is enough to complete the proof.

To this end, let us denote r′ = δr, where δ ∈ (0, 1) is to be chosen later. Notice that, to
prove the claim (3.6), we can make the priori assumption:

ω(r) ≥ (s + M(r0))(r/r0)
σ, (3.7)
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with σ = 1/p for p ≥ 2, since, otherwise (3.6) holds trivially with β = σ. Now, we
consider the following complementary cases. This is very standard for elliptic estimates,
see [6, 7, 16, 19] for corresponding Euclidean cases.
Case 1: For at least one index l ∈ {1, · · · , 2n}, we have either∣∣∣B4r′ ∩

{
Xlu <

M(4r′)
4

}∣∣∣ ≤ θ|B4r′ | or
∣∣∣B4r′ ∩

{
Xlu > −M(4r′)

4

}∣∣∣ ≤ θ|B4r′ |.

It has been shown in [17, Theorem 4.1] that under assumption (3.7), if Case 1 holds
with choice of a small enough θ = θ(n, p, L) > 0, then Xiu ∈ DG(B2r′) for every
i ∈ {1, · · · , 2n}. Then, the standard local boundedness estimates of De Giorgi class
functions [11, Theorems 7.2 and 7.3] follow; the fact that Xiu belongs to DG+(B2r′) and
DG−(B2r′), yields the following respective estimates for any ϑ < M(r′):

sup
Br′

(Xiu− ϑ) ≤ c
[ ˆ

B2r′
(Xiu− ϑ)+ dx + χr′β

]
, (3.8a)

sup
Br′

(ϑ− Xiu) ≤ c
[ ˆ

B2r′
(ϑ− Xiu)+ dx + χr′β

]
, (3.8b)

for every i ∈ {1, · · · , 2n}. Adding (3.8a) and (3.8b) with ϑ = (Xiu)Br′ , we get

oscBr′ Xiu ≤ c
[ ˆ

B2r′
|Xiu− (Xiu)Br′ | dx + χr′β

]
≤ c[I(r) + χrβ]

for some c = c(n, p, L) > 0 and δ < 1/2, which further implies (3.6) for this case.
Case 2: With θ = θ(n, p, L) > 0 as in Case 1, for every i ∈ {1, · · · , 2n}, we have∣∣∣B4r′ ∩

{
Xiu <

M(4r′)
4

}∣∣∣ > θ|B4r′ | and
∣∣∣B4r′ ∩

{
Xiu > −M(4r′)

4

}∣∣∣ > θ|B4r′ |.

First, we notice that the above assertions respectively imply infB4r′ Xiu ≤ M(4r′)/4 and
supB4r′

Xiu ≥ −M(4r′)/4 for every i ∈ {1, · · · , 2n}. These further imply that

ω(4r′) ≥ M(4r′)−M(4r′)/4 = 3M(4r′)/4. (3.9)

Now, let us denote
L = max

1≤i≤2n
|(Xiu)Br | = |(Xku)Br |

for some k ∈ {1, · · · , 2n}. Then note that, if L > 2ω(4r′) then using (3.9), we have

|(Xku)Br | − |Xku| ≥ 2ω(4r′)−M(4r′) ≥ M(4r′)/2 in B4r′ ,

which, together with the choice of δ < 1/4, further implies

I(r) ≥ c(n)
ˆ

B4r′
|Xku− (Xku)Br | dx ≥ c(n)

2
M(4r′) ≥ c(n)

4
ω(4r′). (3.10)
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If L ≤ 2ω(4r′) = 2ω(4δr) then, we choose δ < 1/8, so that using ω(r/2) ≤ 2M(r/2) and
(2.13) i.e.,

M(r/2) ≤ c
ˆ

Br

|Xu| dx,

respectively on (3.4), we obtain

ω(4δr) ≤c(8δ)β[ω(r/2) + χrβ] ≤ cδβ
[ ˆ

Br

|Xu| dx + χrβ
]

≤c1δβ[I(r) + L + χrβ] ≤ c1δβ[I(r) + 2ω(4δr) + χrβ] (3.11)

for some c1 = c1(n, p, L) > 0, where the second last inequality of the above is a con-
sequence of triangle inequality and the definition of I and L. Now we make a further
reduction of δ, such that 2c1δβ < 1, so that (3.11) imply

ω(4δr) ≤ c1δβ

1− 2c1δβ

[
I(r) + χrβ

]
. (3.12)

Thus (3.10) and (3.12) together shows that (3.6) holds for Case 2, as well. Therefore, we
have shown that claim (3.6) holds for both cases and the proof is finished.

Remark 3.1. For the Euclidean case, i.e.,

div(|∇u|p−2∇u) = 0,

it is well known, see [7, 16], that for any 0 < $ < r, the following estimate holds:
ˆ

B$

|∇u− (∇u)B$ | dx ≤ c
($

r

)β
ˆ

Br

|∇u− (∇u)Br | dx. (3.13)

The purpose of the Proposition 3.1 is to show that the sub-elliptic setting is very different
even for the homogeneous equation and the integral oscillation estimate is not as strong
as the above. We have the extra term χ 6= 0 in (3.1) which one can not get rid of from
estimates in [17, 21]. Its source goes back to the extra terms containing the commutator
Tu = [Xiu, Xn+iu] in the De Giorgi type estimates of [17,21], where Tu is locally majorized
by Xu from an integrability estimate in [21].

Thus, if u ∈ C1,β(Ω) is a solution of Eq. (2.10), the integral decay estimate of the
oscillation we end up with from (2.13) and (3.1), is

ˆ
B$

|Xu− (Xu)B$ | dx ≤ c
($

r

)β
ˆ

Br

(|Xu|+ s) dx, (3.14)

for any 0 < $ < r, which is not as strong as the (3.13). Nevertheless, it is good enough
for proving Theorem 1.1 via a perturbation argument.
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3.1 Comparison estimates

In this subsection, we prove comparison estimates essential for the proof of our theorems,
by localizing Eqs. (1.1) and (2.10). They follow similarly as in the Euclidean case in [7].
Here onwards, we denote u ∈ HW1,p(Ω) as a weak solution of (1.1) and p ≥ 2.

Fix R > 0 such that B2R ⊂ Ω and consider the Dirichlet problem{
divH a(x,Xw) = 0 in B2R,

w− u ∈ HW1,p
0 (B2R).

(3.15)

The following is the first comparison lemma where the density of the Wolff potential
(2.16) appears in the estimates. The proof is similar to that of [7], see also [1].

Lemma 3.1. Let u ∈ HW1,p(Ω) be a weak solution of Eq. (1.1) and p ≥ 2. Then, the weak
solution w ∈ HW1,p(B2R) of Eq. (3.15) satisfies

ˆ
B2R

|Xw−Xu| dx ≤ c
(
|µ|(B2R)

RQ−1

) 1
p−1

, (3.16)

for some c = c(n, p, L) > 0.

Proof. By testing Eq. (3.15) with ϕ ∈ HW1,p
0 (B2R) and using Eq. (1.1), we have the weak

formulation ˆ
B2R

〈
a(x,Xu)− a(x,Xw),Xϕ

〉
dx =

ˆ
B2R

ϕdµ, (3.17)

which we estimate with appropriate choices of ϕ, in order to show (3.16).
First, we assume 2 ≤ p ≤ Q. For any j ∈N, we denote the following truncations

ψj = max
{
− j

Rγ
, min

{u− w
m

,
j

Rγ

}}
,

ϕj = max
{
− 1

Rγ
, min

{u− w
m
− ψj,

1
Rγ

}}
,

where the scaling constants m, γ ≥ 0 are to be chosen later. Notice that, for each j ∈ N,
we have

|ϕj| ≤ 1/Rγ and Xϕj =
1
m
(Xu−Xw)1Ej ,

where
Ej = {mj/Rγ < |u− w| ≤ m(j + 1)/Rγ}.

Taking ϕ = ϕj in (3.17) and using (2.9a) with p ≥ 2, it is easy to obtain
ˆ

B2R∩Ej

|Xw−Xu|p dx ≤ cm
Rγ
|µ|(B2R) (3.18)
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for some c = c(n, p, L) > 0. Now, using Hölder’s inequality and (3.18), we obtain
ˆ

B2R∩Ej

|Xw−Xu| dx ≤|Ej|
p−1

p
( ˆ

B2R∩Ej

|Xw−Xu|p dx
) 1

p

≤c|Ej|
p−1

p (m/Rγ)
1
p |µ|(B2R)

1
p ,

then, using the fact that |u− w|κ > (mj/Rγ)κ in Ej, we obtain

ˆ
B2R∩Ej

|Xw−Xu| dx ≤ c(m/Rγ)
1
p |µ|(B2R)

1
p

(mj/Rγ)
κ(p−1)

p

( ˆ
B2R∩Ej

|u− w|κ dx
) p−1

p

(3.19)

with κ = Q/(Q− 1). Also from (3.18), note that for any N ∈N,

ˆ
B2R∩{|u−w|≤mN/Rγ}

|Xw−Xu|p dx =
N−1

∑
j=0

ˆ
B2R∩Ej

|Xw−Xu|p dx

≤ c m
Rγ

N|µ|(B2R). (3.20)

Now, we estimate the whole integral using (3.20) and (3.19), as follows:
ˆ

B2R

|Xw−Xu| dx

=

ˆ
B2R∩{|u−w|≤mN/Rγ}

|Xw−Xu| dx +

ˆ
B2R∩{|u−w|>mN/Rγ}

|Xw−Xu| dx

≤|B2R|
p−1

p

( ˆ
B2R∩{|u−w|≤mN/Rγ}

|Xw−Xu|p dx
) 1

p

+
∞

∑
j=N

ˆ
B2R∩Ej

|Xw−Xu| dx

≤c(m/Rγ)
1
p |µ|(B2R)

1
p

(
|B2R|

p−1
p N

1
p +

∞

∑
j=N

[ 1
(mj/Rγ)κ

ˆ
B2R∩Ej

|u− w|κ dx
] p−1

p
)

.

Using Sobolev inequality (2.5) on the second term of the above, we obtain
ˆ

B2R

|Xw−Xu| dx

≤c(m/Rγ)
1
p |µ|(B2R)

1
p |B2R|

p−1
p N

1
p

+ c(m/Rγ)
1
p−

κ(p−1)
p |µ|(B2R)

1
p ε(N)

1
p
( ˆ

B2R

|Xu−Xw| dx
) κ(p−1)

p
,

where

ε(N) =
∞

∑
j=N

1/jκ(p−1), κ = Q/(Q− 1) and c = c(n, p, L) > 0.
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Now, first we consider the case p < Q, so that we have κ(p − 1)/p < 1. Then, by
applying Young’s inequality on the second term, we obtain

ˆ
B2R

|Xw−Xu| dx ≤ c
( m

Rγ

) 1
p |µ|(B2R)

1
p |B2R|

p−1
p N

1
p + c

( m
Rγ

) 1+κ−κp
p+κ−κp |µ|(B2R)

1
p+κ−κp

+ ε(N)
1

κ(p−1)

( ˆ
B2R

|Xu−Xw| dx
)

for some c = c(n, p, L) > 0. Now, we make the following choice of the scaling constants,

m = |µ|(B2R)
1

p−1 and γ = (Q− p)/(p− 1),

such that the first two terms of the above are the same. Also note that, since p ≥ 2 >
1 + 1/κ, we have κ(p− 1) > 1 and hence,

∞

∑
j=1

1/jκ(p−1) = ζ(κ(p− 1)) < ∞.

If N is large enough, we can have

ε(N) =
∞

∑
j=N

1/jκ(p−1) < 1/2κ(p−1)

and thus, the last term of the estimate can be absolved in the left hand side. With these
choices of m, γ, N, we finally obtain

ˆ
B2R

|Xw−Xu| dx ≤ c|µ|(B2R)
1

p−1 R
Qp−2Q+1

p−1 (3.21)

for some c = c(n, p, L) > 0, which immediately implies (3.16).
For the case of p = Q, the estimate (3.21) also follows similary with a possibly larger

N and the same choices of scaling constants, i.e.,

m = |µ|(B2R)
1/(Q−1) and γ = 0,

except here we absolve the last term to the right hand side directly, without using Young’s
inequality.

Now we assume the p ≥ Q. Here we simply choose ϕ = u−w in (3.17) and use (2.9a)
together with Morrey’s inequality (2.8) to obtain

ˆ
B2R

|Xw−Xu|p dx ≤c
ˆ

B2R

|u− w| dµ ≤ c|µ|(B2R) sup
B2R

|u− w|

≤c|µ|(B2R)R1− Q
p
( ˆ

B2R

|Xw−Xu|p dx
) 1

p
,
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which, upon using Young’s inequality, yields
ˆ

B2R

|Xw−Xu|p dx ≤ c|µ|(B2R)
p

p−1 R
p−Q
p−1 . (3.22)

Then, using Hölder’s inequality and (3.22), we obtain

ˆ
B2R

|Xw−Xu| dx ≤|B2R|
p−1

p
( ˆ

B2R

|Xw−Xu|p dx
) 1

p

≤c|µ|(B2R)
1

p−1 R
Qp−2Q+1

p−1 ,

which, just as before, implies (3.16). Thus, the proof is finished.

Remark 3.2. It is evident that by using Sobolev or Morrey inequality (2.5), (2.8) on (3.16),
we can obtain the estimate

ˆ
B2R

|w− u| dx ≤ c
(
|µ|(B2R)

RQ−p

) 1
p−1

,

where u and w are the functions stated in Lemma 3.1.

For the next comparison estimate, we require the Dirichlet problem with freezing of
the coefficients. Letting w ∈ HW1,p(B2R) as weak solution of (3.15), we consider{

divH a(x0,Xv) = 0 in BR,

v− w ∈ HW1,p
0 (BR).

(3.23)

Lemma 3.2. Given weak solution w ∈ HW1,p(B2R) of (3.15), if v ∈ HW1,p(BR) is the weak
solution of Eq. (3.23), then there exists c = c(n, p, L) > 0 such that

ˆ
BR

|Xv−Xw|p dx ≤ cL′2R2α

ˆ
BR

(|Xw|+ s)p dx. (3.24)

Proof. First, note that by testing Eq. (3.23) with w− v and using the ellipticity (2.9b), it is
not difficult to show the following inequality,

ˆ
BR

|Xv|p dx ≤ c
ˆ

BR

(|Xw|+ s)p dx (3.25)

for some c = c(n, p, L); the proof is standard. Also, testing both Eqs. (3.15) and (3.23)
with w− v, we have that

ˆ
B2R

〈
a(x,Xw),Xw−Xv

〉
dx = 0 =

ˆ
BR

〈
a(x0,Xv),Xw−Xv

〉
dx.
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Using the above together with (2.9a) and (1.2), we obtain

c
ˆ

BR

(|Xw|2 + |Xv|2 + s2)
p−2

2 |Xw−Xv|2 dx

≤
ˆ

BR

〈
a(x0,Xw)− a(x0,Xv),Xw−Xv

〉
dx

=

ˆ
BR

〈
a(x0,Xw)− a(x,Xw),Xw−Xv

〉
dx

≤cL′Rα

ˆ
BR

(|Xw|2 + |Xv|2 + s2)
p−2

2 |Xw||Xw−Xv| dx.

Using Young’s inequality on the last integral of the above, it is easy to get

ˆ
BR

(|Xw|2 + |Xv|2 + s2)
p−2

2 |Xw−Xv|2 dx

≤c(L′Rα)2
ˆ

BR

(|Xw|2 + |Xv|2 + s2)
p
2 dx.

This, together with (3.25), is enough to prove (3.24).

Combining Lemma 3.1 and Lemma 3.2, we obtain the following comparison estimate
of weak solution u of (1.1) and weak solution v of (3.23).

Corollary 3.1. Let u ∈ HW1,p(Ω) be a weak solution of Eq. (1.1) and let v ∈ HW1,p(BR) be
the weak solution of Eq. (3.23), where w ∈ HW1,p(B2R) given in the problem (3.23) is the weak
solution of Eq. (3.15). Then there exists c = c(n, p, L) > 0 such that

ˆ
BR

|Xv−Xu| dx ≤ c
(
1 + (L′Rα)

2
p
)( |µ|(B2R)

RQ−1

) 1
p−1

+ c(L′Rα)
2
p

ˆ
B2R

(|Xu|+ s) dx.

Proof. First, notice that Hölder’s inequality and (3.24) imply

ˆ
BR

|Xv−Xw| dx ≤ c(L′Rα)
2
p
( ˆ

BR

(|Xw|+ s)p dx
) 1

p
. (3.26)

Hence, using (3.16) and (3.26), we obtain

ˆ
BR

|Xv−Xu| dx ≤
ˆ

BR

|Xw−Xu| dx +

ˆ
BR

|Xv−Xw| dx

≤ c
(
|µ|(B2R)

RQ−1

) 1
p−1

+ c(L′Rα)
2
p
( ˆ

BR

(|Xw|+ s)p dx
) 1

p
.

(3.27)
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We estimate the last integral using sub-elliptic reverse Hölder’s inequality and Gehring’s
lemma, see [20], to obtain( ˆ

BR

(|Xw|+ s)p dx
) 1

p ≤c
ˆ

B2R

(|Xw|+ s) dx

≤c
ˆ

B2R

(|Xu|+ s) dx + c
ˆ

B2R

|Xu−Xw| dx

≤c
ˆ

B2R

(|Xu|+ s) dx + c
(
|µ|(B2R)

RQ−1

) 1
p−1

, (3.28)

where the last inequality follows from (3.16). Now it is easy to see that by combining
(3.27) and (3.28), the proof is finished.

4 Proof of the Theorem 1.1

We shall prove Theorem 1.1 in this section. As before, here we maintain u ∈ HW1,p(Ω)
as a weak solution of Eq. (1.1) and fix some arbitrary x0 ∈ Ω and denote the metric balls
Bρ = Bρ(x0) for every ρ > 0. The comparison estimates of Section 3 shall lead to the
necessary estimates for u.

With respect to the given data, let us set

R̄ = R̄(n, p, L, L′, α, dist(x0, ∂Ω)) > 0, (4.1)

which shall be chosen as small as required as we proceed, finally the minimum of every
reductions of R̄, is to be considered. Let

R̄ ≤ min
{

1,
1
2

dist(x0, ∂Ω), L′−1/α
}

to begin with, so that for any R < R̄, we have R, L′Rα < 1 and BR ⊂ Ω.
The following lemma is a consequence of the uniform Lipschitz estimate (2.14).

Lemma 4.1. For any 0 < ρ ≤ R ≤ R̄/2, we have the estimate

ˆ
Bρ

(|Xu|+ s) dx ≤c
( ρ

R

)Q
ˆ

BR

(|Xu|+ s) dx + cRQ
(
|µ|(B2R)

RQ−1

) 1
p−1

+ c(L′Rα)
2
p

ˆ
B2R

(|Xu|+ s) dx. (4.2)

Proof. We denote comparison function v as the weak solution of Eq. (3.23), as before.
Then we write ˆ

Bρ

(|Xu|+ s) dx ≤
ˆ

Bρ

(|Xv|+ s) dx +

ˆ
Bρ

|Xu−Xv| dx. (4.3)
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The first term is estimated from (2.14) as
ˆ

Bρ

(|Xv|+ s) dx ≤c
( ρ

R

)Q
ˆ

BR

(|Xv|+ s) dx

≤c
( ρ

R

)Q
ˆ

BR

(|Xu|+ s) dx + c
( ρ

R

)Q
ˆ

BR

|Xv−Xu| dx. (4.4)

The last terms of (4.3) and (4.4) are estimated by Corollary 3.1 and we end up with (4.2).
This concludes the proof.

The following Lemma is similar to a well-known lemma of Campanato [3, 10]. The
proof follows along the same lines as in [9, Lemma 2.1].

Lemma 4.2. Let φ : (0, ∞) → [0, ∞) be a non-decreasing functions, A > 1 and ε ≥ 0 be fixed
constants. Let ψ, Ψ : (0, ∞)→ [0, ∞) be functions such that

∞

∑
j=0

ψ(tjr) ≤ Ψ(r)

for any 0 < t < t0 < 1. Given any a > 0, suppose that

φ(ρ) ≤ A
[(ρ

r

)a
+ ε
]

φ(r) + raψ(r) (4.5)

holds for any 0 < ρ < r ≤ R0, then there exists constants ε0 = ε0(A, a) > 0 and c = c(A, a) >
0 such that if ε ≤ ε0, then for all 0 < ρ < r ≤ R0, we have

φ(ρ) ≤ c
[(ρ

r

)a−ε̄
φ(r) + ρa−ε̄rε̄Ψ(r)

]
(4.6)

for any 0 < ε̄ < a.

Proof. We fix 0 < r ≤ R0. Notice that, for any 0 < t < 1, (4.5) implies

φ(tr) ≤ Ata
(

1 +
ε

ta

)
φ(r) + raψ(r).

We fix some t < t0 and let ε0 ≤ ta, so that for every ε ≤ ε0, we have

Ata(1 + ε/ta) ≤ 2Ata.

Using this on the above, we get

φ(tr) ≤ 2Ataφ(r) + raψ(r). (4.7)
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Now, we iterate (4.7) as follows; for any k ∈N,

φ(tk+1r) ≤2Ataφ(tkr) + tkaraψ(tkr)

≤(2Ata)2φ(tk−1r) + 2Atkaraψ(tk−1r) + tkaraψ(tkr)

≤(2Ata)3φ(tk−2r) + (2A)2tkaraψ(tk−2r) + 2Atkaraψ(tk−1r) + tkaraψ(tkr)

≤ · · · ≤ (2Ata)k+1φ(r) + tkara
k

∑
j=0

(2A)jψ(tk−jr).

Since, ∑∞
j=0 ψ(tjr) ≤ Ψ(r) as given, we have

φ(tk+1r) ≤ (2Ata)k+1φ(r) + (2Ata)kraΨ(r).

Now, given any 0 < ε̄ < a, we can choose t small enough such that tε̄ ≤ 1
2A and hence

2Ata ≤ ta−ε̄. Then, we have

φ(tk+1r) ≤ c
[
t(k+1)(a−ε̄)φ(r) + tk(a−ε̄)raΨ(r)

]
(4.8)

for some c = c(A, a) > 0. Now, given any ρ < r, we can choose k ∈N such that, we have
tk+1r < ρ ≤ tkr. Then, (4.8) implies

φ(tρ) ≤ φ(tk+1r) ≤ c
(ρ

r

)a−ε̄
φ(r) +

c
ta−ε̄

ρa−ε̄rε̄Ψ(r),

which, with a rescaling of ρ by constants dependent on A, a, yields (4.6). This completes
the proof.

Using the above Lemma together with Lemma 4.1, we obtain an almost-Lipschitz
estimate, as follows.

Proposition 4.1. There exists c = c(n, p, L) > 0 such that,
ˆ

Br

(|Xu|+ s) dx ≤ c
( r

R

)Q−ε̄
[ ˆ

BR

(|Xu|+ s) dx + RQWµ
1
p ,p

(x0, R)
]

(4.9)

holds for any 0 < ε̄ < Q and 0 < r ≤ R ≤ R̄.

Proof. First, let us fix 0 < r ≤ R̄ and denote

φ(r) =
ˆ

Br

(|Xu|+ s) dx and wµ(r) =
(
|µ|(Br)

rQ−1

) 1
p−1

.

We recall (4.2) with appropriate scaling, to have

φ(ρ) ≤ c
(ρ

r

)Q
φ(r) + crQwµ(r) + (L′rα)

2
p φ(r),
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for any ρ ≤ r and c = c(n, p, L) > 0. We can apply Lemma 4.2 on the above with a = Q
and using approriate reduction

(L′R̄α)
2
p ≤ ε0(n, p, L).

Recalling (2.17), notice that wµ satisfy the summability condition of Lemma 4.2 and we
obtain

φ(r) ≤ c
[( r

R

)Q−ε̄
φ(R) + rQ−ε̄Rε̄Wµ

1
p ,p

(x0, R)
]

for every 0 < r ≤ R ≤ R̄, and hence we have (4.9). This completes the proof.

Now, we use the estimate (3.14) along with the above estimates to prove C1,γ regu-
larity of u. We continue to assume R̄ subject to reductions with dependence of data as in
(4.1). First, we have the following lemma.

Lemma 4.3. There exist β = β(n, p, L) ∈ (0, 1) and c = c(n, p, L) > 0 such that, for every
0 < $ < R < R̄/2, the following estimate holds:ˆ

B$

|Xu− (Xu)B$ | dx

≤c
( $

R

)β
ˆ

BR

(|Xu|+ s) dx + c
(R

$

)Q
[(
|µ|(B2R)

RQ−1

) 1
p−1

+ (L′Rα)
2
p

ˆ
B2R

(|Xu|+ s) dx

]
.

Proof. We define the comparison functions w and v as weak solutions of Eqs. (3.15) and
(3.23), as before. Then we haveˆ

B$

|Xu− (Xu)B$ | dx ≤2
ˆ

B$

|Xu− (Xv)B$ | dx

≤2
ˆ

B$

|Xv− (Xv)B$ | dx + 2
ˆ

B$

|Xu−Xv| dx. (4.10)

Now, we shall estimate both terms of the right hand side of (4.10) seperately.
Using (3.14), we estimate the first term of (4.10) asˆ

B$

|Xv− (Xv)B$ | dx ≤c
( $

R

)β
ˆ

BR

(|Xv|+ s) dx

≤c
( $

R

)β
ˆ

BR

(|Xu|+ s) dx + c
( $

R

)β
ˆ

BR

|Xv−Xu| dx.

The second term of (4.10) is estimated simply asˆ
B$

|Xu−Xv| dx ≤ c
(R

$

)Q ˆ
BR

|Xu−Xv| dx.

Using the above estimates in (4.10), together with Corollary 3.1 to estimate the integral of
|Xu−Xv|, the proof is finished.



538 S. Mukherjee and Y. Sire / Anal. Theory Appl., 37 (2021), pp. 520-540

Now we are ready to prove Theorem 1.1. An extra dependence on q is assumed on R̄,
where q > Q is as in the statement of Theorem 1.1.

Proof of Theorem 1.1. Let us assume the notation wµ for the density of the Wolff potential,
as used in the previous subsection. From Lemma 4.3, we get

ˆ
B$

|Xu− (Xu)B$ | dx

≤c
($

r

)Q+β
ˆ

Br

(|Xu|+ s) dx + crQwµ(r) + c(L′rα)
2
p

ˆ
Br

(|Xu|+ s) dx (4.11)

and from (4.9) of Proposition 4.1, we have,

ˆ
Br

(|Xu|+ s) dx ≤ c
( r

R

)Q−ε̄
[ ˆ

BR

(|Xu|+ s) dx + RQWµ
1
p ,p

(x0, R)
]

. (4.12)

We use (4.12) on (4.11) to obtain the following estimate,

ˆ
B$

|Xu− (Xu)B$ | dx ≤c
($Q+βRε̄

rβ+ε̄RQ

)[ ˆ
BR

(|Xu|+ s) dx + RQWµ
1
p ,p

(x0, R)
]

+ crQ
[

wµ(r) + (L′rα)
2
p

ˆ
Br

(|Xu|+ s) dx
]

(4.13)

for every 0 < $ ≤ r ≤ R ≤ R̄. Now, given µ = f ∈ Lq
loc(Ω) for some q > Q, then by

Hölder’s inequality we have

|µ|(Br)

rQ−1 =
1

rQ−1

ˆ
Br

| f | dx ≤ |Br|1−1/q

rQ−1

( ˆ
Br

| f |q dx
) 1

q ≤ cr1− Q
q ‖ f ‖Lq .

Letting δ ≤ (1−Q/q)/(p− 1), the above implies that

wµ(r) ≤ crδ‖ f ‖1/(p−1)
Lq

and 0 < δ < 1 since q > Q and p ≥ 2. The same upper bound is also satisfied by the
Wolff potential due to (2.17). Furthermore, we assume ε̄ < 2α/p and δ < 2α/p− ε̄ so that
using (4.9) again for the last term of (4.13) and a further reduction

L′R̄α−p(δ+ε̄)/2 < 1,

leads to
ˆ

B$

|Xu− (Xu)B$ | dx ≤ c
($Q+β

rβ+ε̄
+ rQ+δ

)[ ˆ
BR

(|Xu|+ s) dx + ‖ f ‖1/(p−1)
Lq

]
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for every 0 < $ ≤ r ≤ R ≤ R̄. For some 0 < κ < 1 we rewrite the above with the choice
r = $κ to have
ˆ

B$

|Xu− (Xu)B$ | dx ≤c
(
$Q+(1−κ)β−κε̄ + $κ(Q+δ)

)[ ˆ
BR

(|Xu|+ s) dx + ‖ f ‖1/(p−1)
Lq

]
≤c$Q+γ

[ ˆ
BR

(|Xu|+ s) dx + ‖ f ‖1/(p−1)
Lq

]
,

where the latter inequality follows when Q + γ ≤ min{Q + (1 − κ)β − κε̄κ(Q + δ)};
indeed we can make sure that this is true with the choice of κ = κ(γ) such that

Q + γ

Q + δ
≤ κ ≤ β− γ

β + ε̄
,

for any 0 < γ < βδ/(Q + β + δ + ε̄). Also, note that if γ, ε̄ are small enough, κ = κ(γ)
can be chosen close enough to 1 and we can make sure $κ ≤ R, whenever 0 < $ < R.
Thus, we have obtained

ˆ
B$

|Xu− (Xu)B$ | dx ≤ c$γ

[ ˆ
BR

(|Xu|+ s) dx + ‖ f ‖1/(p−1)
Lq

]
for any 0 < $ < R ≤ R̄ and the proof is completed.
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