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Abstract. In this paper, we propose a new method to study intermittent behaviors of
coupled piecewise-expanding map lattices. We show that the successive transition be-
tween ordered and disordered phases occurs for almost every orbit when the coupling
is small. That is,

lim inf
n→∞ ∑

1≤i,j≤m
|xi(n)− xj(n)| = 0,

lim sup
n→∞

∑
1≤i,j≤m

|xi(n)− xj(n)| ≥ c0 > 0,

where xi(n) correspond to the coordinates of m nodes at the iterative step n. Moreover,
when the uncoupled system is generated by the tent map and the lattice consists of two
nodes, we prove a phase transition occurs between synchronization and intermittent
behaviors. That is,

lim
n→∞

|x1(n)− x2(n)| = 0 for
∣∣∣c− 1

2

∣∣∣ < 1
4

and intermittent behaviors occur for |c− 1
2 | >

1
4 , where 0 ≤ c ≤ 1 is the coupling.
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1 Introduction

In this paper, we study the intermittent dynamical behavior of coupled piecewise-
expanding map lattices. Let f : [0, 1] → [0, 1] be a piecewise expanding map, I be the
m × m identity matrix and A be an m × m symmetric matrix satisfying Ae = 0, where
e = [1, · · · , 1]>. Consider the dynamical system defined by a coupled map lattice:

T : x(n + 1) = (I + cA)f(x(n)), (1.1)

where c is the coupling coefficient, x(n) = [x1(n), · · · , xm(n)]> ∈ [0, 1]m for n ∈ N ∪ {0}
and f(x(n)) = [ f (x1(n)), · · · , f (xm(n))]>. In case of no confusion, we also use bold
letters x or p = (x1, · · · , xm) to denote points in [0, 1]m.

Because of Ae = 0, it can be easily seen that the diagonal Dsyn = {(x1, · · · , xm) ∈
[0, 1]m | x1 = · · · = xm} is an invariant set for synchronized points of T. An interest-
ing question on the dynamical behavior of the coupled map lattice (1.1) can be raised as
whether Dsyn is a global attractor, or equivalently, whether synchronization occurs for
(1.1). There have been plenty of results on the study of synchronization when f gen-
erates a chaotic dynamical system. Common examples include the tent maps and the
Logistic maps, one can see [2, 20, 27] and references therein. It has been shown in these
results that chaotic synchronization can occur only if c is far from zero. That is, chaotic
synchronization can not occur for small coupling strength.

However, a more complicated phenomenon has been found by numerical simula-
tions when c is out of the synchronized region. Roughly speaking, it is found that a
typical orbit can enter into and exits slowly from an arbitrarily small neighborhood of
Dsyn for infinite times. In other word, the successive transition between being close to
the diagonal and being far from the diagonal can happen. We call this phenomenon as
pseudo-synchronization.

The pseudo-synchronization is closely related to the clustering phenomenon in global
coupled map lattices by Kaneko et al. [4, 9–14]. In numerical experiments, it showed that
when (1.1) is a globally coupling system with large m, elements differentiate into some
clusters, and elements in each cluster oscillate synchronously, while the behaviors in dif-
ferent clusters are various. Moreover, the differentiation by clustering is a temporal be-
havior in nature [14]. One can easily see that the pseudo-synchronization is a special case
of the temporal clustering. In fact, the temporal clustering is also found in all systems
of (1.1) with small c. Similar behaviors were also widely explored in weakly coupled
continuous-time chaotic systems. For example, the successive transition between burst-
ing and spiking was discovered in the study of epilepsy, see [5, 6] and references therein.
More related results are shown in [3, 7, 24, 25] and references therein. To provide a math-
ematical proof for the mechanism of pseudo-synchronization for coupled map lattices is
one of motivations of this paper.

On the other hand, there are a series of mathematical results on dynamical behav-
iors of weakly-coupled map lattices. In [15], Keller showed that the existence of unique
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absolutely continuous invariant measure for weakly-coupled tent maps. Keller and Liv-
erani [18] proved the existence of the unique SRB measure for a wide range of multi-
dimensional weakly coupled map lattices. They also showed the exponential decay of
correlations in time and space in some one-dimensional lattices of weakly coupled piece-
wise expanding interval maps [17]. Furthermore, they provide some exact formulae
to describe the escape rates with respect to the infinitesimal neighborhood of the syn-
chronization manifold for the coupled systems [19]. More further results can be found
in [1,8,16,21,22,26] and references therein. Another motivation of this paper is therefore
to provide a precise description on the set of the couplings corresponding to intermittent
behaviors and escape rates with respect to the synchronization manifold of coupled map
lattices.

In this paper, we will prove the occurrence of successive transitions for almost every
point in the sense of Lebesgue measure for the following coupled map lattices, where f
is the tent map or its perturbation.

In (1.1), when m = 2, we have the following coupled map lattice:

T :

{
x1(n + 1) = (1− c) f (x1(n)) + c f (x2(n)),

x2(n + 1) = c f (x1(n)) + (1− c) f (x2(n)).
(1.2)

Let dist(A, B) denote the distance between two points/sets A and B. Numerical simula-
tion shows that when f (x) is piecewise-expanding and close to the standard tent map,
and c is smaller than some c+ > 0, the pseudo-synchronization occurs for the system
(1.2). That is,

lim inf
n→∞

dist(x(n), Dsyn) = 0, (1.3a)

lim sup
n→∞

dist(x(n), Dsyn) ≥ γ0 > 0, (1.3b)

for some γ0 > 0. In other word, the successive transition between the order phase (close
to Dsyn) and the disorder phase (far from Dsyn) occurs for almost every orbit. Similar
behaviors are also found for the multi-node cases.

Obviously, (1.3a) and (1.3b) are equivalent to the following equations, respectively,

lim inf
n→∞

|x1(n)− x2(n)| = 0,

lim sup
n→∞

|x1(n)− x2(n)| ≥ γ0 > 0.

In this paper, we will provide such a series of mathematical proofs for Theorem 1.1-
Theorem 1.4 as follows.

Theorem 1.1. Consider the system (1.2) with f (x) = 1− 2|x− 1
2 |, x ∈ [0, 1] being the standard

tent map. Then for all 0 ≤ c < 1
4 (or 3

4 < c ≤ 1), there exists a constant γ0 > 0 such that for
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almost every initial point (x1(0), x2(0)) ∈ [0, 1]2, (1.3a) and (1.3b) hold true. Moreover, the
synchronization occurs for each 1

4 < c < 3
4 (c = 1

4 or 3
4 ), that is,

lim
n→∞

dist(x(n), Dsyn) = 0 (1.4)

for (almost) every initial data.

Remark 1.1. Thus we conclude that c = 1
4 is the bifurcation point between synchroniza-

tion described by (1.4) and intermittent behavior described by (1.3a)-(1.3b). Hopefully it
can be generalized to the situation with any m nodes as well as with a non-piecewise-
linear perturbation on f , which will be studied in our future work.

For non-piecewise-linear f , the situation is more difficult, for which we will provide
a method different from the one for Theorem 1.1. To show the idea for non-piecewise-
linear situation, we would rather first prove the following result weaker than Theorem
1.1.

Theorem 1.2. Consider the system (1.2) with f (x) = 1− 2|x− 1
2 |, x ∈ [0, 1] being the standard

tent map. There exists 0 < c+ ≤ 1
4 such that if the coupling coefficient 0 ≤ c < c+, then there

exists a constant γ0 > 0 such that for almost every initial point (x1(0), x2(0)) ∈ [0, 1]2, (1.3a)
and (1.3b) hold true.

Remark 1.2. The function f (x) in the system (1.2) need not be the standard tent map.
We can prove that there exist constants c+, α+ > 0 such that the same conclusion as in
Theorem 1.2 holds true for the general tent map

f (x) =


(2− α1)x, 0 < x ≤ 1

2
− α2,

1− 2α2

1 + 2α2
(2− α1)(1− x),

1
2
− α2 < x ≤ 1,

(1.5)

with |c| ≤ c+ and |αi| < α+, i = 1, 2. Moreover, the result can be extended to the general
piecewise linear continuous function f with slopes being large enough.

The conclusion in Theorem 1.2 can be generalized to the case that f is piecewise ex-
panding. More precisely, we will prove that

Theorem 1.3. Let f0(x) = 1− s|x− 1
2 |, x ∈ [0, 1], where s = 2− s0 with 0 ≤ s0 < 1. and g(x)

be a C2-smooth function on x ∈ [0, 1] such that f (x) = f0(x) + g(x) ∈ [0, 1] for each x. Then
there exist three small constants c+, s0+, η > 0 such that if 0 ≤ c < c+, s0 ≤ s0+ and ‖g‖C2 < η,
there exists a constant γ0 > 0 such that for almost every initial point (x1(0), x2(0)) ∈ [0, 1]2,
(1.3a) and (1.3b) hold true for the system (1.2).

Theorem 1.2 can also be extended to the multi-node case.
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Theorem 1.4. Let f be the standard tent map and consider the coupled tent map lattices (1.1)
with A being m×m symmetric matrix satisfying Ae = 0. There exists c+ > 0 such that if the
coupling coefficient 0 ≤ c < c+, then there exists a constant γ0 > 0, such that for almost every
initial point (x1(0), · · · , xm(0)) ∈ [0, 1]m, (1.3a) and (1.3b) hold true.

Remark 1.3. Remark 1.2 is also applicable for Theorems 1.3 and 1.4.

Theorem 1.2 is a special case of Theorem 1.3 or 1.4 without regard to the fact we can
obtain a larger c+ in Theorem 1.2 than in other two theorems. However, we will still give
the proof of Theorem 1.2 first, since it is helpful for readers to understand the key idea of
the proof as well as more complicated cases considered in Theorem 1.3.

Remark 1.4. In principle, similar results as in Theorems 1.3 and 1.4 can be extracted
from [15] by Keller and [22] by Liverani with tranditional functional analysis methods.
However, our geometric method is completely new. More importantly, the parameters in
theorem 1.1 based on our new method is not necessary to be small. In fact, we obtained a
phase transition result. In contract, the parameters in [15] and [22] are required small and
it seems difficult to determine explicitly whether a parameter is sufficiently small. From
the view point of application, the result in Theorem 1.1 is much better than related ones
obtained by the functional analysis method in [15, 22]. Potentially, a precise description
on the set of the couplings corresponding to intermittent behaviors for general situations
can be provided by our new method.

The remaining part of this paper is organized as follows. In Section 2, we give a key
iteration lemma as the base for the main proof. In Sections 3 and 4, we prove (1.3a) (the
ordered part) and (1.3b) (the disordered part) of Theorem 1.2. The proof of Theorem 1.3 is
given in Section 5. In the next section, we will prove Theorem 1.4. The proof of Theorem
1.1 will be given in the last section.

2 The basic idea and the key lemma

In this section, we will describe our intuition for the proof. From the observation, we
then provide a key iteration lemma, which is the base for the main proof.

Roughly speaking, for any set S with a small measure in some sense, from the local
expansion of the map T, we observe that the measure of T j(S) will become large enough
for some large j such that T j(S) ∩ Dsyn 6= ∅. If Ti(S) also satisfies some ”good” property
for i = 0, 1, · · · , j (say, Ti(S) is a segment or convex region), then we can show that for
any neighborhood of the diagonal Dsyn there is a constant m0 > 0 such that there exists
a subset S0 of S satisfying that (i) for each point p ∈ S0, T j(p) is in the neighborhood of
Dsyn; (ii) M(S0) ≥ m0M(S), where M(·) denotes the Lebesgue measure or a domain of
the length of a simple curve. Then (i) and (ii) will imply (1.3a) holds true for a set of full
measure.

However, since T is not one to one and thus is not globally expanding, the actual
picture is much more complicated than the one described above. In fact, since T is not
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one-to-one, usually the ”good” property of a set S is not preserved by its image T(S).
Without this property, it is impossible to obtain (ii). On the other hand, let [0, 1]m = ∪DJ ,
where DJ are 2m small hypercubes of [0, 1]m divided by the planes xi =

1
2 , 1 ≤ i ≤ m.

From the definition of f , one can see that T : DJ → [0, 1]m is one to one for each J.
Moreover, T(DJ ∩ S) will keep the ”good” property of S. For this reason, we have to
divide S into S ∩ DJ , and consider the iterations of T on each of them individually.

For convenience, we say S has i1 components if there are i1 nonempty sets among
all S ∩ DJ . Furthermore, consider a set D ⊂ [0, 1]m. For any set S with components
S1,1, . . . , S1,i1 , if there are exactly î1 components S1,1j , j = 1, . . . , î1 ≤ i1 among them such
that S1,1j ∩ D 6= ∅ for each 1 ≤ j ≤ î1, we say S has î1 components in D. For the set S
stated above, suppose for each 1 ≤ j ≤ i1, T(S1,j) has k1(j) components, we say T(S)
has ∑i1

j=1 k1(j) components. Similarly, suppose for each 1 ≤ j ≤ î1, T(S1,1j) has k̂1(j)

components in D, we say T(S) has ∑î1
j=1 k̂1(j) components in D. Inductively, suppose

Tl(S) has components Sl,1, . . . , Sl,il and has components Sl,lj , j = 1, . . . , îl ≤ il in D.
Furthermore, for each 1 ≤ j ≤ il , T(Sl,j) has kl(j) components, and for 1 ≤ j ≤ îl ,
T(Sl,lj) has k̂l(j) components in D. We say that Tl+1(S) has ∑il

j=1 kl(j) components and

∑îl
j=1 k̂l(j) components in D, respectively. In the same way, we can give the definitions for

T−l(S) (in D). Note that each component Ω of Tl(S) corresponds a subset Ω0 ⊂ S such
that Tl : Ω0 → Ω is a homeomorphism.

Obviously, the measure of each component of S is usually strictly less than the mea-
sure of S. Moreover, images of each component may have more than one component.
Thus we need to show that averagely the local expansion of the map will surpass the di-
viding action by xi =

1
2 , i = 1, · · · , m on a set so that the measures of the components will

keep increasing as the iteration goes forward only if the intersection of the corresponding
set and Dsyn is empty. More detailed, we have the key iteration lemma and its corollary
as below.

Consider the coupled map lattice T in (1.1) with f (x) differential for x 6= 1
2 . Let

S ⊂ [0, 1]m be a simple curve or measurable set. We define

E+(c) =


sup

p∈[0,1]m
|det(JT(p, c))| = |det(A(c))|νm

+ w.r.t. a measurable set S,

sup
p∈[0,1]m

‖JT(p, c)‖ w.r.t. a simple curve S,

where A(c) ≡ I + cA is the coupling matrix, JT(p, ·) be the Jacobian matrix of T at p (if
it exists) and ν+ = supx 6= 1

2
| f ′(x)|. Similarly, we define

E−(c) =


inf

p∈[0,1]m
|det(JT(p, c))| = |det(A(c))|νm

− w.r.t. a measurable set S,

inf
p∈[0,1]m

‖JT(p, c)‖ w.r.t. a simple curve S,



T. X. Li, W. W. Lin, Y. Q. Wang and S. T. Yau / Anal. Theory Appl., 37 (2021), pp. 481-519 487

where ν− = infx 6= 1
2
| f ′(x)|. Obviously, for any simple curve or measurable set S in some

small cube DJ of the phase space, we have

E−(c)M(S) ≤ M(T(S)) ≤ E+(c)M(S).

For example, if f is the tent map and m = 2, then E±(c) equals 4(1− 2c) for a mea-
surable set and E+(c) = 2, E−(c) = 2(1− 2c) for a curve.

For any real number x, we define bxc = max{i is an integer | i ≤ x}. Let D be a
domain in the phase space [0, 1]m.

Definition 2.1. Let δ > 0, m0, a ∈ N. We say a simple curve or measurable set S in D is
(δ, m0, a)-good if S lies in some small cube of [0, 1]m with M(S) ≤ δM(D) and for each i ≥ 0
and each component S1 of Ti(S) with M(S1) ≤ δM(D), it holds that Tm0(S1) has at most a
components.

Lemma 2.1 (Iteration Lemma). Assume E+(c) ≥ E−(c) > 1. Let D be a domain in the phase
space [0, 1]m. Suppose 0 < δ1 < 1 and a < Em0

− (c) with a, m0 ∈N. Let

1 < µ <

(
1− logE+(c)

E−(c)
a1/m0

)−1

,

d = 1−
(

1− logE+(c)
E−(c)
a1/m0

)
µ > 0,

F(c) = a
(E−(c)

a1/m0

)1−logE+(c) δ1
.

Define
N0 = blogµ(d

−1 log2 F(c))c.

Suppose N > N0 and for any (δ1, m0, a)-good curve or measurable set Ω ⊂ D with M(Ω) ∈
[2−µN+1

M(D), 2−µN
M(D)], define

k(N) =

⌊
− logE+(c)

M(Ω)

δ1M(D)

⌋
.

Then there exist some disjoint subcurves or measurable subsets Ωj ⊂ Ω, j = 1, · · · , such that

(i) for each j ≥ 1 it holds that Tk(N)(Ωj) is a component of Tk(N)(Ω) with M(Tk(N)(Ωj))

≥ 2−µN
M(D); (ii) M(∪j≥1Ωj) ≥ (1− F(c)2−dµN

)M(Ω).

Proof. We iterate the map on Ω for k(N) times. Then there are at most a
⌊

k(N)
m0

⌋
+1 disjoint

set Ω̂j ⊂ Ω such that Tk(N)(Ω̂j) is a component of Tk(N)(Ω) for each j (note that the
assumption that M(Ti(Ω̂j)) ≤ δ1M(D) is valid for each Ω̂j and each i ≤ k(N)).
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Then the total measure of all Ω̂j’s satisfying M(Tk(N)(Ω̂j)) ≤ 2−µN
M(D) is less than

2−µN
M(D)a

⌊
k(N)
m0

⌋
+1E−(c)−k(N) (since M(Ω̂j) ≤ E−(c)−k(N)M(Tk(N)(Ω̂j)))

≤a2−µN
M(D)

(
E−(c)
a1/m0

)−k(N)

≤a2−µN
M(D)

(
E−(c)
a1/m0

)⌊logE+(c)
M(Ω)

δ1M(D)

⌋
+1

≤a2−µN
M(D)

(
E−(c)
a1/m0

)1−logE+(c) δ1
(

E−(c)
a1/m0

)− logE+(c) M(D) (E−(c)
a1/m0

)logE+(c) M(Ω)

=F(c)2−µN
M(D)

1−logE+(c)

(
E−(c)

a1/m0

)
M(Ω)

logE+(c)

(
E−(c)

a1/m0

)
(since alogb c = clogb a).

Hence it possesses a portion of Ω less than

F(c)2−µN
(

M(Ω)

M(D)

)logE+(c)

(
E−(c)

a1/m0

)
−1

≤F(c)2−µN
(

2−µN+1
)logE+(c)

(
E−(c)

a1/m0

)
−1
≤ F(c)2−dµN

.

Choose Ω1, · · · , be all Ω̂j with a measure larger than 2−µN
M(D) and the proof is com-

pleted.

Corollary 2.1. Let the domain D, m0, a, µ, N0 and d be as in Lemma 2.1. Then there exists
a constant c1 > 0 such that for any (δ1, m0, a)-good curve or measurable set Ω ⊂ D with
M(Ω) ≤ δ1M(D), there exist disjoint subcurves or measurable subsets Ωi ⊂ Ω, i = 1, 2, . . . ,
such that (i) for any i, there exists k(i) such that Tk(i)(Ωi) is a component of Tk(i)(Ω) and
M(Tk(i)(Ωi)) ≥ 2−µN0 M(D); (ii) M(∪iΩi) ≥ c1M(Ω).

Proof. Let N be the unique integer such that

2−µN+1
M(D) ≤ M(Ω) < 2−µN

M(D)

and denote ΩN+1 = Ω. Applying Iteration Lemma 2.1 on ΩN+1, there exist dis-
joint Ωi

N+1 ⊂ ΩN+1, i = 1, . . . , such that (a)N+1 Tk(N)(Ωi
N+1) is a component of

Tk(N)(ΩN+1) and M(Tk(N)(Ωi
N+1)) ≥ 2−µN

M(D) for each i; (b)N+1 M(∪i≥1Ωi
N+1) ≥

(1− F(c)2−dµN
)M(ΩN+1).

Let
IN = {i | M(Tk(N)(Ωi

N+1)) ∈ [2−µN
M(D), 2−µN−1

M(D))}
and denote the set of all other i by I′N . Let i ∈ IN and applying Iteration Lemma 2.1
on Tk(N)(Ωi

N+1) and we have that there exist disjoint subcurves or measurable sub-

sets Ωi,j
N ⊂ Ωi

N+1, j = 1, · · · and ki(N) such that (a)i
N Tki(N)(Ωi,j

N) is a component
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of Tki(N)(Ωi
N+1) and M(Tki(N)(Ωi,j

N)) ≥ 2−µN−1
M(D) for each j; (b)i

N M(∪j≥1Ωi,j
N) ≥

(1− F(c)2−dµN−1
)M(Ωi

N+1). Thus we have

M
(
∪i∈IN (∪jΩ

i,j
N) ∪ (∪i∈I′N

Ωi
N+1)

)
≥ (1− F(c)2−dµN

)(1− F(c)2−dµN−1
)M(ΩN+1).

Moreover, the sets on the left hand side in the above inequality are disjoint with each
other, and for each set Ω̃ of them there exists a k(Ω̃) such that Tk(Ω̃) is a component and
M(Tk(Ω̃)(Ω̃)) ≥ 2−µN−1

M(D).
By induction, we can obtain the existence of Ωi, i = 1, · · · , such that (i) and (ii) hold

true, where

c1 =
N

∏
j=N0

(1− F(c)(2d)−µj
),

which has a positive lower bound for all N. In fact, it is sufficient to prove that

∞

∏
j=N0

(1− F(c)(2d)−µj
) > 0,

which can be obtained from the fact that
∞

∑
j=N0

ln(1− F(c)(2d)−µj
) ≥ −F(c)

∞

∑
j=N0

(2d)−µj
> −∞

(bounded below). This completes the proof.

Remark 2.1. Corollary 2.1 holds true for any

1 < µ <

(
1− logE+(c)

E−(c)
a1/m0

)−1

.

As µ→ 1, we obtain the upper bound logE+(c)(E−(c)a−1/m0)F(c)−1 for 2−µN0 .

3 The ordered part

In this section, we will prove the ordered part of Theorem 1.2, that is, we will prove (1.3a)
holds true for almost every initial point. For this purpose, it is sufficient to prove the
following theorem.

Theorem 3.1. For any given ε > 0 and almost every initial point (x1(0), x2(0)) in [0, 1]2, it
holds that infn∈Ndist((x1(n), x2(n)), Dsyn) < ε.

Remark 3.1. Theorem 3.1 implies that for almost every point, its orbit will enter the ε-
neighborhood of the diagonal x1 = x2 for at least one time. We will use it to prove that the
orbit of almost every point will enter into (or stay in) the ε-neighborhood of the diagonal
x1 = x2 for infinitely many times, which is just (1.3a).
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Proof of (1.3a) from Theorem 3.1. For any positive integer i, let

Di =
{
(x(i)1 (0), x(i)2 (0)) ∈ [0, 1]2 | dist((x(i)1 (n), x(i)2 (n)), Dsyn) ≥

1
i

for all n ∈N
}

.

Obviously, to obtain (1.3a), it is sufficient to prove that M(∪i≥1Di) = 0 (note that Dsyn

is an invariant set). Setting ε = 1
i in Theorem 3.1, we obtain that M(Di) = 0, which

immediately implies M(∪i≥1Di) = 0.

Let

Gε = {p = (x1, x2) ∈ [0, 1]2 | dist(p, Dsyn) ≤ ε} and Bε = [0, 1]2\Gε.

Theorem 3.1 is a corollary of the following lemma.

Lemma 3.1. There exists a constant c1 > 0 such that for any 0 ≤ c < c1 and ε > 0, there exists
c0 ≡ c0(c, ε) > 0 such that any segment Γ with a slope ±1 in [0, 1]2 has disjoint subsegments
Γ1, Γ2, · · · satisfying (i) for any i, there exists li such that Tli(Γi) ⊂ Gε; (ii) M(∪iΓi) ≥ c0M(Γ).

Proof of Theorem 3.1 from Lemma 3.1. From Lemma 3.1, we have that for any segment Γ
with a slope ±1 in [0, 1]2, there exist disjoint subsegments Γ1, Γ2, · · · , satisfying (i) and
(ii). Obviously Γ\(∪iΓi) is composed of a collection of disjoint subsegments of Γ, which
is denoted by ∪jΓ′j. From (ii), we know that M(∪jΓ′j) ≤ (1− c0)M(Γ).

Applying Lemma 3.1 again on each ∪jΓ′j, we obtain that for each j, there exist dis-
joint subsegments Γ′j,k ⊂ Γ′j, k = 1, . . . , satisfying M(∪kΓ′j,k) ≥ c0M(Γ′j) and for any j, k,

there exists l(j, k) such that Tl(j,k)(Γ′j,k) ⊂ Gε. It is easy to see that ∪j(Γ′j\(∪kΓ′j,k)) is also
composed of disjoint subsegments of Γ and the total length of them is not larger than
(1− c0)2M(Γ). Inductively, we can obtain that for any i, we can find disjoint segments
Γi,k ⊂ Γ, k = 1, 2, · · · , such that for each k there exists l(i, k) such that Tl(i,k)(Γi,k) ⊂ Gε

and M(Γ\ ∪k Γi,k) ≤ (1− c0)iM(Γ). Let i→ ∞, we obtain that the set of points in Γ whose
orbit is always out of Gε is of measure zero. Then from Fubini’s Theorem, we obtain
Theorem 3.1.

The proof of Lemma 3.1 can be reduced to the following two propositions.

Proposition 3.1. There exists a constant c1 > 0, such that for any 0 ≤ c < c1, there is a
ĉ0 ≡ ĉ0(c) > 0, for any segment Γ0 in one of four small squares of [0, 1]2 with a slope ±1 and
a length less than δ1 = 2−16, there exists a collection of disjoint subsegments Γi, i = 1, 2, . . . ,
satisfying ∑i M(Γi) ≥ ĉ0M(Γ0) such that for each segment Γi, there exists some l(Γi) such that
Tl(Γi)(Γi) is a component of Tl(Γi)(Γ0) and Tl(Γi)(Γi) is a segment with a slope ±1 and a length
larger than δ1.

Proof. From the condition on Γ0 and the expansion of T, we have that M(T(Γ0)) ≥ 2(1−
2c)M(Γ0) From the definition of T, we know that for small c, number of components
for short segments increases very slowly as the iterations go forward. For example, it
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can be easily seen that there are disjoint sets Γ̂i, i = 1, 2, 3, 4 such that ∪4
i=1Γ̂i = Γ0 and

T6(Γ̂i), i = 1, 2, 3, 4 are all the components of T6(Γ0) (note that for small c, the image of
x1, x2 = 1

2 under T are close to x1 = 1 and x2 = 1, respectively. In addition, the images
of x1, x2 = 1 under Ti for i ≤ 6 is far from x1, x2 = 1

2 ). Applying Iteration Lemma 2.1
and Corollary 2.1 with m0 = 6, a = 4, µ = 2, N0 = 4 and D = [0, 1]2, the conclusion is
obtained.

Proposition 3.2. There exists a constant c1 > 0 such that for any 0 ≤ c < c1 and ε > 0,
there exists c2 ≡ c2(c, ε) > 0 such that for any segment Γ0 in some small square of [0, 1]2 with
a slope ±1 and a length larger than δ1 = 2−16, there exists a segment Γ ⊂ Γ0 and l such that
Tl(Γ) ⊂ Gε and M(Γ) ≥ c2M(Γ0).

Proof. We first claim that there exists a constant e > 0 such that for any Γ0 in some small
square with a slope ±1 and a length larger than δ1 = 2−16, there exists a segment Γ1
with a slope ±1 in the curve T(Γ0) or T2(Γ0) such that Γ1 is in some small squares and
M(Γ1) ≥ (1 + e)M(Γ0).

Since M(T(Γ0)) ≥ 2(1 − 2c)M(Γ0), if T(Γ0) is in some small square, the claim is
proved by setting Γ1 = T(Γ0).

Thus we consider the case that the intersection between T(Γ0) and x2 = 1
2 (or x1 = 1

2 )
is nonempty. If both x1 = 1

2 and x2 = 1
2 have an intersection set with T(Γ0), then it is not

difficult to see that T(Γ0) has an intersection set with x1 + x2 = 1, this ends the proof of
this proposition. Hence without loss of generality we assume T(Γ0) only crosses x2 = 1

2
(or x1 = 1

2 ).
Let Γ1,1 and Γ1,2 be the components of T(Γ0) and e = λ2

λ+1 − 1 with λ = 2(1− 2c). It is
obvious that e > 0 for small c.

From the expansibility of T, we have

M(Γ1,1) + M(Γ1,2) = M(T(Γ0)) ≥ λM(Γ0). (3.1)

If
M(Γ1,1) ≥ (1 + e)M(Γ0) or M(Γ1,2) ≥ (1 + e)M(Γ0),

the claim is proved by choosing Γ1 to be Γ1,1 or Γ1,2.
Thus, in the following, we consider the case that both Γ1,1 and Γ1,2 are shorter than

(1 + e)M(Γ0). From (3.1) we have both Γ1,1 and Γ1,2 are longer than (λ− (1 + e))M(Γ0).
Let T2(Γ0) = Γ2,1 ∪ Γ2,2 with Γ2,1 ∩ Γ2,2 being a one-point set, where Γ2,i = T(Γ1,i) with

a slope (−1)i+1, i = 1, 2 (see Fig. 1). By a direct computation, it holds that

M(Γ2,i) ≥ λM(Γ1,i) ≥ λ(λ− (1 + e))M(Γ0) = (1 + e)M(Γ0).

Then if Γ2,1 or Γ2,2 is in some small square, we complete the proof of the claim.
So we assume both Γ2,1 and Γ2,2 are not in some small square. In the following, we

will prove it is impossible. Recall that the slopes of these two segments are 1 and −1,
respectively (see Fig. 1). Moreover, it is clear that the lines where Γ2,1 and Γ2,2 lie in are
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Γ1,2 

T(Γ0) 

Γ1,1 

Γ1,2with slope -1 

 

𝒙𝟏 

Γ2,1 
𝟏 

𝒙𝟐 =
𝟏

𝟐
 

𝒙𝟏 =
𝟏

𝟐
 

Γ2,2 

𝟎 𝟏 

𝒙𝟐 

Figure 1: Segments of Γ1 = T(Γ0) and Γ2 = T2(Γ0) = Γ2,1 ∪ Γ2,2.

symmetric with respect to a vertical line, which implies that it is impossible that both Γ2,1
and Γ2,2 have an intersection with x1 = 1

2 (or x2 = 1
2 ). This ends the proof of the claim.

By induction, if Γi has no intersection with x1 = x2 for i ≥ 0, we can find a segment
Γi+1 ⊂ T(Γi) or T2(Γi) lying in some small square satisfies M(Γi+1) ≥ (1 + e)M(Γi).

Since the set [0, 1]2 has a finite diameter, there exists some i0 ≤
⌊
− log1+e M(Γ0)

⌋
+ 1

such that Γi0 has an intersection with x1 = x2 satisfying M(Γi0 ∩ Gε) ≥ ε. Since
M(T−1(Γ)) ≥ 2−1M(Γ) for any curve Γ in some small square and M(Γ0) ≤

√
2

2 , we have
that

M(T−i0(Γi0 ∩ Gε))

M(Γ0)
≥
√

22−i0 ε ≡ c2.

This completes the proof of the proposition.

Remark 3.2. With a smaller δ1, the same conclusion holds true for larger c, since the
frequency for the occurrence of fold (i.e., the segment has nonempty intersection with
x1 = 1

2 or x2 = 1
2 ) tends to 0 as δ1 → 0. In fact, let δ1 → 0, the upper bound for c tends to

1
4 .

4 The disordered part

In this section, we will prove (1.3b), the disordered part of the main theorem, which
states that for almost every point in the phase space, its orbit, although will visit any
neighborhood of Dsyn, will also be far away from Dsyn for infinitely many times.

It is sufficient to prove that
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Theorem 4.1. For almost every point (x1(0), x2(0)) in the phase space, there exists an n =
n(x1(0), x2(0)) such that (x1(n), x2(n)) ∈ Bγ0 with γ0 = 2−20.

Proof of (1.3b) by Theorem 4.1. Let

S0 = {(x1(0), x2(0)) ∈ [0, 1]2 | (x1(i), x2(i)) ∈ Gγ0 for all i}.

Then from Theorem 4.1, we have that M(S0) = 0. Let

Sn = {(x1(0), x2(0)) ∈ [0, 1]2 | (x1(i), x2(i)) ∈ Gγ0 for all i > n}

be the subset of [0, 1]2 such that for each point p in it and each i > n, Ti(p) always stay
in Gγ0 . From the definition, we have that Tn+1(Sn) ⊂ S0. If M(Sn) > 0, then there exists
S̃n ⊂ Sn with M(S̃n) > 0 such that Tn+1 : S̃n → Tn+1(S̃n) ⊂ S0 is a diffeomorphism. It
implies

M(S0) ≥ M(Tn+1(S̃n)) > 0.

This contradicts the fact that M(S0) = 0. Hence M(Sn) = 0 for each n, which leads to
(1.3b).

From Fubini’s Theorem, one can easily see that Theorem 4.1 can be reduced to the
following statement: for almost every segment with a slope±1 in the phase space, almost
every point on it will be mapped into Bγ0 in a finite time. Thus, it is sufficient to prove
the following lemma.

Lemma 4.1. There exists a constant c1 > 0 such that for any 0 ≤ c < c1, there exists 0 ≤ c3 ≡
c3(c) < 1 such that for almost each segment Γ with a slope ±1 in [0, 1]2, there exist its disjoint
subsegments Γ1, Γ2, · · · , satisfying (i) for any i, there exists li ≥ 0 such that Tli(Γi) ⊂ Bγ0 ; (ii)
M(∪iΓi) ≥ c3M(Γ).

The proof of Lemma 4.1 can be divided into two propositions.

Proposition 4.1. There exists a constant c1 > 0 such that for any 0 ≤ c < c1, there exist
two constants c4, δ2 > 0 with the following properties: for almost every segment Γ with a slope
±1 in some small square of [0, 1]2, there exist its subsegments Γ1, Γ2, · · · satisfying (i) for any
i, there exists l(Γi) ≥ 0 such that Tl(Γi)(Γi) is a component of Tl(Γi)(Γ) and Tl(Γi)(Γi) is a
segment with a slope ±1 and a length larger than δ2, or T j(Γi) ⊂ Bγ0 for some j ≤ l(Γi); (ii)
M(∪iΓi) ≥ c4M(Γ).

Proposition 4.2. Let c1, c, δ2 be defined as above. Assume Γ0 is a segment with a slope ±1
longer than δ2 in some small square of [0, 1]2. Then there exist l ≥ 0 and disjoint subsegments
Γ̂1, Γ̂2, · · · of Γ0 with

∑
i

M(Γ̂i) ≥
1
2

M(Γ0),

such that Tl(Γ̂i) ⊂ Bγ0 for each i.
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Proof of Proposition 4.1. Recall that

Gγ = {x ∈ [0, 1]2
∣∣ dist(x, Dsyn) ≤ γ} for γ > 0,

where Dsyn = {x ∈ [0, 1]2 | x1 = x2}. Let

G̃γ = {x ∈ Gγ |dist(x, {x1 + x2 = 1}) ≤ γ}.

Define δ2 = 2−8. Obviously, if T(x) has multi-preimages with x ∈ Gγ0 , then x ∈ G̃γ0 .
Let Ω be a segment in Gγ0 ∩ {some small square in [0, 1]2}with a length smaller than

δ2 such that Tl(Ω) * Dsyn for any l. We claim that
Claim. For a segment Ω ⊂ Gγ0 stated above, T4(Ω) has at most two components.

Without loss of generality, suppose T(Ω) has two components. Then we have Ω ∩
G̃γ0 6= ∅. Note that ( 1

2 , 1
2 ) ∈ G̃γ0 and the diameter of G̃γ0 is less than 2−19. From the fact

that the spectral radius of T is not larger than 2, we obtain that the length of T(Ω) is less
than 2M(Ω) ≤ 2δ2 = 2−7, which implies T(Ω) is in the 2−6-neighborhood of ( 1

2 , 1
2 ).

Moreover, since Ti( 1
2 , 1

2 ) = (0, 0) (mod 1) for i ≥ 1, we have that Ti+1(G̃γ0) is in 2−2-
neighborhood of (0, 0) for 1 ≤ i ≤ 4, which is far from G̃γ0 . Then we obtain the claim.

Thus, from the claim and similar to the proof of Proposition 3.1 for the ordered part,
we obtain the existence of a constant c4 and subsegments Γi of Γ with a total measure
larger than c4M(Γ) such that for each Γi, there exists li ≥ 0 such that Tli(Γi) is a segment
with slope ±1 longer than δ2 or there exists some j ≤ li such that T j(Γi) ⊆ Bγ0 . Since the
measure of preimages of Dsyn is zero, the conclusion is obtained.

Remark 4.1. Note that there may be a ”triple fold” for Ti(Ω), i.e., Ti(Ω) may have inter-
section points with the lines x1 = 1

2 , x2 = 1
2 and x1 + x2 = 1 simultaneously, thus Ti(Ω)

consists of 4 segments. In spite of this, the argument above is still valid.

Proof of Proposition 4.2. If the segment Γ0 is of slope −1, since M(Γ0) > δ2 > 2γ0, the
proof is trivial. Thus we assume Γ0 is of slope 1. Denote dsyn(Γ0) ≡ dist(Γ0, Dsyn) and let

N(Γ0) =

⌊
log2(1−2c)

γ0

dsyn(Γ0)

⌋
.

We say x ∈ Γ0 is a i-regular point if T j(x) 6∈ G̃2j(1−2c)jdsyn(Γ0)
for each j ≤ i. For simplicity,

we assume that
Γ0 ⊂ {x ∈ [0, 1]2|x2 − x1 ≤ −dsyn(Γ0)}.

Denote

Γ1,m = T(Γ0) ∩ G̃2(1−2c)dsyn(Γ0),

Γ1,l = T(Γ0) ∩
{

x 6∈ G̃2(1−2c)dsyn(Γ0) | x1, x2 ≤
1
2

}
,

Γ1,r = T(Γ0) ∩
{

x 6∈ G̃2(1−2c)dsyn(Γ0) | x1, x2 ≥
1
2

}
.
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Figure 2: T(Γ0) = (Γ1,l ∪ Γ1,r) ∪ Γ1,m ≡ Γ1 ∪ Γ1,m

Obviously, Γ1 = Γ1,l ∪ Γ1,r and Γ1,m, are the image of 1-regular and non-1-regular points in
Γ0 under T, respectively. Moreover, M(T(Γ0)) ≥ 2δ2. Denote dsyn(Γ1) ≡ dist(Γ1, Dsyn),
which is 2(1 − 2c)dsyn(Γ0), since Γ1 consists of segments with slopes 1. Since Γ1,m ⊂
G̃dsyn(Γ1), we have

M(Γ1,m) ≤ 2(2(1− 2c))dsyn(Γ0).

See Fig. 2 for details.
Thus, the ratio r1 of 1-regular points in Γ0 is larger than

1−
2(2(1− 2c))dsyn(Γ0)

M(T(Γ0))
≥ r̃1 ≡ 1−

2(1− 2c)dsyn(Γ0)

δ2
,

M(Γ1) ≥ r1M(T(Γ0)) ≥ 2δ2r̃1.

Similarly, denote

Γ2,m = T(Γ1) ∩ G̃2(1−2c)dsyn(Γ1),

Γ2,l = T(Γ1) ∩
{

x 6∈ G̃2(1−2c)dsyn(Γ1) | x1, x2 ≤
1
2

}
,

Γ2,r = T(Γ1) ∩
{

x 6∈ G̃2(1−2c)dsyn(Γ1)|x1, x2 ≥
1
2

}
.

Then Γ2 = Γ2,l ∪ Γ2,r and Γ2,m, are the images of 1-regular and non-1-regular points in Γ1
under T, respectively. It is clear that the distance

dsyn(Γ2) ≡ dist(Γ2, Dsyn)
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is (2(1− 2c))2dsyn(Γ0).
Note that the image of each component of Γ1 has at most three components. Thus Γ2

or Γ2,m have at most four or two components, respectively. Since Γ2,m ⊂ G̃dsyn(Γ2), it holds
that M(Γ2,m) ≤ 22(2(1− 2c))2dsyn(Γ0). Obviously, M(T(Γ1)) = 2M(Γ1).

Thus the ratio of 1-regular points in Γ1 is larger than 1− 22(2(1−2c))2dsyn(Γ0)

M(T(Γ1))
. It implies

that the ratio r2 of 2-regular points in Γ0 is larger than

r1

(
1−

22(2(1− 2c))2dsyn(Γ0)

M(T(Γ1))

)
≥ r1 − r1

22(2(1− 2c))2dsyn(Γ0)

4δ2r1

= r1 −
(2(1− 2c))2dsyn(Γ0)

δ2
≥ 1− [2(1− 2c) + (2(1− 2c))2]

dsyn(Γ0)

δ2
≡ r̃2,

M(Γ2) ≥ M(T(Γ1))r̃2 ≥ 22δ2r̃2.

Inductively, let

r̃i−1 = 1−
i−1

∑
j=1

(2(1− 2c))j dsyn(Γ0)

δ2

and Γi−1 is the segments with slopes 1 of (i− 1)-regular points in Γ0 satisfying M(Γi−1) ≥
2i−1δ2r̃i−1 and the number of segments in Γi−1 is not more than 2i−1. Moreover, the dis-
tance dsyn(Γi−1) ≡ dist(Γi−1, Dsyn) is (2(1− 2c))i−1dsyn(Γ0).

Then
M(T(Γi−1)) = 2M(Γi−1) ≥ 2iδ2r̃i−1

and the set of 1-regular and non-1-regular points in Γi−1 has at most 2i and 2i−1 compo-
nents, respectively. Obviously the distance

dsyn(Γi) ≡ (2(1− 2c))idsyn(Γ0).

Let Γi and Γi,m be the image of 1-regular and non-1-regular points in Γi−1, respectively.
Since Γi,m ⊂ G̃dsyn(Γi), we have that the ratio of 1-regular points in Γi−1 is larger than

1− 2i(2(1−2c))idsyn(Γ0)

2iδ2 r̃i−1
. It implies the ratio of i-regular points in Γ0 is larger than

ri−1

(
1−

(2(1− 2c))idsyn(Γ0)

δ2r̃i−1

)
≥r̃i−1 −

(2(1− 2c))idsyn(Γ0)

δ2

=1−
i

∑
j=1

(2(1− 2c))j dsyn(Γ0)

δ2
.
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Thus, the ratio of N(Γ0)-regular points in Γ0 is larger than

rN(Γ0)
= 1−

N(Γ0)

∑
j=1

(2(1− 2c))j dsyn(Γ0)

δ2
.

From the definition of N(Γ0) and the fact that c is small, we have that

1− rN(Γ0)
≤2(1− 2c) (1− (2(1− 2c))N(Γ0))

1− 2(1− 2c)
dsyn(Γ0)

δ2

≤4(2(1− 2c))N(Γ0)
dsyn(Γ0)

δ2

≤4
γ0

dsyn(Γ0)

dsyn(Γ0)

δ2
=

4γ0

δ2
≤ 1

2
if γ0 <

δ2

8
.

Then we know that rN(Γ0) >
1
2 . Moreover, for each N(Γ0)-regular point x in Γ0, it is not

difficult to see that TN(Γ0)+1(x) is in Bγ0 , since the distance between TN(Γ0)+1(x) and Dsyn
is larger than

(2(1− 2c))N(Γ0)+1dsyn(Γ0) ≥ γ0.

We complete the proof.

5 Piecewise expanding case

In this section, we will prove Theorem 1.3. Recall that the proof of Theorem 1.2 depends
heavily on the piecewise-linearity of T. In fact, it implies the property that the image of a
segment in some small square by T is still a segment, by which the proof can be reduced
to the simple fact that a long enough segment in [0, 1]2 has a nonempty intersection with
the line x1 = x2. Unfortunately, this property is not valid any more with the existence
of nonlinear perturbation and we have to deal with curves rather than segments. For
a general smooth simple curve Γ in [0, 1]2, no matter how long it is, it may occur that
Γ∩Gε = ∅. To prove Theorem 1.3, we need to exclude the possibility for this troublesome
situation. More precisely, we will show that components of a short segment consist of
”very flat” simple curves until their length are of constant scale (see case (1iii), (2iii) or
(kiii) in the proof of Lemma 5.1). Then everything valid to segments sated above will be
also valid to ”very flat” simple curves in a similar way.

For this purpose, we need to introduce some quantity to measure how flat a simple
curve is. For a point p in a simple curve Γ where the tangent line can be defined, we
denote the unit tangent vector of Γ at p by tΓ(p) ∈ R2 coinciding with an orientation of
the curve. Then we define the range of angles on Γ to be

ra(Γ) ≡ sup
p1,p2∈Γ

‖tΓ(p2)− tΓ(p1)‖.
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Remark 5.1. Let [0, 1]2 = ∪Γa is a union of segments, where Γa is a segment with a in
some interval I. Let D∞ = ∪∞

l=0T−l(Dsyn). Then the measure of D∞ in [0, 1]2 is zero.
Hence from Fubini’s theorem, we have that for almost all a in I, Tl(Γa) ∩ D∞ is a set of
measure zero in Tl(Γa) for any l and in particular,

T−l(Tl(Γa) ∩ D∞) ∩ Γa = Γa ∩ T−l(D∞)

does not include any open interval. For this reason, each simple curve considered in this
section satisfies that the intersection set of it with D∞ is of measure zero.

For any p ∈ [0, 1]2, let JT(p) be the Jacobian matrix of T at p. Then JT is piecewise C1

on p. The ordered part in Theorem 1.3 can be reduced to the following three lemmas.

Lemma 5.1. There exist constants c1, η > 0 such that if 0 ≤ c < c1, ‖g‖C2 ≤ η, there exist
constants c5 > 0 and 0 < â = O(η) such that if Γ0 is a segment in one of small squares in [0, 1]2

with a slope ±1 and a length less than δ1, we can find a collection of sub-curves denoted by Γ̄i
satisfying (i) ∑i>0 M(Γ̄i) ≥ c5M(Γ0); (ii) for any i > 0, there exists li such that
(a) Tli(Γ̄i) is a component of Tli(Γ0) and M(Tli(Γ̄i)) ≥ δ1;
(b) ra(Tli(Γ̄i)) ≤ âM(Tli(Γ̄i)).

Proof. Since T is a small perturbation of a (piecewise) linear map satisfying

JT(p) =
[

1− c + η1 c + η2
c + η3 1− c + η4

]
with |ηi| ≤ η, for i = 1, · · · , 4, it is easily seen that ‖JT(p)‖ ≤ 1 +O(c, η).

Let Γ0 be a (short) segment as above. Then ra(Γ0) = 0. With the condition ‖g‖C2

sufficiently small, it is obvious that if both x1 = 1
2 and x2 = 1

2 have intersections with
T(Γ0), then the lemma is immediately proved. Hence, without loss of generality, we
assume that T(Γ0) has no intersection with x1 = 1

2 .
There are three different cases according to the intersection between T(Γ0) and x2 = 1

2 .

Case (1i) There is no intersection between T(Γ0) and x2 = 1
2 . Denote Γ1 = T(Γ0). Since

T is a small perturbation of a (piecewise) linear map and M(Γ0) is small, we have that
ra(Γ1) ≤ aM(Γ0) with 0 < a < 1, which is small if η is small. In fact, since Γ0 is a segment,
it holds that tΓ0

(p) is constant. Then we have

‖JT(p2)− JT(p1)‖ ≤ max
p∈Γ0
‖D(JT)(p)‖‖p2 − p1‖ ≤ ã‖p2 − p1‖,

where D(JT) is the Jacobian matrix of JT with respect to p and ã = O(η)� 1 if η � 1.
Subsequently, because of tΓ0

(p1) = tΓ0
(p2), we obtain that

‖tΓ1
(T(p2))− tΓ1

(T(p1))‖ =
∥∥∥∥∥ JT(p2)tΓ0

(p2)

‖JT(p2)tΓ0
(p2)‖

−
JT(p1)tΓ0

(p1)

‖JT(p1)tΓ0
(p1)‖

∥∥∥∥∥
≤ 2

minp∈Γ0,‖v‖=1 ‖JT(p)v‖‖JT(p2)− JT(p1)‖ ≤ a‖p2 − p1‖
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Figure 3: Equivalent curve Γ1 of Γ0.

with a = O(η) small.
Case (1ii) There is exactly one intersection point between T(Γ0) and x2 = 1

2 . Denote two
parts of T(Γ0) divided by the intersection point by Γ1,1 and Γ1,2, respectively. Obviously,
it holds that ra(Γ1,i) ≤ aM(Γ1,i), i = 1, 2 with the same a as in case (1i). Let Γ1 be any one
of these two simple curves, say, Γ1,1.
Case (1iii) There are more than one intersection points. Same as in case (1i), we have
ra(T(Γ0)) ≤ aM(Γ0). Although T(Γ0) has 3 or more components, in the following iter-
ations, it can be replaced by a simple curve in some small square with a small range of
angle as follows (note that we have to consider different components separately only if
the range of the curve is not small). Define Γ1 be a piecewise-smooth simple curve in
some small square satisfying that T(Γ1) = T2(Γ0) (see Fig. 3). Since there exist at least
two intersection points between T(Γ0) and x2 = 1

2 , there exist p1, p2 ∈ T(Γ0) such that
tT(Γ0)(p1) and tT(Γ0)(p2) lies in the upper and lower half planes, respectively. Thus for
any point p in T(Γ0), it holds that

‖tT(Γ0)(p)‖ ≤ ra(T(Γ0)) ≤ aM(Γ0).

Then for any points p1, p2 in Γ1, we have

‖tΓ1
(p2)− tΓ1

(p1) ≤ ‖tΓ1(p2)‖+ ‖tΓ1(p1)‖ ≤ 2aM(Γ0).

Therefore ra(Γ1) ≤ 2aM(Γ0).
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Next we consider three different cases for T(Γ1) according to the intersection between
T(Γ1) and x2 = 1

2 .
Case (2i) There is no intersection. Denote Γ2 = T(Γ1). For any nonsingular matrix A and
a unit vector v(θ) = (cos θ, sin θ) with θ ∈ S1, we have∣∣∣ d

dθ
(‖A · v(θ)‖)

∣∣∣ = |det(A)|
‖A · v(θ)‖2 .

Thus for M(Γ0) small, and for any points p1, p2 in Γ1, we then have

‖tΓ2
(T(p2))− tΓ2

(T(p1))‖ =
∥∥∥∥∥ JT(p2)tΓ1

(p2)

‖JT(p2)tΓ1
(p2)‖

−
JT(p1)tΓ1

(p1)

‖JT(p1)tΓ1
(p1)‖

∥∥∥∥∥
≤
∥∥∥∥∥ JT(p2)tΓ1

(p1)

‖JT(p2)tΓ1
(p1)‖

−
JT(p1)tΓ1

(p1)

‖JT(p1)tΓ1
(p1)‖

∥∥∥∥∥+
∥∥∥∥∥ JT(p2)tΓ1

(p2)

‖JT(p2)tΓ1
(p2)‖

−
JT(p2)tΓ1

(p1)

‖JT(p2)tΓ1
(p1)‖

∥∥∥∥∥
≤aM(Γ1) + (1 +O(c, η))‖tΓ1

(p2)− tΓ1
(p1)‖

≤aM(Γ1) + (1 +O(c, η))ra(Γ1).

In the above, we use the fact

det(JT(P)) = 4 +O(c, η) and ‖JT(P) · v‖ = 2 +O(c, η)

for any P and any unit vector v. Therefore, it holds that

ra(Γ2) ≤ aM(Γ1) + (1 +O(c, η))ra(Γ1).

Case (2ii) There is exactly one intersection point. Assume T(Γ1) = Γ2,1 ∪ Γ2,2 and Γ2,1 ∩
Γ2,2 be the intersection point. For each Γ2,i, we have a similar estimate for ra(Γ2,i) as in
case(2i). We will denote any component of it, say Γ2,1, by Γ2.
Case (2iii) There are more than one intersection points. Same as in case (2i), we have

ra(T(Γ1)) ≤ aM(Γ1) + (1 +O(c, η))ra(Γ1).

Since in the simple curve there are at least two points on x2 = 1
2 , there exist p1, p2 ∈ T(Γ1)

such that tT(Γ1)(p1) and tT(Γ1)(p2) lies in the upper and lower half planes, respectively.
Thus for any point p in T(Γ1), it holds that

‖tT(Γ1)(p)‖ ≤ ra(T(Γ1)) ≤ aM(Γ1) + (1 +O(c, η))ra(Γ1).

Let Γ2 be a piecewise-smooth simple curve in some small square satisfying T(Γ2) =
T2(Γ1). Thus for any points p1, p2 in Γ2, we have

‖tΓ2
(p2)− tΓ2

(p1)‖ ≤ ‖tΓ2(p2)‖+ ‖tΓ2(p1)‖
≤2aM(Γ1) + 2(1 +O(c, η))ra(Γ1).
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Note that λ = 2(1− 2c). By induction, we have that for any k, in case (ki) and (kii) it
holds that

ra(Γk) ≤aM(Γk−1) + (1 +O(c, η))ra(Γk−1)

≤aλ−1M(Γk) + (1 +O(c, η))ra(Γk−1) (since M(Γk) ≥ λM(Γk−1)), (5.1)

and in case (kiii) we have that

ra(Γk) ≤2aM(Γk−1) + 2(1 +O(c, η))ra(Γk−1)

≤2aλ−1M(Γk) + 2(1 +O(c, η))ra(Γk−1). (5.2)

On the other hand, the frequency for the occurrence of case (kiii) is very low. In fact,
in case (kiii), (5.2) together with the fact that Γk is short imply that the simple curve Γk
”nearly” coincides with the line x1 = 1

2 , so it is mapped into a simple curve ”nearly”
coincides with the line x1 = 1 by T. Thus, we may assume that for j = 6l + 6, (jiii) occurs
and thus ra(Γj) should be estimated by (5.2), while for j = 6l + 1, · · · , 6l + 5, (jiii) will not
occur and ra(Γj) should be estimated by (5.1). Hereafter, we let g ≡ 1 + O(c, η). Since
M(Γ6l+i) ≤ λ−(6−i)M(Γ6l+6) and ra(Γ0) = 0, we have

ra(Γ6(l+1)) ≤ 2aλ−1M(Γ6(l+1)) + 2gra(Γ6l+5) ≤ · · ·

≤2aλ−1M(Γ6(l+1)) + 2gaλ−1M(Γ6l+5) + 2g2aλ−1M(Γ6l+4) + 2g3aλ−1M(Γ6l+3)

+ 2g4aλ−1M(Γ6l+2) + 2g5ra(Γ6l) ≤ · · ·

≤2aλ−1
(

1 +
g
λ
+ · · ·+

( g
λ

)5
)(

1 + 2
( g

λ

)6
+ · · ·+

(
2
( g

λ

)6)l
)

M(Γ6(l+1)) + (2g6)lra(Γ0)

=2aλ−1

(
5

∑
i=0

( g
λ

)i
)

l

∑
i=0

(
2
( g

λ

)6)i
M(Γ6(l+1)). (5.3)

For k = 6l + j, j = 1, · · · , 5, let

bi =
(

2
( g

λ

)6)i( g
λ

)j
.

Then from (5.3), if 2(g/λ)6 < 1, we have

ra(Γk) ≤ âM(Γk),

where

â = 2aλ−1
5

∑
i=0

( g
λ

)i
β

with

β =
∞

∑
i=0

bi < ∞.

With these estimates, we conclude that estimates for current situation is totally similar
to the one in the proof for the tent map. In particular, Corollary 2.1 is available and thus
we can obtain the lemma.
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In the following we will give the proof for the case f0(x) = 1− s|x− 1
2 |, s = 2− s0 > 0

with s0 > 0. For the case s0 = 0, the proof can be obtained in a similar (in fact simpler)
way.

The following lemma can make the argument simpler.

Lemma 5.2. Assume 0 < c, η � s0 � 1. For almost every point p in [0, 1]2, there exists a
i(p) ∈N such that for all i ≥ i(p), x1(Ti(p)), x2(Ti(p)) ∈ [τ2, 1− τ1], where

τ1 =
s0

2
− η > 0 and τ2 = (1− c)(s− η)

( s0

2
− η

)
> 0.

Proof. If 0 < x1(p) < 1
4 , then

x1(T(p)) = (1− c) f (x1(p)) + c f (x2(p)) ≥ (s− η)(1− c)x1(p).

Thus {x1(Ti(p))}i is an increasing sequence if only x1(Ti(p)) ≤ 1
4 . If x1(p) > 3

4 , then

x1(T(p)) ≤ max
x∈[ 3

4 ,1]
f (x) <

3
4

.

Thus we only need to consider the situation 1
4 ≤ x1(p) ≤ 3

4 . For this case, it holds that

x1(T(p)) =(1− c) f (x1(p)) + c f (x2(p))) ≤ max
x∈[0,1]

f (x)

≤ s
2
+ η = 1− s0

2
+ η = 1− τ1.

Subsequently, we have

x1(T2(p)) ≥ (1− c) f (τ1) ≥ (1− c)(s− η)
( s0

2
− η

)
= τ2.

Thus eventually the orbit of p under the map T lies between x1 = τ2 and x1 = 1− τ1.
Similarly we can obtain the estimate for x2(p). This completes the proof.

From Lemma 5.2, without loss of generality we can replace the phase space [0, 1]2 by
[τ2, 1− τ1]

2, that is,
x1, x2 ∈ [τ2, 1− τ1]. (5.4)

Lemma 5.3. There exists c1 > 0 such that for any 0 ≤ c < c1, there exists a fixed number
c2 > 0 such that for any piecewise C2-smooth simple curve Γ0 with a length M(Γ0) ∈ [δ1, 2δ1]
and satisfying ra(Γ0) ≤ O(η)M(Γ0), there exists a simple curve Γ ⊂ Γ0 with M(Γ) ≥ c2M(Γ0)
and l(Γ) ∈N satisfying Tl(Γ)(Γ) ⊂ Gε.

Proof. It can be reduced to the following claim.
Claim. Let δ1 = 2−16 defined as before. Then there exist a constant ê > 1 and i0 indepen-
dent of η, such that for η � 1, the following holds true:
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1. Assume for each 0 ≤ i ≤ j ≤ N0 with N0 =
⌊

logê 2δ−1
1

⌋
+ 1, we have induc-

tively defined piecewise C2-smooth simple curves Γi in some small square with
Γi ⊂ Tl(i)(Γi−1) for some l(i) ≤ i0 + 3 (i ≥ 1), such that M(Γi) ≥ êM(Γi−1) and
ra(Γi) ≤ O(η)M(Γi).

2. If for each 0 ≤ i ≤ j, M(Γi) ≤ 2 and Γi ∩ {x1 = x2} 6= ∅, we have that there exist
l(j + 1) ≤ i0 + 3 and a simple curve Γj+1 ⊂ Tl(j+1)(Γj) in some small square such
that

(a) M(Γj+1) ≥ êM(Γj);

(b) ra(Γj+1) ≤ O(η)M(Γj+1).

Claim⇒ Lemma 5.3.
First we prove the existence of a j0 ≤ N0 satisfying Γj0 ∩ {x1 = x2} 6= ∅. Otherwise,

from the claim we have that either there exists k0 ≤ N0 such that Γi is defined for each
0 ≤ i ≤ k0 satisfying M(Γk0) ≥ 2 and M(Γi) < 2 for 0 ≤ i ≤ k0− 1, or for each 0 ≤ i ≤ N0,
Γi is defined with M(Γi) < 2.

Note that for any simple curve Γ in some small square, it holds that

(λ−O(η))M(Γ) ≤ M(T(Γ)) ≤ (2 +O(η))M(Γ).

Then for the former case, from (b) in the claim, we have

ra(Γk0) ≤O(η)M(Γk0) ≤ O(η)M(Tl(k0)(Γk0−1))

≤(2 +O(η))l(k0)O(η)M(Γk0−1) ≤ 2O(η)(2 +O(η))3+i0 .

Hence if O(η) ≤ 200−1, we obtain that ra(Γk0) ≤ 10−1. But M(Γk0) ≥ 2 and it is clear
that there is no such a simple curve in [0, 1]2. For the latter case, from (a) in the claim, we
know that

M(ΓN0) ≥ êN0M(Γ0) ≥ êblogê 2δ−1
1 c+1δ1 ≥ 2.

This contradicts the assumption that M(ΓN0) < 2 and hence we obtain the existence
of j0. From the definition of Γi, i ≤ j0, there exists some n(j0) ≤ (i0 + 3)j0 such that
Γj0 ⊂ Tn(j0)(Γ0).

Let Γ̃ = Γj0 ∩ Gε and define Γ ⊂ Γ0 such that Tn(j0)(Γ) = Γ̃. First we consider the case
that Γj0 ⊂ Gε, that is, Γ̃ = Γj0 .

From (a) in the claim, we have M(Γj0) ≥ êj0M(Γ0). On the other hand, it holds that

M(Γ) ≥ (2 +O(η))−n(j0)M(Γj0).

Consequently, we obtain

M(Γ) ≥ (2 +O(η))−(i0+3)j0 êj0M(Γ0) ≥ (2 +O(η))−(i0+3)N0M(Γ0).
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This leads to the conclusion if

c2 ≤ (2 +O(η))−(3+i0)N0 .

Next we consider the case that Γj0 * Gε. Obviously M(Γ̃) ≥ ε. Then we have that

M(Γ) ≥(2 +O(η))−n(j0)M(Γ̃)

≥(2 +O(η))−(3+i0)N0 ε

≥(2 +O(η))−(3+i0)N0 ε(2δ1)
−1M(Γ0).

If
c2 ≤ (2 +O(η))−(3+i0)N0 ε(2δ1)

−1,

we obtain the conclusion. Thus by setting

c2 = min{1, ε(2δ1)
−1}(2 +O(η))−(3+i0)N0 ,

we finish the proof.

Proof of the claim
We consider the following cases.

1. First, we note if both T(Γj) ∩ {x1 = 1
2} and T(Γj) ∩ {x2 = 1

2} are nonempty, then
T(Γj) ∩ {x1 = x2} 6= ∅ or T(Γj) ∩ {x1 + x2 = 1} 6= ∅ and hence T2(Γj) is nonempty,
which implies Lemma 5.3 from the argument above. Hence in the following, we will
omit the proof for this trivial case and other similar ones (e.g., both T2(Γj) ∩ {x1 = 1

2}
and T2(Γj) ∩ {x2 = 1

2} are nonempty). In addition, the estimate on the angle is same as
the one in Lemma 5.1, we omit the argument on (b) and only focus on the proof of (a).

For nontrivial cases, the method to define Γj+1 is a combination of those in Proposition
3.2 and Lemma 5.1. In fact, the difference between here and Proposition 3.2 lies in that
T(Γj) is no longer a segment here and thus T(Γj) ∩ {x1 = 1

2} (or T(Γj) ∩ {x2 = 1
2})

may has two or more points. In addition, the ‘average slope’ of the simple curve can be
arbitrary. In contrast, for the situation in Proposition 3.2, the slope of the segment is ±1
and hence the argument there is much simpler.
2. T(Γj) ∩ ({x1 = 1

2} ∪ {x2 = 1
2}) = ∅. Define Γj+1 = T(Γj). Then

M(Γj+1) ≥ (λ−O(η))M(Γj) with λ−O(η) > 1 if |λ− 2|, |η| � 1.

3. T(Γj) ∩ ({x1 = 1
2} has two or more points and T(Γj) ∩ ({x2 = 1

2} = ∅ (or vice

versa). We replace T(Γj) by a simple (still piecewise C2-smooth) curve T̂(Γj) totally in
some small square (by reflecting T(Γj) with respect to x1 = 1

2 and x2 = 1
2 , respectively)

such that T(T(Γj)) = T(T̂(Γj)). Then we define Γj+1 = T̂(Γj) (although Γj+1 is not in the

image of Γj, for our purpose, T̂(Γj) and T(Γj) are equivalent) and the case is similar to
that in Case 2.



T. X. Li, W. W. Lin, Y. Q. Wang and S. T. Yau / Anal. Theory Appl., 37 (2021), pp. 481-519 505

4. T(Γj) ∩ {x2 = 1
2}) is one-point set and T(Γj) ∩ {x1 = 1

2} = ∅ (or vise versa). Let
Γj+1,1 ∪ Γj+1,2 be two components of T(Γj), i.e., Γj+1,l is in some small square (l = 1, 2). It
can be divided into the following subclasses.
(a) Assume

max{M(Γj+1,1), M(Γj+1,2)} ≥ (1 + e−O(η))M(Γj), e =
λ2

λ + 1
− 1.

Without loss of generality, let M(Γj+1,1) ≥ M(Γj+1,2). Then the proof of claim (a) is com-
pleted by setting Γj+1 = Γj+1,1 and ê = 1 + e−O(η).
(b) Assume

max{M(Γj+1,1), M(Γj+1,2)} ≤ (1 + e−O(η))M(Γj).

By (3.1), we have M(Γj+1,l) ≥ (λ − (1 + e) − O(η))M(Γj), l = 1, 2. Denote Γ̂j+1,l =
T(Γj+1,l), l = 1, 2. We need to consider the following sub-cases:

i. Γ̂j+1,1 ∩ ({x1 = 1
2} ∪ {x2 = 1

2}) = ∅ (or Γ̂j+1,2 ∩ ({x1 = 1
2} ∪ {x2 = 1

2}) = ∅). Then
it holds that

M(Γ̂j+1,1) ≥(λ−O(η))M(Γj+1,1)

≥(λ−O(η))(λ− (1 + e)−O(η))M(Γj)

≥(1 + e−O(η))M(Γj) ≥ êM(Γj).

Thus it is sufficient to choose Γj+1 = Γ̂j+1,1.

ii. Both Γ̂j+1,1 ∩ ({x1 = 1
2} ∪ {x2 = 1

2}) and Γ̂j+1,2 ∩ ({x1 = 1
2} ∪ {x2 = 1

2}) are one-
point sets. Note that angles between Γj+1,1, Γj+1,2 and a vertical line are nearly equal
to each other at the point Γj+1,1 ∩ Γj+1,2, since ra(Γj)� 1 if |η| � 1 and T|Γj is close
to a linear map. Subsequently, since ra(Γj+1,1), ra(Γj+1,2) � 1 if |η| � 1, we have
that angles between the tangent line at any point of Γj+1,1 or Γj+1,2 and a vertical
line are nearly two constants which are nearly equal to each other. In other words,
Γj+1,1 and Γj+1,2 almost lie in two lines symmetric corresponding to a vertical line.
The case for Γ̂j+1,1 and Γ̂j+1,2 is similar if |η| � 1. Without loss of generality, it is
sufficient to consider the following two subcases.

A. Both T(Γj+1,l) ∩ {x1 = 1
2}, l = 1, 2 are nontrivial one-point set. For this case, we

have Γ̂j+1,l(l = 1, 2) almost lie in two lines which are very close to the vertical line
x1 = 1

2 . It implies that T(Γ̂j+1,l) almost coincides with the boundary x1 = 1− τ1.

If T(Γ̂j+1,1) ∩ {x2 = 1
2} = ∅, then the argument is completed by setting Γj+1 =

T(Γ̂j+1,1).

Consider the case T(Γ̂j+1,1) ∩ {x2 = 1
2} 6= ∅. Denote components of T(Γ̂j+1,1)

by Γ̃j+1,l , l = 1, 2. Obviously, T(Γ̃j+1,l) is close to x1 = τ2 � 1 and thus has no



506 T. X. Li, W. W. Lin, Y. Q. Wang and S. T. Yau / Anal. Theory Appl., 37 (2021), pp. 481-519

intersection with x1 = 1
2 . Hence we only need to consider the intersection of it with

x2 = 1
2 . It thus can be reduced to the following subcase.

B. T(Γj) ∩ {x2 = 1
2} and (Γ̂j+1,1 = T(Γj+1,1)) ∩ {x2 = 1

2} are nontrivial one-point
set, which are denoted by pj and pj+1, respectively. Obviously, pj ∈ Γj+1,1. From
the fact that T is a perturbation of uncoupled tent map (with a slope s = 2 − s0
satisfying 1� s0 � η ≥ 0), we have that

|x2(T(pj))− 1| = O(max{s0, c1, η}) ≡ O(τ0).

Obviously x2(pj+1) = 1
2 , hence x2(T(pj+1)) = 1− O(τ0). Similarly, x2(T2(pj)) =

O(τ0). Since T2(pj), T(pj+1) ∈ T(Γ̂j+1,1)) = Γ̃j+1,1 and ra(Γ̂j+1,1) = O(η), roughly
speaking, Γ̃j+1,1 is nearly a vertical segment from the bottom to the top. Define Γ1

j+1

be the component of Γ̃j+1,1 such that

max
p∈Γ1

j+1

x2(p) =
1
2

, min
p∈Γ1

j+1

x2(p) = O(τ0), ra(Γ1
j+1) = O(η).

If T(Γ1
j+1) ∩ ({x1 = x2} ∪ {x1 + x2 = 1}) 6= ∅, then the proof is completed. Thus

assume the intersection set is empty. Then it is necessary that

max
p∈T(Γ1

j+1)
x1(p) = O(η + τ0).

Otherwise, max
T(Γi0

j+1)
x1(p) � η + τ0. Note that T(Γi0

j+1) is nearly a segment.

Let p1, p2 be two end points of T(Γi0
j+1) such that x2(p1) ≥ 1 − O(τ0) − O(η)

and x2(p2) = O(τ0). Again from the fact that T(Γi0
j+1) is nearly a segment, we

have either x1(p1) � η + τ0 or x1(p2) � η + τ0. For the former case, we have
x1(p1) + x2(p1)− 1� η + τ0 − τ0 − η = 0, while

x1(p2) + x2(p2) ≤
1
2
+O(τ) ≤ 1,

which implies the intersection between T(Γi0
j+1) and x1 + x2 = 1 is nonempty. For

the latter case, we have x2(p2) < x1(p2), while x2(p1) >
1
2 > x1(p1), which implies

that T(Γi0
j+1) and x1 = x2 is nonempty, which makes the assumption on the empty

intersection impossible.

Define Γ2
j+1 as before such that

max
p∈Γ2

j+1

x2(p) =
1
2

, min
p∈Γ2

j+1

x2(p) = O(τ0), ra(Γ2
j+1) = O(η).
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From (5.4), it holds that there is an i0 ≤ [log(s−η)(1−c)
1

100 /τ2] + 1, such that
maxp∈Γ2

j+1
x1(Ti0(p)) ∈ [ 1

100 , 1
10 ]. In fact, since x1(p) ≥ τ2, from the argument above,

we have x1(Ti(p)) ≥ (s − η)(1− c)x1(Ti−1(p)) only if x1(Ti−1(p)) ≤ 1
100 , which

justifies the definition of i0. In a word, we obtain a simple curve Γi0
j+1 satisfying

max
p∈Γi0

j+1

x2(T(p)) = 1−O(τ0), min
p∈Γi0

j+1

x2(T(p)) = O(τ0),

max
p∈Γi0

j+1

x1(T(p)) ∈
[

1
100

,
1
10

]
, ra(T(Γ

i0
j+1)) = O(η).

By the same argument above, we obtain T(Γi0
j+1) ∩ ({x1 = x2} ∪ {x1 + x2 = 1}) 6=

∅. We can end the proof of Lemma 5.3 similarly as before.

iii. Γ̂j+1,1 ∩ ({x1 = 1
2} (or Γ̂j+1,1 ∩ ({x2 = 1

2}) includes two or more points, or Γ̂j+1,2 ∩
({x1 = 1

2} (or Γ̂j+1,2 ∩ ({x2 = 1
2}) includes two or more points. It can be reduced to

Case 4-(b)-i by the same argument as in Case 2, we omit it here.

We complete the proof.

Proof of (1.3a) in Theorem 1.3. From Lemma 5.1 and 5.3, we obtained that there exists c6 >
0 such that for any segment Γ0 in some small square with a slope 1, there exists disjoint
segments Γ1, Γ2, · · · , such that for each i there exists l(i) such that Tl(i)(Γi) ⊂ Gε and
∑i M(Γi) ≥ c6M(Γ0). From the arbitrariness of Γ0 and Fubini’s Theorem, we obtain that
for almost every initial point p ∈ [0, 1]2, there exists l(p) such that Tl(p)(p) ∈ Gε. This
completes the proof for (1.3a).

The disordered part can be obtained by a series of lemmas. First we prove a partial
result as follows.

Lemma 5.4. There exists a subset B0 of Gγ0 with a positive measure such that for each point
p ∈ B0, there exists a finite time l = l(p) such that Tl(p) ∈ Bγ0 .

Proof. Let G1 = {p ∈ Gγ0 |x1, x2 ≤ 1
2}, G2 = {p ∈ Gγ0 |x1, x2 ≥ 1

2}, G3 = {p ∈ Gγ0 |x1 ≤
1
2 , x2 ≥ 1

2}, G4 = {p ∈ Gγ0 |x1 ≥ 1
2 , x2 ≤ 1

2} and define G̃γ0 = G3 ∪ G4. Let G̃−1 =

T−1(G̃γ0) ∩ Gγ0 , G̃−2 = T−1(G̃−1) ∩ Gγ0 , · · · , G̃−(k+1) = T−1(G̃−k) ∩ Gγ0 . Denote G0 =

∪∞
k=0G̃−k.

Now, we define B0 ≡ Gγ0\G0. Then for each point p ∈ B0, there exists a finite time
l = l(p) such that Tl(p) ∈ Bγ0 . In fact, from the definition of the set G0 and the map T,
for each point p ∈ B0 satisfying Ti−1(p) ∈ Gγ0 , it holds that |x1(i)− x2(i)| ≥ (1− 2c)(2−
η)|x1(i− 1)− x2(i− 1)|, where (x1(j), x2(j)) = T j(p) for j = i− 1, i. Hence, the fact that
(1− 2c)(2− η) > 1 with c, η small implies that there exists some l such that Tl(p) is out
of the region Gγ0 , i.e., . enter into Bγ0 .
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Thus it is sufficient to prove that M(G0) < M(Gγ0). Since the diameter of G̃γ0 is small
for small γ0, from the expansibility of T, we obtain that each component S of T−i(G̃γ0)
possesses a small diameter for i > 0. Thus, we have that

Case (i). #C(T−1(S) ∩ Gγ0) = 2 if dist(S, (1, 1)) > 3γ0,

Case (ii). #C(T−1(S) ∩ Gγ0) ≤ 4 if dist(S, (1, 1)) ≤ 3γ0,

where #C(S) denotes the number of components for the set S.
On the other hand, the expansibility of T implies that the measure of each compo-

nent of T−1(S) is less than ((1 − 2c)(2 − η)2)−1M(S). Thus for case (i) we have that
M(T−1(S)) ≤ 2((1− 2c)(2− η)2)−1M(S) ≡ (2λ̂)−1M(S) and for case (ii) we have that
M(T−1(S)) ≤ 4((1− 2c)(2− η)2)−1M(S) ≡ λ̂−1M(S) with 1−O(c + η) ≤ λ̂ ≤ 1.

Obviously, since γ0 is small, we have that among {i, i + 1, · · · , i + 10}, there is at
most one number j such that dist(T−j(S), (1, 1)) ≤ 3γ0. Thus it is not difficult to see
that for k = 10l + j with 1 ≤ j < 10, it holds that M(G̃−k) ≤ bkM(G̃γ0) with bk =(
(2λ̂)−9λ̂−1)l

(2λ̂)−(j−1)λ̂−1. Let b0 = 1. For small c and η we can easily see that ∑∞
k=0 bk ≤

4. Hence we have

M(∪∞
k=0G̃−k) ≤

∞

∑
k=0

bkM(G̃γ0) ≤ 4M(G̃γ0) ≤ 4γ0M(Gγ0) < M(Gγ0). (5.5)

This completes the proof of the lemma.

The disordered part (1.3b) can be easily obtained from the following corollary.

Corollary 5.1. For almost each point p in Gγ0 , there exists a finite time l = l(p) such that
Tl(p) ∈ Bγ0 ∪ B0, where B0 is defined as in Lemma 5.4.

Proof. Assume the conclusion is not true. Then there exists a set S ⊂ Gγ0 with a positive
measure such that for each i it holds that Ti(S)∩ (Bγ0 ∪ B0) = ∅. We will prove that there
exists a subset S0 ⊂ S with a positive measure and l = l(S0) such that Tl(S0) ⊂ Bγ0 ∪ B0.
From the contradiction, we end the proof.

For this purpose, we claim that there exists a subset S̃0 ⊂ S and l ∈ N such that
M(Tl(S̃0)) ≥ δ1M(Gγ0).

Then the Corollary can be obtained from the claim. In fact, since Tl(S̃0) ⊂ Tl(S) ⊂ Gγ0

and B0 = Gγ0\G0, we have Tl(S̃0)\B0 ⊂ G0, where G0 is defined as in the proof of
Lemma 5.4. Note that T is a diffeomorphism on each small square, thus the image of
each measurable set under T is still measurable. Thus

M(Tl(S̃0) ∩ B0) = M(Tl(S̃0))−M(Tl(S̃0)\B0) ≥ M(Tl(S̃0))−M(G0).

Then from the claim and (5.5), we have

M(Tl(S̃0) ∩ B0)

M(Tl(S̃0))
≥ M(Tl(S̃0))−M(G0)

M(Tl(S̃0))
≥ 1− 4γ0

δ1
≥ 1

2
, since γ0 � δ1.
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Define S0 ⊂ S̃0 such that Tl(S0) = Tl(S̃0) ∩ B0 ⊂ B0. Then Tl(S0) has a positive measure,
which implies the measure of S0 is positive. Thus the conclusion is obtained.

Next we prove the existence of S̃0. From the definition of Gi, i = 1, 2, 3, 4 and the
number of components of a set in [0, 1]2, we have that for any subset S of G3 or G4, T j(S)
has only one component for each j = 1, 2, · · · , 10. Recall that for any subset S of G1 or G2,
T(S) has at most 4 components (see Fig. 4).

Without loss of generality, we assume that S ⊂ G1. Then T(S) has at most 4 compo-
nents among which 2 components, say S1 and S2 lie in G1 and G2, respectively, and S3
and S4 lie in G3 and G4. Subsequently, T(S1) or T(S2) have at most 4 components denoted
by Si,j, i = 1, 2, j = 1, 2, 3, 4 in a similar way, while T(S3) or T(S4) has only one compo-
nents denoted by Si,1, i = 3, 4. Hence, all T(S1,i), i = 1, 2, 3, 4 totally have 10 components.
Moreover, among them there are six components, that is Si,1, i = 3, 4 together with Si,j,
i = 1, 2, j = 3, 4, satisfy that the image of each of them has only one component.

By induction, we can prove that for i ≤ 10, it holds that the sum of all components for
Ti(S) is 2i+1 + 2i − 2. In particular, the sum of all components for T3(S) is 22.

On the other hand, M(T3(S)) ≥ (4(1 − 2c − 2η))3M(S). When c, η are small, we
have that (1− 2c)(2− η)2 > (22)1/3. Applying Corollary 2.1 by setting a = 22, m0 = 3,
E−(c) = (1− 2c)(2− η)2, E+(c) = (1− 2c)(2 + η)2, δ1 = 2−16, γ0 = 2−20 and D = Gγ0 ,
we obtain the existence of S̃0. The proof is completed.

Rules: 

1. Tj(S) has only one branch when S is from G3 and G4, ∀1≤j≤10; 

2. Tj(S) has less than five branches when S is from G1 and G2, ∀1 ≤ j ≤ 10. 
 

𝐒𝐒 

Although it is from 𝐺𝐺1,𝐺𝐺2, it 
origins from 𝐺𝐺4. We can 
know that there is only one 
branch from rule 1. 

𝑮𝑮𝟏𝟏 𝐨𝐨𝐨𝐨 𝑮𝑮𝟐𝟐 

𝑮𝑮𝟒𝟒  𝑮𝑮𝟒𝟒  𝑮𝑮𝟒𝟒  𝑮𝑮𝟒𝟒  𝑮𝑮𝟑𝟑  𝑮𝑮𝟑𝟑  𝑮𝑮𝟑𝟑  𝑮𝑮𝟑𝟑  𝑮𝑮𝟐𝟐  𝑮𝑮𝟐𝟐  𝑮𝑮𝟐𝟐  𝑮𝑮𝟐𝟐  𝑮𝑮𝟏𝟏 𝑮𝑮𝟏𝟏 𝑮𝑮𝟏𝟏 𝑮𝑮𝟏𝟏 

𝑮𝑮𝟒𝟒  𝑮𝑮𝟒𝟒  𝑮𝑮𝟑𝟑  𝑮𝑮𝟑𝟑  𝑮𝑮𝟐𝟐  𝑮𝑮𝟐𝟐  𝑮𝑮𝟏𝟏 𝑮𝑮𝟏𝟏 

𝑮𝑮𝟑𝟑  𝑮𝑮𝟐𝟐  𝑮𝑮𝟏𝟏 
𝑮𝑮𝟒𝟒  

𝐓𝐓(𝐒𝐒) 

𝐓𝐓𝟐𝟐(𝐒𝐒) 

𝐓𝐓𝟑𝟑(𝐒𝐒) 

Figure 4: Evolution on components of T j(S), j = 1, 2, 3.
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6 The higher dimensional case

In this section, we will prove Theorem 1.4 for coupled tent map lattices with multi-node.
The proof for the ordered part in the multi-node case is quite different from for two-

nodes case. The observation is as follows.
Recall that the phase space [0, 1]m = ∪DJ , where m is the dimension of the phase space

and DJ are 2m small hypercubes in the phase space divided by the planes xi =
1
2 , 1 ≤ i ≤

m. For each convex Ω in some DJ0 , we have that M(T(Ω)) ≈ 2mM(Ω). Clearly T(Ω) will
either has an intersection with each of 2m small hypercubes DJ simultaneously, or there
exists at least one hypercube which has no intersection point with T(Ω). Note that all
T(Ω)∩DJ are still convex. Once the former case occurs, from the convexity we can prove
that T(Ω) has an intersection with the diagonal Dsyn, which again by convexity implies
the existence of a set of ‘good’ points occupying a fixed ratio in Ω. Otherwise, suppose
the latter case occurs in each iteration step. Then in each iteration step, averagely it holds
that M(T(Ω) ∩ DJ) ≥ cM(Ω) with c ≈ 2m/(2m − 1) > 1 for each J. Consequently, the
measure for most components of Tk(Ω) will keep increasing until it is of constant order
as k increases. Thus we also obtain the existence of a set of ‘good’ points occupying a
fixed ratio in Ω by convexity.

To prove the ordered part (1.3a), we first have the following result.

Lemma 6.1. If Ω is a convex set in one of the 2m small hypercubes DJ and T(Ω) has an intersec-
tion with each small hypercube simultaneously. Then the center point x1 = x2 = · · · = xm = 1

2
lies in T(Ω). Moreover, there exists a fixed number c0 > 0 such that for any ε > 0, we have that
M(T(Ω) ∩ Gε)/M(T(Ω)) ≥ c0εm, where

Gε = {p ∈ [0, 1]m | dist(p, Dsyn) ≤ ε}.

Proof. We prove the first conclusion by induction. For m = 2, let

Dij =
{
(x1, x2) ∈ [0, 1]2

∣∣∣ (i− 1)
2

≤ x1 ≤
i
2

,
(j− 1)

2
≤ x2 ≤

j
2

}
,

i, j = 1, 2, be all the small hypercubes. From the condition, we have that for each pair
(i, j), there exists a point pij ∈ Dij ∩ T(Ω). Then from the convexity, we have that the
convex hull determined by these points is a subset of T(Ω) and the point ( 1

2 , 1
2 ) is in it.

Thus the first conclusion is proved.
Assume the first conclusion holds true for k = 2, . . . , m − 1. For the case k = m,

consider D̂ 1
2
= {(x1, . . . , xm) ∈ [0, 1]m | xm = 1

2}. Obviously it consists of 2m−1 small

(m− 1)-dimensional hypercubes determined by the planes xi =
1
2 , i = 1, . . . , m− 1. We

have that D̂ 1
2
∩ T(Ω) is nonempty and convex by the convexity of Ω, since in T(Ω) there

exist both points with xm < 1
2 and the ones with xm > 1

2 . Furthermore, the condition
implies that the intersection between T(Ω) and each small hypercubes of D̂ 1

2
is nonempty.
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Thus applying inductive assumption for m− 1 on D̂ 1
2
∩ T(Ω) and D̂ 1

2
, we have that the

point ( 1
2 , . . . , 1

2 ) ∈ D̂ 1
2
∩ T(Ω), which leads to the first conclusion.

For the second conclusion, let Sε be the cylinder {p ∈ [0, 1]m | dist(p, Dsyn) = ε}
whose axis is the diagonal of the phase space.

Define Ŝε = Sε ∩ T(Ω) and let Γ be the point set of the union of all lines connecting Ŝε

and the point p0 = ( 1
2 , . . . , 1

2 ). From the first conclusion it holds that p0 ∈ T(Ω). Hence, if
Ŝε is empty, then the convexity of T(Ω) leads that T(Ω) ⊂ Gε and the proof is complete.
Thus we assume that Ŝε is nonempty. Obviously, T(Ω)\(Γ ∩ T(Ω)) ⊂ T(Ω) ∩ Gε. Thus
for our purpose, we only need to analyze Γ∩ T(Ω). Again by the convexity we have that
Ωε ≡ Γ ∩ Gε ⊂ T(Ω), which further implies

Ωε = (Γ ∩ T(Ω)) ∩ Gε. (6.1)

To prove the second conclusion, it is sufficient to estimate M(Ωε)/M(Γ ∩ T(Ω)). Note
that Γ ∩ T(Ω) ⊂ Γ ∩ [0, 1]m.

For each line L ∈ Γ, we can easily see that the length L∩ [0, 1]m is less than
√

m, while
the length of L ∩ Gε is larger than ε. For the definition of Ωε and (6.1), we thus have that

M((Γ ∩ T(Ω)) ∩ Gε) = M(Ωε) ≥
( ε√

m

)m
M(Γ ∩ [0, 1]m) ≥

( ε√
m

)m
M(Γ ∩ T(Ω)).

Hence we complete the proof of the lemma by setting c0 = m−m/2.

Applying Lemma 6.1, we obtain the following result.

Proposition 6.1. There exists a constant c1 > 0 such that for any convex set Ω with a volume
less than 10−m, there exist disjoint convexities Ωi ⊂ Ω, i = 1, 2, . . . , and a set Ω0 ⊂ Ω which is
a union of finite convexities such that (i) for any i ≥ 1, there exists a l(i) such that Tl(i)(Ωi) is
a component of Tl(i)(Ω) and M(Tl(i)(Ωi)) ≥ δ1; (ii) for any point p ∈ Ω0, there exists an l(p)
such that Tl(p)(p) ∈ Gε; (iii) M(∪i≥0Ωi) ≥ c1M(Ω).

Proof. From Lemma 6.1, without loss of generality we assume that there exists at least
one small hypercube which has no intersection point with T(Ω) for any convex Ω in
some small hypercube. Thus T(Ω) has at most 2m − 1 components, denoted by Ωi, i =
1, · · · , 2m − 1 (some of them may be empty).

On the other hand,

|det(JT(p))| = 2m|det(I + cA)| ≡ 2m(1− F(A, c)),

where F(A, c) depends on A> = A ∈ Rm×m with Ae = 0 and the coupling coefficient c
satisfying F(A, c)→ 0 as c→ 0. Then we have

|det(JT(p))| > 2m − 1 for small c.

Thus from Iteration Lemma 2.1 and Corollary 2.1 with m0 = 1, a = 2m − 1 and E−(c) =
2m(1− F(A, c)), we complete the proof of this proposition.
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The ordered part (1.3a) for the case of multi-node can be reduced to the following
result.

Proposition 6.2. For any ε > 0, there exists a fixed number c2 > 0 depending on ε such that
for any convex set Ω0 in some small hypercube with M(Ω0) ≥ δ1, there exist disjoint convexities
Ωi ⊂ Ω0, i = 1, 2, . . . , such that (i) for any i ≥ 1, there exists an l(i) such that Tl(i)(Ωi) ⊂ Gε

and (ii)M(∪i≥1Ωi) ≥ c2M(Ω0).

Proof. If T(Ω0) ∩ DJ 6= ∅ for each small hypercube DJ of D, then the conclusion follows
from Lemma 6.1.

Otherwise, there exist at most 2m − 1 small hypercubes of [0, 1]m such that T(Ω0) ∩
DJ 6= ∅. Recall that M(T(Ω0)) ≥ 2m(1− F(A, c))M(Ω0). Hence there exists some DJ
such that the convex set Ω1 = T(Ω0) ∩ DJ possesses a volume larger than

(2m/(2m − 1))(1− F(A, c))M(Ω0).

Similarly, assume that there exists at most 2m − 1 small hypercubes of [0, 1]m such that
T(Ω1) ∩ DJ 6= ∅. Then repeating the above argument, we obtain a convex set Ωi+1 =
T(Ωi) ∩ DJ for some DJ such that

M(Ωi+1) ≥2m/(2m − 1)(1− F(A, c))M(Ωi)

≥(2m/(2m − 1)(1− F(A, c)))i+1M(Ω0)

for any i. Since F(A, c)→ 0 and M(Ω0) ≥ δ1, we have that

(2m/(2m − 1)(1− F(A, c)))jM(Ω0) > 1

for small c and some fixed j = j(δ1). Hence there exists some i < j such that T(Ωi)∩DJ 6=
∅ for small hypercubes DJ of [0, 1]m, which leads to the conclusion with

c2 > c0M(Gε)2−mj ≥ c0εm−12−mj,

where c0 is defined in Lemma 6.1.

Similar to the proof of Theorem 3.1, we can easily obtain (1.3a) from Proposition 6.2.
Thus we omit the details.

The disordered part for the multi-node case is similar to the two-node case. Let γ0 =
min{2−20, 2−m−4}. First we prove that

Lemma 6.2. There exists a subset B0 of Gγ0 with a positive measure such that for each point
p ∈ B0, there exists a finite time l = l(p) such that Tl(p) ∈ Bγ0 .

Proof. Let

DJ1 =
{
(x1, . . . , xn) ∈ D | 0 ≤ xi ≤

1
2

, for all i
}

,

DJ2 =
{
(x1, . . . , xn) ∈ D | 1

2
≤ xi ≤ 1, for all i

}
.
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Define G̃γ0 = Gγ0\(DJ1 ∪ DJ2). Let

G̃−1 = T−1(G̃γ0) ∩ Gγ0 , G̃−2 = T−1(G̃−1) ∩ Gγ0 , . . . ,

G̃−(l+1) = T−1(G̃−l) ∩ Gγ0 .

Denote G0 = ∪∞
l=0G̃−l . We claim that for each point p ∈ B0 = Gγ0\G0, there exists some

l such that Tl(p) is out of the region Gγ0 , i.e., enters into Bγ0 . Thus for our purpose it is
sufficient to prove that M(G0) < M(Gγ0). From the definition of the set G0 and the map
T, for each point p ∈ B0, it holds that Ti(p) 6∈ G̃γ0 for any i. By the expansivity of T, we
need to prove that if Ti−1(p) ∈ Gγ0 , then

dist(Ti(p), Dsyn) ≥ 2(1− F̂(A, c))dist(Ti−1(p), Dsyn),

where F̂(A, c)→ 0 (see below for definition), as c→ 0.
In fact, for x = [x1, . . . , xm]>, we have

(dist(x, Dsyn))
2 = (2m)−1 ∑

i 6=j
(xi − xj)

2 =
m

∑
i=1

x2
i −m−1

( m

∑
i=1

xi

)2
= xT(I −m−1E0)x,

where E0 = ee> with e = [1, · · · , 1]T. Then it holds that

(dist(T(x), Dsyn))
2 = (T(x))T(I −m−1E0)T(x)

=4xT(I + cA)T(I −m−1E0)(I + cA)x.

From the condition of A it follows that AE0 = E0A = 0. It implies that

(I + cA)T(I −m−1E0)(I + cA) = I −m−1E0 + 2cA + c2A2.

It leads that

(dist(T(x), Dsyn))
2 =4xT(I −m−1E0 + 2cA + c2A2)x

=4(dist(x, Dsyn))
2 + 4xT(2cA + c2A2)x.

Denote

x̄ =
1
m

m

∑
i=1

xi.

Then we have

xT(2cA + c2A2)x

=(x̄e + (x− x̄e))T(2cA + c2A2)(x̄e + (x− x̄e))

=(x̄e)T(2cA + c2A2)(x̄e) + 2(x̄e)T(2cA + c2A2)(x− x̄e)

+ (x− x̄e)T(2cA + c2A2)(x− x̄e).



514 T. X. Li, W. W. Lin, Y. Q. Wang and S. T. Yau / Anal. Theory Appl., 37 (2021), pp. 481-519

Again from the condition of A, we have

(x̄e)T(2cA + c2A2)(x̄e) = 0, 2(x̄e)T(2cA + c2A2) = 0.

On the other hand, it is easily seen that

(dist(x, Dsyn))
2 =

m

∑
i=1

(xi − x̄)2 = (dist(x, x̄e))2.

Then we have that

|xT(2cA + c2A2)x| ≤ (2c‖A‖+ c2‖A‖2)(dist(x, Dsyn))
2.

It follows that

(dist(T(x), Dsyn))
2 ≥ 4(1− (2c‖A‖+ c2‖A‖2))(dist(x, Dsyn))

2

≥
(

2(1− (2c‖A‖+ c2‖A‖2)
1
2 )
)2

(dist(x, Dsyn))
2

≡(2(1− F̂(A, c)))2(dist(x, Dsyn))
2.

Thus we obtain the claim. Consequently there must exists l such that Tl(x) ∈ Bγ0 .
Next we estimate the measure of the set G0. Since the diameter of G̃γ0 is small for small

γ0, from the expansivity of T, we obtain that each component S of T−i(G̃γ0) possesses a
small diameter for i > 0. Thus we have that

Case (i). #C(T−1(S) ∩ Gγ0) = 2 if dist(S, (1, . . . , 1)) > 3γ0,

Case (ii). #C(T−1(S) ∩ Gγ0) ≤ 2m if dist(S, (1, . . . , 1)) ≤ 3γ0,

where #C(S) denotes the number of connected components for a set S.
On the other hand, the expansibility of T implies that the measure of each com-

ponent of T−1(S) is less than (2(1 − F̂(A, c)))−mM(S). Thus for case (i) we have that
M(T−1(S)) ≤ 2−m+1(1− F̂(A, c)))−mM(S) and for case (ii) we have that

M(T−1(S)) ≤ (1− F̂(A, c))−mM(S).

Obviously, since γ0 is small, we have that there is at most one number j in {i, i +
1, · · · , i + 10} such that dist(T−j(S), (1, . . . , 1)) ≤ 3γ0. Thus it is not difficult to see
that for l = 10k + j with 1 ≤ j < 10, it holds that M(G̃−l) ≤ dlM(G̃γ0) with
dl = 2(−m+1)(9k+j−1)(1 − F̂(A, c))−ml . Let d0 = 1. For small c we can easily see that
∑∞

l=0 dl ≤ 4. Hence if 0 ≤ γ0 < 1
2m+3 and c is small, we have

M(G0) ≤M(∪∞
l=0T−l(G̃γ0)) ≤

∞

∑
l=0

dlM(G̃γ0) ≤ 4M(G̃γ0)

≤4γ0M(Gγ0) <
1

2m+1 M(Gγ0). (6.2)

This completes the proof of the lemma.



T. X. Li, W. W. Lin, Y. Q. Wang and S. T. Yau / Anal. Theory Appl., 37 (2021), pp. 481-519 515

The disordered part (1.3b) for the case of multi-node can be easily obtained from the
following corollary.

Corollary 6.1. For almost each point p in Gγ0 , there exists a finite time l = l(p) such that
Tl(p) ∈ Bγ0 ∩ B0, where B0 is defined as in Lemma 6.2.

Proof. Assume the conclusion is not true. Then there exists a set S ⊂ Gγ0 with a positive
measure such that for each l it holds that Tl(S)∩ (Bγ0 ∪ B0) = ∅. We will prove that there
exists a subset S0 ⊂ S with a positive measure and l = l(S0) such that Tl(S0) ⊂ Bγ0 ∪ B0.
From the contradiction, we end the proof.

For this purpose, we claim that there exists a subset S̃0 ⊂ S and l ∈ N such that
M(Tl(S̃0)) ≥ δ1M(Gγ0).

In fact, from the claim and (6.2), we have that

M(Tl(S̃0) ∩ B0)

M(Tl(S̃0))
≥ M(Tl(S̃0))−M(G0)

M(Tl(S̃0))
≥ 1− 4γ0

δ1
≥ 1

2
.

Define S0 ⊂ S̃0 such that Tl(S0) = Tl(S̃0) ∩ B0 ⊂ B0. Then Tl(S0) has a positive measure,
which implies the measure of S0 is positive. Thus the conclusion is obtained.

Next we prove the existence of S̃0. Let Gγ0 = G1 ∪ G2 ∪ G3, where G1 = Gγ0 ∩ DJ1 ,
G2 = Gγ0 ∩ DJ2 and G3 = Gγ0\(G1 ∪ G2). It is clear that for a subset S of any component
of G3, T j(S) has only one component for each j = 1, . . . , 10. Moreover, the image of any
subset of G1 or G2 under T has at most 2m components.

Then for a subset S of G1 or G2, T(S) has at most 2m components among which two
ones lie in G1 ∪ G2 and the other 2m − 2 ones lie in G3. Subsequently, T2(S) has at most
(2m − 2) + 2 · 2m components, among which 4 components lie in G1 ∪ G2 and 3(2m − 2)
others lie in G3. Similarly, we have that T3(S) has at most (23 − 1)(2m − 2) + 23 compo-
nents, among which (23 − 1)(2m − 2) components lie in G3 and 23 others lie in G1 ∪ G2.

On the other hand,

M(T3(S)) ≥ 23m(1− F(A, c))3M(S),

where F(A, c) is defined in Proposition 6.1. Obviously,

23m(1− F(A, c))3m > (23 − 1)(2m − 2) + 23

for m ≥ 2 and small c. Thus from Corollary 2.1, we obtain the existence of S̃0. Thus the
proof is completed.

7 The proof of phase transition

In this section, we will prove a phase transition result stated in Theorem 1.1 for the situ-
ation with m = 2 and f being the tent map.
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7.1 The case 0 ≤ c < 1
4 (or 3

4 < c ≤ 1)

For this situation, 4|1− 2c| > 2 and there are four small squares on each of which the
map is 1− 1 since m = 2. It is easy to see that if a convex subset Ω0 of [0, 1]2 possesses
nonempty intersections with at least three small cubes, then it must have nonempty in-
tersection with the line y = x or x + y = 1. Then we can obtain the existence of a set
of ‘good’ points occupying a fixed ratio (≥ ε2/2) in Ω0 by convexity (since all points in
ε−neighbor of the synchronization manifold are good and the diameter of [0, 1]2 is

√
2,

see the argument in Lemma 6.1).
Hence we only need to consider the case that a convex subset Ω0 of [0, 1]2 possesses

nonempty intersections with at most two small cubes. Obviously M(T(Ω0)) ≥ 4|1 −
2c|M(Ω0). Thus from Iteration Lemma 2.1 and Corollary 2.1 with m0 = 1, a = 2 and
E−(c) = 4|1 − 2c| > 2, we complete the proof for the order part by the argument in
section 6 (see Lemma 6.1 and Proposition 6.2).

For the disorder part, note that all the arguments in section 4 except Proposition 4.1
is available for each c satisfying |c − 1

2 | >
1
4 . Thus we only need to provide a proof of

Proposition 4.1 for |c− 1
2 | >

1
4 .

Recall that the proof of Proposition 4.1 depends on a claim that for a segment Ω ⊂ Gγ0

with a slope ±1, T4(Ω) has at most two components. For small c, it holds that (2(1−
2c))4 > 2. Since the absolute value of each eigenvalue of T is not less than 2(1− 2c), we
have that each segment in T4(Ω) possesses a length strictly longer than (2(1− 2c))4/2 ·
M(Ω), where M(Ω) is the length of Ω. It then implies Proposition 4.1 with the help of
Iteration Lemma 2.1 and Corollary 2.1.

Since (2(1− 2c))4 > 2 is true only for c satisfying |c− 1
2 | > 2

1
4 · 1

4 , it is sufficient to
prove the following claim:

Claim’. Fix c such that |c − 1
2 | >

1
4 . Let M ∈ N such that (2(1− 2c))M > 2. Then for

sufficiently small γ0 > 0 and a segment Ω in Gγ0 ∩ { some small square in [0, 1]2} with
a sufficiently small length such that Tl(Ω) * Dsyn for any l, TM(Ω) has at most two
components.

The proof of it is same as the one for the Claim in section 4. We omit it here. It
is worthy to point out that γ0 here depends on c. Thus we complete the proof for the
disorder part.

7.2 The case 1
4 ≤ c ≤ 3

4

For 1
4 < c < 3

4 , we have 2|1− 2c| < 1. Thus it is easy to see that

|x1(n + 1)− x2(n + 1)| ≤ 2|1− 2c‖x1(n)− x2(n)|
≤ · · · ≤ (2|1− 2c|)n+1|x1(0)− x2(0)| → 0

for any (x1(0), x2(0)) ∈ [0, 1]2. Hence synchronization occurs.
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When c = 1
4 or 3

4 , by a direct computation, we know |x1(n + 1) − x2(n + 1)| =
|x1(n)− x2(n)| for (x1(n)− 1

2 )(x2(n)− 1
2 ) ≥ 0, while |x1(n + 1)− x2(n + 1)| < |x1(n)−

x2(n)| for (x1(n) − 1
2 )(x2(n) − 1

2 ) < 0. Hence {|x1(n) − x2(n)|} is monotonically de-
creasing nonnegative sequence. It then has a limit. We need to prove the limit is zero for
almost every initial data.

Otherwise, there is d > 0 such that the limit d∞ > d for initial data occupying a
positive measure. It then implies that for such an initial data,

|x1(n)− x2(n))| > d (7.1)

for all sufficiently large n.
Suppose that

|x1(n) + x2(n)− 1| ≤ d
2

. (7.2)

It together with (7.1) implies that (x1(n)− 1
2 )(x2(n)− 1

2 ) < 0. Then again from (7.2) we
have

|x2(n + 1)− x1(n + 1)| = |1− 2c| · | f (x2(n))− f (x1(n))|
=|1− 2c| · 2|1− x1(n)− x2(n)| ≤ d|1− 2c| < d.

It conflicts with (7.1).
Hence |x1(n) + x2(n)− 1| > d

2 > 0 for all sufficiently large n. But then we have

x2(n + 1) + x1(n + 1) =


2(x1(n) + x2(n)), 0 ≤ x1(n), x1(n) ≤

1
2

,

2(2− x1(n)− x2(n)),
1
2
≤ x1(n), x1(n) ≤ 1.

It is equivalent to

y(n + 1) =


2y1(n), 0 ≤ y(n) ≤ 1

2
,

2(1− y(n)),
1
2
≤ y(n) ≤ 1,

where y(n) = (x1(n) + x2(n))/2 satisfying |y(n)− 1
2 | >

d
4 > 0 for all sufficiently large n.

But it is impossible for almost every points from the dynamical behavior of the dy-
namical system T : x → 2xmod1. Thus we obtain synchronization occurs for almost
every initial data. �

8 Conclusions

The clustering phenomenon intermittent behaviors have been widely found in coupled
map lattices by numerical experiments but without mathematical proof. Among these
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phenomenon, pseudo synchronization, i.e., successive transition between ordered and
disordered phases, is the most difficult from the point of view of mathematics. In this
paper, we provide a complete proof for pseudo synchronization for weakly coupled tent-
map lattices with arbitrarily many nodes. For weakly coupled piecewise-expanding map
lattices with 2 nodes, we also obtain the same result. In particular, for coupled tent-map
lattices with 2 nodes, we prove a phase transition between intermittent behaviors and
synchronization.

How to extract more information on the dynamical properties by this work and previ-
ous results, for example, of G. Keller and C. Liverani [17–19], is one of our future interest.
We will also be interested in the change of dynamical behavior when a strong coupling
decreases to zero. In addition, we will study the weakly coupled piecewise-expanding
map lattices with arbitrarily many nodes in the future.
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