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Abstract. It is shown that if prescribed eigenvalues are distinct, then the parameterised

quadratic inverse eigenvalue problem is equivalent to a multiparameter eigenvalue prob-

lem. Moreover, a sufficient condition for the problem solvability is established. In order

to find approximate solution of this problem, we employ the Newton method based on

the smooth QR-decomposition with column pivoting and prove its locally quadratic con-

vergence. Numerical examples illustrate the effectiveness of the method.
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1. Introduction

There is a wide class of problems, which can be reduced to the system of second-order

differential equations

M ẍ(t) + C ẋ(t) + K x(t) = f (t), (1.1)

where M , C , K ∈ Rn×n, det M 6= 0 are respectively the analytical mass, damping, and stiff-

ness matrices and x(t), f (t) ∈ Rn the displacement and external force vectors depending

on time t. Physical and geometric parameters characterising the underlying physical sys-

tem are embedded in the coefficient matrices M , C and K . From a priori known physical

and geometric parameters such as mass, damping coefficient, elasticity, length, area and so

on, the process of analysing and deriving the dynamical behavior of the system is referred

to as the direct problem. It is well known that if x(t) = eλt v, λ ∈ C, v ∈ Cn a fundamental

solution to (1.1), then λ and v satisfy the quadratic eigenvalue problem (QEP)

Q(λ)v = 0, (1.2)
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where Q(λ) = λ2M + λC + K and is called the quadratic pencil. Since M is a nonsingular

matrix, the dynamical behavior of the system (1.1) may be interpreted via 2n eigenvalues

{λi}
2n
i=1

and eigenvectors {vi}
2n
i=1

of the QEP (1.2). Various quadratic eigenvalue problems

have been studied so far and we refer the readers to [31] for a survey on their applications,

mathematical properties, and corresponding numerical methods.

On the other hand, the inverse problem is to determine physical and geometric pa-

rameters for three matrices M , C , K such that the corresponding system has a prescribed

dynamical behavior. More exactly, we consider the following problem.

Problem 1.1 (Parameterised Quadratic Inverse Eigenvalue Problem (PQIEP)). Let M ∈

R
n×n be a non-singular matrix and Ci , Ki ∈ R

n×n, i = 0,1, . . . , 2n. For any distinct com-

plex numbers λ1,λ2, . . . ,λ2n, find a vector c = (c1, c2, . . . , c2n)
T ∈ R2n or C2n such that the

quadratic eigenvalue problem

�
λ2M +λC(c) + K(c)

�
x = 0 (1.3)

with the matrices

C(c) := C0 +

2n∑

i=1

ciCi, K(c) := K0 +

2n∑

i=1

ciKi (1.4)

has the eigenvalues λ1,λ2, . . . ,λ2n.

Such problems appear in various practical applications including structural design [22]

and finite element model updating [7, 8]. The general theory, numerical methods and

applications of the standard inverse eigenvalue problem — i.e. if M = 0 and C(c) is the

identity matrix, are discussed in [6, 18, 33, 34]. Mathematical theory and algorithms of

the parameterised generalized inverse eigenvalue problem — i.e. if M = 0, are studied

in [9,11,12,22,29].

Using the determinant evaluations proposed by Lancaster [24] and Biegler-König [3]

and further developed by Friedland et al. [18], Elhay and Ram [16] reformulated PQIEP as

the system of nonlinear equations

F(c) =





det
�
λ2

1M +λ1C(c) + K(c)
�

det
�
λ2

2
M +λ2C(c) + K(c)

�

...

det
�
λ2

2n
M +λ2nC(c) + K(c)

�



 ,

and proposed a Newton method for its solution. However, this method may suffer from

ill-conditioning [18] and is not computationally attractive.

Assume that Problem 1.1 has a solution c∗. Then there is a neighborhood of c∗ such

that the eigenvalues λi(c) of the quadratic pencil Qc(λ) = λ
2M +λC(c)+K(c) are distinct

differentiable functions [1]. In this neighborhood, Elhay and Ram [17] considered the
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system of nonlinear equations

F(c) =





λ1(c)−λ1

λ2(c)−λ2
...

λ2n(c)−λ2n



 . (1.5)

This is the most natural formulation, so that it was used by many authors to study addi-

tive and multiplicative inverse eigenvalue problems [15, 20], standard inverse eigenvalue

problem [4,5,18,28,30,32] and generalised inverse eigenvalue problem [12]. In order to

efficiently apply a Newton method to the system (1.5), it is important to reorder the eigen-

values in a suitable way. However, since in general the eigenvalues of the quadratic pencil

Qc(λ) are complex numbers, the ordering of the eigenvalues is a nontrivial task. Assuming

that the number of real and complex eigenvalues in each iteration remains the same as

the number of prescribed real and complex eigenvalues, Elhay and Ram [17] developed

a Newton method for solving PQIEP by finding a root of the nonlinear system (1.5). But

the problem of the eigenvalues ordering was not addressed without such an assumption.

Using the Hungarian method [23], Datta and Sokolov [14] solved the matching problem

of the eigenvalues, and presented a Newton method, an alternating projection method and

a hybrid method combined the Newton method with the alternating projection method for

PQIEP. However, at every iteration step each of the methods mentioned computes all eigen-

values and eigenvectors of the problem (1.5) and the eigenvalues have to be reordered by

the Hungarian method, which is very time-consuming operations.

One of the important issues to study, concerns the solvability of PQIEP, and up to now

there are no sufficient solvability conditions for this problem. Motivated by the ideas

of [11, 21], we consider the solvability of PQIEP, and transform PQIEP into a multiparam-

eter eigenvalue problem under the condition that the prescribed eigenvalues are distinct.

Consequent application of results from the theory of multiparameter eigenvalue problems

allows us to obtain a sufficient condition of solvability of PQIEP.

Using the smooth QR-decomposition with column pivoting [25], Li [26] proposed a

numerical method for the standard inverse eigenvalue problem. Besides, the QR-like de-

composition with column pivoting [13], was exploited in Dai [9] in an algorithm for solving

the parameterised generalised inverse eigenvalue problem. In order to avoid the eigenvalue

computing and reordering, we develop a numerical algorithm for PQIEP, which is based on

the smooth QR-decomposition.

This paper is organised as follows. In Section 2, PQIEP is reduced to an equivalent

multiparameter eigenvalue problem and a sufficient solvability condition for PQIEP is pre-

sented. In Section 3, the Newton method employing the smooth QR-decomposition with

column pivoting is applied to PQIEP and its locally quadratic convergence is shown. Sec-

tion 4 contains numerical examples, which show the effectiveness of the method. Finally,

in Section 5 a few conclusions are drawn.

Let us explain the notations we use. It is clear from the previous discussion that Rm×n

and Cm×n refer to the sets of real and complex m× n matrices, respectively. In particular,
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R
m = Rm×1, Cm = Cm×1, R = R1 and C = C1. Besides, Un and Rn stand for the sets of

all n × n unitary matrices and all n × n upper-triangular matrices, respectively. O and I

denote the zero matrix and identity matrix of suitable size, e j is the j-th column vector of

I , I ( j) = [e1, e2, . . . , e j], ‖ · ‖2 represents the Euclidean vector norm or the induced matrix

norm, and ‖ · ‖F denotes the Frobenius matrix norm. If A is an m× n matrix, then AT , AH ,

rank(A) and ker(A) are respectively the transpose, conjugate transpose, rank and kernel of

A. The direct sum of real or complex finite-dimensional Hilbert spaces is denoted by ⊕ and

⊗ is the tensor product of vectors or matrices. Throughout this paper, we always assume

that the given eigenvalues λ1,λ2, . . . ,λ2n are distinct and the solution to PQIEP is written

as c∗. To ensure that the number of free parameters does not degenerate, we also assume

that 2n matrices [C j , K j] are linearly independent in the space of n× 2n matrices.

2. A Sufficient Condition of Solvability

Let briefly recall some facts from the theory of multiparameter eigenvalue problem —

cf. [2]. Let Ai, j ∈ R
ni×ni or Cni×ni , i = 1,2, . . . , m, j = 0,1, . . . , m. The multiparameter

eigenvalue problem is to find scalars µ0,µ1, . . . ,µm, not all of them zeros, and nonzero

vectors x i ∈ C
ni , i = 1,2, . . . , m such that

�
µ0A1,0 +µ1A1,1 + · · ·+µmA1,m

�
x1 = 0,

�
µ0A2,0 +µ1A2,1 + · · ·+µmA2,m

�
x2 = 0,

· · · · · ·
�
µ0Am,0 +µ1Am,1 + · · ·+µmAm,m

�
xm = 0.

(2.1)

The (m+ 1)-tuple µ = (µ0,µ1, . . . ,µm) and the vector x = x1⊗ x2⊗ · · ·⊗ xm are called the

eigenvalue and the corresponding eigenvector of the problem (2.1), respectively. It is clear

that µ = (µ0,µ1, . . . ,µm) is an eigenvalue of the problem (2.1) if and only if

ker

 
m∑

j=0

µ jAi, j

!
6= {0}, i = 1,2, . . . , m,

or, equivalently, if and only if

det

 
m∑

j=0

µ jAi, j

!
= 0, i = 1,2, . . . , m.

Let Hi denote the Hilbert space Rni or Cni and H = H1 ⊗H2 ⊗ · · · ⊗Hm be the tensor

product space. Then Ai, j, i = 1,2, . . . , m, j = 0,1, . . . , m are linear operators on Hi . For

a decomposable tensor x = x1 ⊗ x2 ⊗ · · · ⊗ xm ∈ H, the induced operator A
†
i, j

is defined by

A
†
i, j
(x1 ⊗ · · · ⊗ xm)

= x1 ⊗ · · · ⊗ x i−1 ⊗ Ai, j x i ⊗ x i+1 ⊗ · · · ⊗ xm, i = 1,2, . . . , m, j = 0,1, . . . , m. (2.2)
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An important property of these induced operators is that they commute with each other —

i.e.

A
†
i, j

A
†
k, j
= A

†
k, j

A
†
i, j

, i 6= k, i, k = 1,2, . . . , m, j = 0,1, . . . , m.

In order to reduce the multiparameter eigenvalue problem (2.1) to a joint eigenvalue

problem, we define the operator-valued determinants by

∆ j = (−1) j det




A

†
1,0
· · · bA†

1, j
· · · A

†
1,m

...
...

...

A
†
m,0
· · · bA†

m, j
· · · A†

m,m



 , j = 0,1, . . . , m, (2.3)

where bAi, j means the omission of the full array A
†
i, j

obtained by deleting the ( j + 1)-th

column, and the right-hand side of (2.3) can be expanded in the usual manner for de-

terminants, in which the products of the entries are interpreted as the composites of the

operators concerned.

It is shown in [2] that the multiparameter eigenvalue problem (2.1) is equivalent to the

following joint eigenvalue problem:

∆
−1
∆ j x = µ j x , j = 0,1, . . . , m, (2.4)

where ∆ =
∑m

j=0 γ j∆ j is assumed to be nonsingular for some scalars γ0,γ1, . . . ,γm.

Theorem 2.1 (cf. Atkinson [2]). If there are scalars γ0,γ1, . . . ,γm such that∆ =
∑m

j=0 γ j∆ j

is nonsingular, then for an eigenvalue µ = (µ0,µ1, . . . ,µm) of the problem (2.1), we have

m∑

j=0

γ jµ j 6= 0.

Up to a scaling factor, the eigenvalues of the problem (2.1) are the simultaneous eigenvalues of

the joint eigenvalue problem (2.4). Moreover, all operators ∆−1
∆ j, j = 1,2, . . . , m mutually

commute — i.e.

∆i∆
−1
∆ j =∆ j∆

−1
∆i, i, j = 1,2, . . . , m.

Now we consider the solvability of PQIEP. Suppose that it has a solution c ∈ C2n, i.e.

there are nonzero vectors x i ∈ C
n such that

�
λ2

i M +λiC(c) + K(c)
�

x i = 0, i = 1,2, . . . , 2n. (2.5)

Using the notations

Ai,0 = λ
2
i M +λiC0 + K0, Ai, j = λiC j + K j , i, j = 1,2, . . . , 2n, (2.6)

we rewrite (2.5) in the form
�
A1,0 + c1A1,1 + · · ·+ c2nA1,2n

�
x1 = 0,

�
A2,0 + c1A2,1 + · · ·+ c2nA2,2n

�
x2 = 0,

· · · · · ·
�
A2n,0 + c1A2n,1 + · · ·+ c2nA2n,2n

�
x2n = 0.

(2.7)
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This means that c ∈ C2n is an eigenvalue of the multiparameter eigenvalue problem (2.7),

and x = x1⊗ x2⊗· · ·⊗ x2n is the corresponding eigenvector. Conversely, if c ∈ C2n and x =

x1⊗ x2⊗· · ·⊗ x2n are the eigenvalue and corresponding eigenvector of the multiparameter

eigenvalue problem (2.7), respectively, then c ∈ C2n is a solution of PQIEP. So we can obtain

the following result.

Theorem 2.2. If the given eigenvalues λ1,λ2, . . . ,λ2n are distinct, then c = (c1, c2, . . . , c2n)
T

is a solution of PQIEP if and only if it is an eigenvalue of the multiparameter eigenvalue prob-

lem (2.7).

Combining the definition of A
†
i, j

in (2.2) with the properties of the Kronecker product

[10], we represent the induced operators A
†
i, j

for Ai, j in (2.6) in the form

A
†
i, j
= I ⊗ · · · ⊗ I ⊗ Ai, j ⊗ I ⊗ · · · ⊗ I , i = 1,2, . . . , 2n, j = 0,1, . . . , 2n.

For the system (2.7) we also consider the operator-valued determinants T0, T1, . . . , T2n,

T j = (−1) j det




A

†
1,0
· · · bA†

1, j
· · · A

†
1,2n

...
...

...

A
†
2n,0
· · · bA†

2n, j
· · · A

†
2n,2n



 , j = 0,1, . . . , 2n,

where bA†
i, j

means the omission of the ( j + 1)−th column of 2n× (2n+ 1) array for A
†
i, j

.

Since all coefficients of Ai,0, i = 1,2, . . . , 2n in (2.7) are equal to 1, we can use the

approach similar to [21] and Theorem 2.1 and obtain the following theorem.

Theorem 2.3. If the given eigenvalues λ1,λ2, . . . ,λ2n are distinct, then the solutions of PQIEP

coincide with the simultaneous eigenvalues of the following joint eigenvalue problem:

(T1 − c1T0)x = 0,

(T2 − c2T0)x = 0,

· · · · · · · · · · · · · · · · · ·

(T2n − c2nT0)x = 0.

Using Theorems 2.1 and 2.3, we derive a sufficient condition for the solvability of PQIEP.

Theorem 2.4. If the given eigenvalues λ1,λ2, . . . ,λ2n are distinct and T0 is invertible, then

PQIEP has at least one solution.

Proof. The proof is similar to that of [11, Theorem 2.4] and it is omitted here.
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3. Smooth QR-Decomposition-Based Newton Method for PQIEP

In order to construct a numerical method for finding a solution c∗ of PQIEP, we recall the

smooth QR-decomposition with column pivoting for a matrix-valued function depending on

several parameters — cf. [13,25] for more details.

Let B(c) = (bkl(c)) ∈ C
n×n be a twice continuously differentiable matrix-valued func-

tion defined on an open connected domain D ⊆ C2n. Here, the twice differentiability of

B(c) with respect to c = (c1, c2, . . . , c2n)
T means that for any c(0) = (c

(0)

1
, c
(0)

2
, . . . , c

(0)

2n
)T ∈ D

the partial derivatives ∂ bkl(c)/∂ ci , k, l = 1, . . . , n, i = 1, . . . , 2n exist and

B(c) = B
�
c(0)

�
+

2n∑

i=1

∂ B(c(0))

∂ ci

�
ci − c

(0)

i

�
+ O

�
‖c − c(0)‖22

�
,

where
∂ B(c(0))

∂ ci

=

�
∂ bkl(c)

∂ ci

����
c=c(0)

�
∈ Cn×n.

The following results is obtained from [13, Theorem 3.2], concerns the existence of

a locally smooth QR-decomposition of B(c).

Theorem 3.1. Let B(c) ∈ Cn×n be twice continuously differentiable at c(0) ∈ D ⊆ C2n. Assume

that rank(B(c(0))) ≥ n−1,Π ∈ Cn×n is a permutation matrix such that the first n−1 columns

of B(c(0))Π are linearly independent, and B(c(0))Π has the QR-decomposition

B
�
c(0)

�
Π= Q0R0,

where Q0 ∈ Un

R0 =

�
R11 R12

0 rnn

�
,

and R11 ∈ Rn−1 is a nonsingular matrix. Then there exists a neighborhood N (c(0)) ⊂ D of

c(0) such that for all c ∈ N (c(0)) the matrix-valued function B(c)Π has the QR-decomposition

B(c)Π = Q(c)R(c),

where Q(c) ∈ Un

R(c) =

�
R11(c) R12(c)

0 rnn(c)

�
,

and R11(c) ∈ Rn−1. Moreover, this QR-decomposition has the following properties:

(1) Q(c(0)) = Q0 and R(c(0)) = R0.

(2) All elements of Q(c) and R(c) are continuous in N (c(0)).

(3) The diagonal elements of R(c) are continuously differentiable at c(0), and

rnn(c) = rnn+eT
n QH

0

2n∑

i=1

∂ B(c)

∂ ci

����
c=c(0)

Π

�
en − I (n−1)R−1

11 R12

� �
ci − c

(0)

i

�
+O

�
‖c − c(0)‖22

�
.
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Since C(c) and K(c) are the affine families (1.4) and λ1,λ2, . . . ,λ2n are distinct, the

functions Qc(λi) = λ
2
i
M + λiC(c) + K(c), i = 1,2, . . . , 2n are twice continuously differen-

tiable in C2n, and rank[Qc∗(λi)] = n − 1, i = 1,2, . . . , 2n. It follows from Theorem 3.1

that there are a neighborhood N (c∗) ⊂ C2n of c∗ and permutation matrices Πi(c
∗) ∈ Cn×n,

i = 1,2, . . . , 2n such that

Qc∗(λi)Πi(c
∗) = Q i(c

∗)Ri(c
∗),

where Q i(c
∗) ∈ Un

Ri(c
∗) =

�
R
(i)
11
(c∗) R

(i)
12
(c∗)

0 0

�
,

and R
(i)

11
(c∗) ∈ Rn−1 is a nonsingular matrix.

For any c ∈ N (c∗), we compute the QR-decompositions of λ2
i
M + λiC(c) + K(c), i =

1,2, . . . , 2n with column pivoting as follows:

�
λ2

i M +λiC(c) + K(c)
�
Πi(c) = Q i(c)Ri(c), i = 1,2, . . . , 2n,

where Πi(c) is a permutation matrix, Q i(c) ∈ Un

Ri(c) =

�
R
(i)

11
(c) R

(i)

12
(c)

0 r(i)nn(c)

�

and R
(i)

11
(c) ∈ Rn−1. Assume that N (c∗) is sufficiently small, so that for each i the per-

mutation matrices Πi(c), i = 1,2, . . . , 2n are constant and the column pivoting is per-

formed. The matrices R
(i)

11
(c), i = 1,2, . . . , 2n are nonsingular since the prescribed eigen-

values λ1,λ2, . . . ,λ2n are simple. Then the quadratic eigenvalue problem (1.3) has the

eigenvalues λ1,λ2, . . . ,λ2n if and only if c ∈ C2n satisfies the equations

r(i)nn(c) = 0, i = 1,2, . . . , 2n.

Let

f (c) =





r(1)
nn
(c)

r(2)nn (c)
...

r(2n)
nn
(c)



 . (3.1)

Then c∗ ∈ C2n is a solution of PQIEP if and only if c∗ is a solution of the system of nonlinear

equations

f (c) = 0. (3.2)

Let c(k) ∈ N (c∗) be the current approximation to the solution c∗ of the nonlinear system

(3.2). It follows from Theorem 3.1 that the functions r(i)nn(c), i = 1,2, . . . , 2n are continu-

ously differentiable at c(k) and they can be represented in the form

r(i)nn(c) = r(i)nn

�
c(k)

�
+

2n∑

j=1

∂ r(i)
nn
(c(k))

∂ c j

�
c j − c

(k)

j

�
+ O

�

c j − c
(k)

j



2

2

�
, j = 1,2, . . . , 2n,
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where

∂ r(i)nn (c
(k))

∂ c j

= eT
n

Q i

�
c(k)

�H �
λiC j + K j

�
Πi

�
c(k)

�

×
h
en − I (n−1)

�
R
(i)
11
(c(k))

�−1
R
(i)
12

�
c(k)

�i
. (3.3)

Applying the Newton method [27] to the nonlinear system (3.2) and using (3.3), we obtain

the following Newton iteration:

J f

�
c(k)

� �
c(k+1) − c(k)

�
= − f

�
c(k)

�
, (3.4)

where

J f (c) =

�
∂ r(i)nn(c)

∂ c j

�

is the Jacobian matrix of the nonlinear function f (c). Thus a new method for solving PQIEP

may be summarised as follows.

Now we consider the computational cost of Algorithm 3.1. Step 1 needs 8n3 flops.

The QR-decomposition of λ2
i
M +λiC(c

(k))+K(c(k)) by using Householder transformations

Algorithm 3.1 Newton algorithm for solving PQIEP.

Choose an initial guess c(0). For k = 0,1,2, . . . until convergence.

1. Compute λ2
i
M +λiC(c

(k)) + K(c(k), i = 1,2, . . . , 2n.

2. Compute QR-decomposition of λ2
i
M+λiC(c

(k))+K(c(k)), i = 1,2, . . . , 2n with column

pivoting

�
λ2

i M +λiC
�
c(k)

�
+ K

�
c(k)

� �
Πi

�
c(k)

�
= Q i

�
c(k)

�
Ri

�
c(k)

�
, i = 1,2, . . . , 2n,

where Πi(c
(k)) is a permutation matrix, Q i(c

(k)) ∈ Un

Ri(c
(k)) =

�
R
(i)

11
(c(k)) R

(i)

12
(c(k))

0 r(i)
nn
(c(k))

�
,

and R
(i)

11
(c(k)) ∈ Rn−1.

3. If ‖ f (c(k))‖2 =
Ç∑2n

i=1
|u
(i)
nn(c

(k))|2 is small enough, then stop; otherwise

4. Form the vector f (c(k)) and the Jacobian matrix J f (c
(k)), using (3.1) and (3.3) .

5. Find c(k+1) by solving Eq. (3.4).
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with column pivoting requires (4/3)n3 flops — cf. [19], so Step 2 needs (8/3)n4 flops. The

computational cost of Step 3 is negligible. Step 4 requires approximately 14n4 flops. Step 5

needs (16/3)n3 flops if the linear system in (3.4) is solved by the Gaussian elimination

with partial pivoting. Therefore Algorithm 3.1 requires approximately (2/3)(25n4+20n3)

flops per iteration, where forming the Jacobian matrix J f (c
(k)) accounts for most of the

computational cost.

In general, the QR-decompositions of λ2
i
M + λiC(c

(k)) + K(c(k)), i = 1,2, . . . , 2n with

column pivoting are not unique. Similar to [9, Theorem 3.1], it can be shown that the

iterates c(k) generated by Algorithm 3.1 are always same corresponding to different QR-

decompositions with column pivoting. The convergence of Algorithm 3.1 can be described

by the following theorem.

Theorem 3.2. Suppose that PQIEP has a solution c∗ and Πi(c
(k)) = Πi(c

∗) (i = 1,2, . . . , 2n)

used in Algorithm 3.1 do not depend on k for sufficiently small ‖c∗ − c(k)‖2. If the Jacobian

matrix J f (c
∗) corresponding to the QR-decompositions of (λ2

i
M +λiC(c

∗)+K(c∗))Πi(c
∗), i =

1,2, . . . , 2n is nonsingular, then Algorithm 3.1 is locally quadratically convergent.

Proof. The proof is similar to that of [9, Theorem 3.2]. Hence, it is omitted.

4. Numerical Examples

In this section, we present the results of numerical experiments, which show the effi-

ciency of the proposed method in finding approximate solutions of PQIEPs. All experiments

are performed in MATLAB R2019b with double precision arithmetic on an Intel Core 2.9

GHz PC with 4GB memory under Windows 10 system. All iterations start with initial guesses

close to the exact solution c∗ of PQIEP, so that only a few iterations are required for conver-

gence. In the tables, CPU denotes the computing time (in seconds) spent on establishing

the corresponding approximate solution.

Example 4.1. Consider the dynamic behavior control of a damped mass-spring system. The

original damped mass-spring system is shown in Fig. 1. The mass, damping and stiffness

matrices of the system are

M =




1 0 0

0 2 0

0 0 3



 , C0 =




3 −2 0

−2 3 −1

0 −1 1



 , K0 =




8 −4 0

−4 11 −7

0 −7 7



 .

We want to modify the system so that it will have the desired dynamic behavior. The first

and second springs are perturbed by k1 and k2, respectively. The first and second dampers

are perturbed by d1 and d2, respectively. The first and third masses are linked by the

spring k3 and the damper d3. The modified damped mass-spring system is shown in Fig. 2.

We choose the parameters k1, k2, k3 and d1, d2, d3 so that the modified system has the

eigenvalues

λ1 = −3+ i, λ2 = −3− i, λ3 = −3+ 2i,

λ4 = −3− 2i, λ5 = −3+ 3i, λ6 = −3− 3i,
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Figure 1: Original damped mass-spring system.

where i is the imaginary unit. The mass, damping and stiffness matrices of the modifying

system may be expressed as

M =




1 0 0

0 2 0

0 0 3



 , C(c) = C0 +

6∑

i=1

ciCi, K(c) = K0 +

6∑

i=1

ciKi,

where ci = di, c3+i = ki, i = 1,2,3, and

C1 = K4 =




1 0 0

0 0 0

0 0 0



 , C2 = K5 =




1 −1 0

−1 1 0

0 0 0



 , C3 = K6 =




1 0 −1

0 0 0

−1 0 1



 ,

C4 = C5 = C6 = K1 = K2 = K3 = O are the 3× 3 zero matrices.

Our goal is to determine a vector c∗ = (d1, d2, d3, k1, k2, k3)
T such that the modified

damped mass-spring system has the prescribed eigenvalues. With the initial value

I : c(0) = (10,0,0,10,10,50)T

Algorithm 3.1 and the algorithm in [16] both converge to the solution

c∗ = (14.0461,−0.7005,0.1286,8.1518,4.6088,70.1606)T.

With another starting value

I I : c(0) = (10,0,0,10,50,10)T ,

Figure 2: Modified damped mass-spring system.
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Table 1: Numerical results for Example 4.1.

Algorithm 3.1 Algorithm in [16]

c(0) k ‖c(k+1) − c(k)‖2 ‖ f (c(k))‖2 ‖c(k+1) − c(k)‖2 ‖ f (c(k))‖2

I

0 1.12e + 01 3.35e+ 10 2.62e+ 01 9.43e+ 04

1 1.30e + 01 4.88e− 01 5.63e+ 00 3.28e+ 04

2 1.24e + 00 1.11e+ 00 3.43e− 01 1.72e+ 03

3 3.55e − 02 3.50e− 02 5.70e− 03 2.09e+ 01

4 1.42e − 04 2.03e− 05 7.80e− 07 1.65e− 03

5 4.60e − 10 6.61e− 11 1.42e− 12 1.40e− 10

CPU 0.0088 0.0721

II

0 6.22e + 00 2.28e+ 01 8.72e+ 00 8.73e+ 04

1 1.11e + 00 5.79e− 01 2.20e+ 00 1.71e+ 04

2 1.04e − 01 1.82e− 02 1.65e− 01 9.02e+ 02

3 2.91e − 05 5.61e− 05 7.02e− 04 2.17e+ 00

4 1.00e − 10 4.17e− 11 9.33e− 09 1.03e− 05

CPU 0.0076 0.0079

Algorithm 3.1 and the algorithm in [16] both converge to the solution

c∗ = (3.1640,−0.3249,0.3675,6.9453,53.2345,13.7325)T.

Both Algorithm 3.1 and the algorithm in [16] stop if

‖c(k+1) − c(k)‖2 ≤ 10−8.

Table 1 shows that Algorithm 3.1 and the algorithm in [16] have locally quadratic conver-

gence rate, but in terms of the computing time, Algorithm 3.1 is more effective than the

one in [16].

Example 4.2. Let n= 5, M = I ,

C0 = K0 =





10 −10 0 0 0

−10 18 −8 0 0

0 −8 12 −4 0

0 0 −8 12 −4

0 0 0 −8 11



 ,

Ci = Kn+i = (ei − ei+1)(ei − ei+1)
T , i = 1,2, . . . , n− 1,

Cn = K2n = e1eT
1
+ eneT

n
,

Cn+i = Ki = O, i = 1,2, . . . , n.

The quadratic pencil Qc(λ) = λ
2M+λC(c)+K(c) at c∗ = (−1,1,−1,1,−1,1,−1,1,−1,1)T

has real eigenvalues−26.0740,−18.4743,−8.9137,−2.4879,−1.1160,−0.3637 and com-

plex eigenvalues −1.6923± 2.4350i, −0.0929± 0.7285i.



On Parameterised Quadratic Inverse Eigenvalue Problem 197

In this example, we compare Algorithm 3.1 with the algorithms in [16] and [17]. In

order to keep the number of real and complex eigenvalues in the iterative process of the

algorithm in [17] the same as the number of real and complex eigenvalues prescribed, we

choose an initial guess c(0) close to the exact solution c∗ of PQIEP. All algorithms stop if

‖c(k) − c∗‖2 ≤ 10−8.

With the starting value

c(0) = (−0.9724,1.0680,−0.9345, 1.0163,−0.9881,1.0498,−0.9040,1.0340,−0.9415,1.0224)T

Algorithm 3.1 and the algorithms in [16] and [17] converge to the exact solution c∗ of

PQIEP. The numerical results for Algorithm 3.1 and the algorithms in [16] and [17] are re-

ported in Table 2. We observe that all three algorithms are all effective and locally quadrat-

ically convergent. Both Algorithm 3.1 and the one in [17] take about the same computing

time, which is lower than that of the algorithm in [16].

Table 2: Numerical results for Example 4.2.

Algorithm 3.1 Algorithm in [17] Algorithm in [16]

k ‖c(k) − c∗‖2 ‖ f (c(k))‖2 ‖c(k) − c∗‖2 ‖ f (c(k))‖2 ‖c(k) − c∗‖2 ‖ f (c(k))‖2

0 1.64e − 01 5.94e + 00 1.64e − 01 2.06e − 01 1.64e − 01 1.52e + 11

1 2.44e − 03 1.54e − 02 1.73e − 03 3.76e − 04 1.79e − 02 2.51e + 09

2 2.50e − 05 7.06e − 06 1.94e − 06 1.76e − 07 2.21e − 03 9.93e + 05

3 3.02e − 09 8.42e − 10 2.01e − 11 2.72e − 13 2.28e − 05 1.95e + 03

4 − − − − 2.47e − 09 2.05e − 01

CPU 0.0432 0.0455 0.0634

Example 4.3. To construct test examples of PQIEPs, the elements of nonsymmetric matrices

M , C = (cst) ∈ R
n×n are generated from a uniform distribution in the interval (−2,2), the

off-diagonal elements of nonsymmetric matrix K = (kst) ∈ R
n×n from a uniform distribution

in the interval (−1,1), and the diagonal elements of the matrix K from a uniform distri-

bution in the interval (0,200). Computing the eigenvalues λ1,λ2, . . . ,λ2n of the quadratic

pencil Q(λ) = λ2M + λC + K and setting

C0 = 0, C1 =

n∑

s=1

cssese
T
s

, Cn+i = O, i = 1, . . . , n,

Ci =

n−i+1∑

s=1

�
cs,s+i−1ese

T
s+i−1 + cs+i−1,ses+i−1eT

s

�
, i = 2, . . . , n,

K0 = Ki = O, i = 1, . . . , n, Kn+1 =

n∑

s=1

kssese
T
s ,
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Kn+i =

n−i+1∑

s=1

�
ks,s+i−1ese

T
s+i−1+ ks+i−1,ses+i−1eT

s

�
, i = 2, . . . , n,

we then recompute the exact solution c∗ = (1,1, . . . , 1) ∈ R2n of PQIEP by making use of

the eigenvalues obtained.

The initial point c(0) is obtained by c∗ plus 1% noise uniformly distributed in the interval

[0,1]. Both Algorithm 3.1 and the algorithm in [16] converge to c∗ locally and quadrati-

cally. All algorithms are terminated if

‖c(k) − c∗‖2 ≤ 10−5.

The numerical results presented in Table 3 show that Algorithm 3.1 is more effective than

the one in [16] in terms of computing time and numerical stability. We failed to compare

Algorithm 3.1 with the algorithm in [17] since it is difficult to choose the initial point so

that the number of real and complex eigenvalues in the iterative process of the algorithm

in [17] remains the same as the number of real and complex eigenvalues prescribed.

Table 3: Numerical results for Example 4.3.

Algorithm 3.1 Algorithm in [16]

n k ‖c(k) − c∗‖2 ‖ f (c(k))‖2 ‖c(k) − c∗‖2 ‖ f (c(k))‖2

50

0 6.10e − 02 9.20e− 01 6.10e − 02 1.38e+ 144

1 1.91e − 02 2.92e− 03 1.24e − 04 5.46e+ 141

2 5.23e − 05 3.77e− 06 3.23e − 07 4.59e+ 137

3 6.11e − 10 1.89e− 11 2.22e − 10 5.66e+ 132

CPU 3.6459 23.8648

100

0 8.15e − 02 1.73e+ 01 8.15e − 02 overflow

1 4.91e − 02 7.17e− 03 9.74e − 02 overflow

2 2.35e − 04 2.10e− 05 2.05e − 04 overflow

3 7.17e − 09 6.92e− 10 5.33e − 07 overflow

CPU 47.0159 157.4417

150

0 1.03e − 01 2.61e+ 00 1.03e − 01 overflow

1 1.03e − 01 1.22e− 02 8.16e − 01 overflow

2 9.51e − 04 9.70e− 05 6.57e − 04 overflow

3 1.54e − 07 1.65e− 08 1.21e − 07 overflow

CPU 203.8927 810.3174

200

0 1.11e − 01 4.90e+ 00 1.11e − 01 overflow

1 1.65e − 01 1.79e− 02 1.58e − 01 overflow

2 5.10e − 03 3.59e− 04 4.40e − 03 overflow

3 5.36e − 06 1.87e− 07 3.76e − 06 overflow

CPU 632.4458 2742.1762
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5. Conclusion

We showed that if the given eigenvalues are distinct, then PQIEP is equivalent to a mul-

tiparameter eigenvalue problem and presented a sufficient condition for the PQIEP solv-

ability. In order to find approximate solution of the PQIEP, we employed the Newton

method based on the smooth QR-decomposition with column pivoting and proved its lo-

cally quadratic convergence. The computational cost of this algorithm is dominated by

forming the Jacobian matrix at each iteration. This approach is also applicable to PQIEP

with analytical matrix-valued functions M(c), C(c) and K(c) with c ∈ R2n or c ∈ C2n, and

its efficiency can be improved by using the quasi-Newton method.
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