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Abstract. Motivated by the ideas of Frigo et al. [SIAM J. Sci. Comput. 41 (2019)

B694–B720], we develop a novel relaxed splitting preconditioner and consider its par-

allel implementation. Fully-coupled fully-implicit linearised algebraic systems arising

from the multidimensional multi-group radiation diffusion equations are solved by us-

ing algebraic multigrid subsolvers. Spectral properties of the relaxed splitting right-

preconditioned matrix are studied. This allows to introduce an easily implementable

algebraic selection strategy for finding the corresponding relaxation parameter. Numer-

ical experiments show that the new preconditioner outperforms some existing popular

preconditioners in robustness and efficiency and is well scalable both algorithmically

and in parallel.

AMS subject classifications: 65F10, 65N55, 65Y05, 65Z05

Key words: Radiation diffusion equations, relaxed splitting, algebraic multigrid, incomplete LU

factorization, parallel computing.

1. Introduction

The radiation transport processes describe the transmission, scattering and interaction

of photons in vacuum or multicomponent background mediums. They are used in vari-

ous coupled multiphysics applications such as astrophysical phenomena, biomedicine, and
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laser indirect-drive inertial confinement fusions (ICFs). The simulations of the radiation

transport are very difficult because of a highly nonlinear behavior in optically thick medi-

ums. In such circumstances, the radiation transport is modeled by a flux-limited time-

dependent highly nonlinear and discontinuous multi-group radiation diffusion (MGD) ap-

proximation [4,23]. The corresponding analysis is based on the efficient solution of fully-

coupled sparse systems of linear algebraic equations with the degree of freedom (DoF)

ranging from 107 to 1011. Implicit time integration approaches are desired to overcome

time-step constraints. In order to evaluate the nonlinear parts at the previous nonlinear

iteration level, Kačanov [29] employed the method of frozen coefficients. An important

observation is that because of the complex volatile nonlinear coupling of various physical

quantities from numerous interacting spatial and temporal scales, the MGD equations are

often discretised by finite volume schemes [14,24,38,45,47,52]. This leads to the series of

nonsymmetric but positive definite linear systems, which have to be solved at each time-step

and/or nonlinear iterations. We note that the finding of the corresponding numerical solu-

tions is time-consuming, mainly because the coefficient matrices are highly ill-conditioned

and their conditioning deteriorates as the mesh-size gets smaller. It takes more than 80%

of the entire ICF simulation time in general. We note that the memory requirements of

direct linear solvers severely limit the number of frequency groups and spatial mesh-size

that can be tackled [3,16,30]. In order to deal with this challenging task and to exploit the

ever-increasing computing power, robust and scalable iterative linear solvers must be com-

bined with the preconditioners requiring minimal user input. The state-of-the-art iterative

methods are the Krylov subspace solvers — cf. [26, 34, 42, 48]. The convergence of such

methods is usually based on the conditioning of an associated matrix and on the clustering

of its eigenvalues.

Over the past two decades, a variety of block preconditioners (also called physics-based

preconditioners) have been developed in coupled multiphysics PDE applications, where sys-

tem matrices have an underlying block structure. Block preconditioners are usually used in

order to split a problem into a series of subproblems (which can be easily solved) and to es-

tablish an object-oriented framework incorporating off-the-shelf single-physics solvers and

preconditioners. Thus substantial efforts have been spent on physics-based preconditioning

strategies with algebraic multigrid (AMG) as an essential ingredient. This approach turned

out to be successful in various coupled multiphysics PDE simulations — e.g. in poroelas-

ticity [1], geophysical electromagnetics [8], Cahn-Hilliard Navier-Stokes systems [9], mul-

tiphase poromechanics of heterogeneous media [11], linear elasticity in mixed form [13],

incompressible (reduced) resistive magnetohydrodynamic [15], incompressible flow sim-

ulations [21], elliptic optimal control problems [22], fluid-structure interaction problems

in hemodynamics [32], models of coupled magma/mantle dynamics [39] and incompress-

ible Navier-Stokes problems [44]. For fully implicit discretisations of multidimensional

radiation diffusion equations, An et al. [2], Feng et al. [18], and Mousseau et al. [33] pro-

posed various operator-based preconditioners in the Jacobian-free Newton-Krylov frame-

work. Brown and Woodward [10] considered the Schur complement preconditioned gen-

eralised minimum residual (GMRES) solver without restarting based on higher-order time

integration. Shu et al. [46] constructed theoretical and practical lower and upper block tri-
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angular preconditioners and bounded the eigenvalues of the corresponding preconditioned

matrices. Xu et al. [50] developed a physical-variable based coarsening two-level precon-

ditioner, which was improved and generalised [51, 53]. Besides, [51] presents two more

Schur complement preconditioners regarded as sparse approximate inverses and combined

with adaptive strategies based on the inter-block coupling strength and intra-block diago-

nal dominance. It is worth noting that the last five types of block preconditioners are con-

structed in a fully algebraic framework, which uses only the coefficient matrix and physical

quantities needed to extract subsystems related to the serial/parallel implementation.

This work is aimed at the construction of a scalable and efficient block precondition-

ing algorithm for MGD linear systems. It is inspired by the sequential relaxed physical

factorisation (RPF), which does not depend on accurate sparse approximations of Schur

complements and its convergence is accelerated by a nearly-optimal relaxation parameter

— cf. [19]. The remainder of the manuscript is structured as follows. In Section 2, we

introduce the MGD model equations and the linear system arising from the spatiotemporal

discretisation. We establish a new formula for the inverse of the corresponding coefficient

matrix. It accelerates the convergence of the GMRES algorithm with a restart after m it-

erations. Section 3 describes the implementation details of the two-level parallelization,

the eigenspectrum of the preconditioned matrix and an algebraic selection strategy on the

relaxation parameter. In Section 4, we discuss a lower block triangular preconditioner for

comparison purposes. The results of numerical experiments concerning weak and strong

scalability properties in a moderate number of CPU cores are presented in Section 5. Con-

cluding remarks are given in Section 6.

2. MGD Model Equations and Spatiotemporal Discretisation

We consider the following time-dependent MGD equations modeling energy exchange

between photons of different frequencies, electron and ion over a spherical symmetrical

geometry Ω ⊂ Rd for d = 2 or d = 3:

∂ Eg

∂ t
=∇ ·
�

Dg(Eg)∇Eg

�

+ c
�

σBgBg(TE)−σP g Eg

�

+ Sg , g = 1, . . . , G, (2.1)

ρcE

∂ TE

∂ t
=∇ ·
�

DE(TE)∇TE

�

− c

G∑

g=1

�

σBgBg(TE)−σP g Eg

�

+ωI E(TI − TE), (2.2)

ρcI

∂ TI

∂ t
=∇ ·
�

DI(TI )∇TI

�

−ωI E(TI − TE), (2.3)

where G is the number of energy groups, c the velocity of light, ρ the density of the medium

updated in the hydrodynamics process,ωI E the energy transfer coefficient between ion and

electron, Eg , g = 1, . . . , G the g-th radiation energy density, TE and TI are respectively the

electron and ion temperatures [37]. Furthermore, Dg(Eg) and Bg(TE) in (2.1) denote re-

spectively the g-th nonlinear radiation diffusion coefficient and the electron scattering en-

ergy density, σBg and σP g the scattering and absorption coefficients of the Planck-averaged

electron energy, and Sg is the radiation source item. Besides, in the Eqs. (2.2) and (2.3), cα
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and Dα(Tα) respectively refer to specific heat capacities and nonlinear thermal-conductivity

coefficients of electron if α = E and ion if α = I .

The PDE system (2.1)-(2.3) is discretised by the (adaptive) backward Eulerian scheme

in time, linearised via the method of frozen coefficients to yield a series of steady linear

PDE systems of the form

−∇ ·
�

D(δ)
g
∇Eg

�

+

�
1

∆tn+1

+ cσP g

�

Eg −σBg

�
∂ Bg

∂ TE

�(δ)

TE

=
1

∆tn+1

E(n)g +σBg

�

B(δ)g −

�
∂ Bg

∂ TE

�(δ)

T
(δ)
E

�

, g = 1, . . . , G,

−∇ ·
�

D
(δ)
E ∇TE

�

+




ρc
(δ)
E

∆tn+1

+ω
(δ)
I E +

G∑

g=1

σBg

�
∂ Bg

∂ TE

�(δ)



 TE −

G∑

g=1

cσP g Eg −ω
(δ)
I E TI

=
ρc
(δ)
E

∆tn+1

T
(n)
E −

G∑

g=1

σBg

�

B(δ)
g
−

�
∂ Bg

∂ TE

�(δ)

T
(δ)
E

�

,

−∇ ·
�

D
(δ)
I ∇TI

�

+

�

ρc
(δ)
I

∆tn+1

+ω
(δ)
I E

�

TI −ω
(δ)
I E TE =

ρc
(δ)
I

∆tn+1

T
(n)
I

and studied through the cell-centered positivity-preserving finite volume discretisation in

space. Note that∆tn+1 is the current time-step size and the terms with the superscripts (n)

and (δ) represent the previous time-level and recent approximations, respectively. Each

unknown or degree of freedom describes a physical quantity at a mesh point.

Let n be the number of control volumes of the associated dual mesh. Grouping together

the unknowns related to the same physical quantities, one can write the resulting discrete

linearised algebraic systems of size N = n(G + 2) in a sparse block structured form — viz.









A1 D1E

. . .
...

AG DGE

DE1 · · · DEG AE DEI

DI E AI









︸ ︷︷ ︸

:=A∈RN×N









E1
...

EG

TE

TI









︸ ︷︷ ︸

:=u∈RN

=









f1
...

fG

fE

fI









︸ ︷︷ ︸

:=f∈RN

, (2.4)

where the diagonal sub-blocks Ag , g = 1, . . . , G, E, I of size n have the same nonzero struc-

ture of the discrete elliptic problem, while all variable cross-coupling items Dg g ′, g 6= g′ of

size n are diagonal matrices such that

DEI = DI E and DE g 6= DgE for g = 1, . . . , G.

This renders A generally positive definite but necessarily nonsymmetric. In addition, var-

ious parameters of different scales are involved in A, e.g. the time and space step-sizes,
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radiative free path and characteristics of the background medium, which would notice-

ably affect the conditioning and eigenvalue distribution of A. The inherent coupling also

poses serious challenges regarding robustness in allusion to the crucial system parameters.

Hence, the practical approach is to apply a GMRES(m) algorithm paired with suitable block

preconditioning schemes. In this work, we use the right preconditioning and reformulate

(2.4) as

(AM−1)z = f and M−1z= u,

where M is an easily invertible preconditioning matrix, which approximates A and ensures

a good convergence of the iteration procedure.

3. A New Relaxed Splitting Preconditioner

The RPF block preconditioning algorithm is introduced in [19] for mixed finite element

discretisations of coupled poromechanics. It was inspired by the relaxed dimensional fac-

torisation in [6] with the algebraic parameter estimation of [5]. A similar idea allows us to

extend the original formulation to coefficient matrices in a different nonzero pattern and

the number of blocks with two types of inherent physical-variable based partitioning — viz.

A=









A1 D1E

. . .
...

AG DGE

DE1 · · · DEG AE

O









+









O
. . .

O

O DEI

DI E AI









= AM
1 +AF

1 =
�

AM
1 + β1Iπ
�

−
�

β1Iπ −AF
1

�

(3.1)

and

A=









A1 D1E

. . .
...

AG DGE

DE1 · · · DEG O

O









+









O
. . .

O

AE DEI

DI E AI









= AF
2 +AM

2 =
�

AM
2 + β2Iπ
�

−
�

β2Iπ −AF
2

�

(3.2)

with real relaxation parameters β1,β2 > 0, the identity N ×N matrix Iπ, and the zero n×n

matrix O. The representations (3.1) and (3.2) lead to the physical alternating-type iterative

procedure

�

AM
1 + β1Iπ
�

u(k+
1
2 ) =
�

β1Iπ −AF
1

�

u(k)+ f,
�

AM
2 + β2Iπ
�

u(k+1) =
�

β2Iπ −AF
2

�

u(k+
1
2 ) + f
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for solving the Eq. (2.4) with iteration count k = 0,1, . . . and with an arbitrary vector u(0)

of size N . Eliminating u(k+1/2) from the above two expressions results in the stationary

scheme

u(k+1) =
�

AM
2 + β2Iπ
�−1 �

β2Iπ −AF
2

� �

AM
1 + β1Iπ
�−1 �

β1Iπ −AF
1

�

u(k) + c̃ (3.3)

with the iteration matrix

Gβ =
�

AM
2 + β2Iπ
�−1 �

β2Iπ −AF
2

� �

AM
1 + β1Iπ
�−1 �

β1Iπ −AF
1

�

and a vector c̃. Benzi and Szyld [7] showed that there exists a unique splitting A= Pβ−(Pβ−

A) with a nonsingular Pβ such that Gβ in (3.3) can be written in the form Gβ = Iπ − P−1
β

A

and c̃= P−1
β

f. Straightforward calculations yield

Pβ =
�

AM
1 + β1Iπ
� �

(β1 + β2) Iπ −AF
2 +AM

1

�−1 �
AM

2 + β2Iπ
�

.

We note that the factor β1+β2 has to be replaced by β2. Besides, for practical implementa-

tion and the analysis purposes, the factors β1 and β2 are chosen to equal a real relaxation

parameter β . It follows from the definitions of AM
1 , AF

1 , AF
2 and AM

2 that

Pβ =









A1 + β Iπ D1E

. . .
...

AG + β Iπ DGE

DE1 · · · DEG AE + β Iπ
β Iπ









×









Iπ
. . .

Iπ
Iπ (AE + β Iπ)

−1DEI

β−1DI E β−1(AI + β Iπ)









. (3.4)

Comparing it with (2.4) yields

Pβ −A=









β Iπ D1E(AE + β Iπ)
−1DEI

. . .
...

β Iπ DGE(AE + β Iπ)
−1DEI

β Iπ O

β Iπ









(3.5)

with the n× n identity matrix Iπ. This result can be substantially improved if the represen-

tation (3.4) is replaced by
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Qβ =









A1 D1E

. . .
...

AG DGE

DE1 · · · DEG AE + β Iπ
Iπ

















Iπ
. . .

Iπ
Iπ (AE + β Iπ)

−1DEI

DI E AI









= Q1Q2. (3.6)

The latter is actually our relaxed splitting preconditioning matrix. The respective difference

Rβ can be now written as

Rβ = Qβ −A=









O D1E(AE + β Iπ)
−1DEI

. . .
...

O DGE(AE + β Iπ)
−1DEI

β Iπ O

O









. (3.7)

Unlike to the representation of Pβ −A in (3.5), the G+1 diagonal sub-blocks are now zero.

However, any other nonzero block remains unchanged. We can heuristically observe that

the choice of β requires a balanced consideration: the contributions from (E, E) and (g, I)

blocks of Rβ for g = 1, . . . , G tend to become larger and smaller, respectively, as β increases.

Remark 3.1. The main effect of the relaxation parameter β in [19] is to replace the last

diagonal block P, which may be (nearly) singular, by β Iπ to be inverted in a numerically

stable way. The constraint β ≥ ‖P‖∞ must be imposed in an optimal selection of β .

Remark 3.2. In the particular case β = 0, the relation Pβ = Qβ holds and there are only

G nonzero blocks in (3.5) and (3.7). However, this choice is probably not optimal because

the off-diagonal blocks have the form DgEA−1
E DEI for g = 1, . . . , G.

It is straightforward to verify that both Q1 and Q2 defined by (3.6) can be written in

the factored form

Q1 =









Iπ
. . .

Iπ
DE1A−1

1 · · · DEGA−1
G

Iπ
Iπ









×










A1 D1E

. . .
...

AG DGE

AE + β Iπ −
∑G

g=1 DE gA−1
g DgE

Iπ










,
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Q2 =









Iπ
. . .

Iπ
Iπ

DI E Iπ

















Iπ
. . .

Iπ
Iπ (AE + β Iπ)

−1DEI

AI − DI E(AE + β Iπ)
−1DEI









.

These factorisations show that to find the outgoing solution w= (w⊤1 , · · · , w⊤
G

, w⊤
E

, w⊤
I
)⊤ for

a given incoming vector b = (b⊤1 , · · · , b⊤G , b⊤E , b⊤I )
⊤ provided by the product of the system

matrix and a certain residual vector, one can implement our relaxed splitting preconditioner

— i.e. the preconditioning operation w= Q−1
β

b in the following steps:

1. Intermediate electron segment.

w∗E =

�

AE + β Iπ −

G∑

g=1

DE gA−1
g DgE

�−1�

bE −

G∑

g=1

DE gA−1
g bg

�

.

2. wg = A−1
g

�

bg − DgEw∗E

�

, g = 1, . . . , G.

3. wI =
�

AI − DI E(AE + β Iπ)
−1DEI

�−1�

bI − DI Ew∗E

�

.

4. wE = w∗E − (AE + β Iπ)
−1DEI wI .

We note that the matrices

SE := AE + β Iπ −

G∑

g=1

DE gA−1
g DgE, and SI := AI − DI E(AE + β Iπ)

−1DEI (3.8)

are the exact Schur complements of







A1 D1E

. . .
...

AG DGE

DE1 · · · DEG AE + β Iπ







and

�

AE + β Iπ DEI

DI E AI

�

with respect to the variables TE and TI , respectively. They should not be formed explicitly

because A−1
g , g = 1, . . . , G and (AE + β Iπ)

−1 are dense. Therefore, proper approximations

have to be used. Let us note the following features.

1. The construction of SE may be avoided, not the exact block but a diagonal approxi-

mation

S̃E = AE + β Iπ −

G∑

g=1

DE g∆
−1
g DgE, (3.9)

where ∆g , g = 1, . . . , G can be chosen as
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Option 1. ζ−1
g diag(Ag) with the parameter ζg = ‖diag−1(Ag)Ag‖

−1
∞, where diag(Ag)

denoting the diagonal matrix comprised of Ag diagonal entries.

Option 2. Row-maximum norm: diag(max j |a
g

1 j
|, · · · ,max j |a

g

n j
|) with Ag entries de-

noted by a
g

i j
for i, j = 1, . . . , n.

Option 3. Row-infinity norm: diag(
∑n

j=1 |a
g

1 j
|, · · · ,
∑n

j=1 |a
g

n j
|).

Option 4. Row-Schur norm: diag(
Ç∑n

j=1(a
g

1 j
)2, · · · ,
Ç∑n

j=1(a
g

n j
)2), where diag(·)

indicates a block diagonal matrix using input entries.

2. SI can be efficiently approximated by the matching argument from [36] for PDE-

constrained optimisation. This Schur complement matching strategy results in the

following approximation:

S̃I = (AI + DI E)(AE + β Iπ)
−1(AE + β Iπ − DEI). (3.10)

The approximations of steps 1 and 3 lead to our practical implementations — viz.

1†. w∗E = S̃−1
E

�

bE −
∑G

g=1 DE gA−1
g bg

�

;

3†. w
(1)
I
= (AI +DI E)

−1(bI −DI Ew∗
E
); w

(2)
I
= (AE+β Iπ)w

(1)
I

; wI = (AE+β Iπ−DEI)
−1w

(2)
I

.

This bring about two additional nonzero blocks in Rβ . Furthermore, steps 1†, 2, 3† and 4

show that our relaxed splitting application requires G+4 preconditioner setups and 2G+3

inner solutions with the submatrices Ag , S̃E, AE + β Iπ and AE + β Iπ − DEI , whose inverses

are replaced by a number of AMG V -cycles.

Remark 3.3. In practical computations, AE + β Iπ, S̃E and AE + β Iπ − DEI have not be

explicitly formed because β Iπ, β Iπ −
∑G

g=1 DE g∆
−1
g DgE and β Iπ − DEI are diagonal.

Remark 3.4. It is worth noting that if G > 3, the relaxed splitting preconditioner contains

less nonzero blocks in the difference matrix than the two types of block Schur complement

preconditioners in [51] with G2 + G and G2 − G nonzero blocks, respectively. Observe

that both these two block Schur complement preconditioners require G+2 preconditioner

setups as well as G + 4 and G + 3 preconditioner applications, respectively. Therefore, the

relaxed splitting preconditioner is more efficient if it converges to a relative tolerance in at

most one half iterations.

Remark 3.5. Note that SI can also be approximated by the above diagonal approximation.

However, this produces a relatively worse convergence than the approximation (3.10), so

that additional overhead might be a price to pay for a satisfactory convergence.
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3.1. Parallel implementation issues

Parallel computing using the message passing interface (MPI) [20] is the de-facto stan-

dard for solving large-scale linear systems on modern distributed memory high perfor-

mance computing architectures. The global communicator is subdivided into G + 2 non-

overlapping communication subgroups using the MPI function MPI_Comm_split and each

subsystem owns a standalone subgroup, which allows to distribute DoFs onto different com-

pute nodes in a roughly uniform way. Fig. 1 shows a diagram illustrating this procedure

with the subgroups COMM_1, · · · , COMM_G, COMM_E and COMM_I. Each of them pos-

sesses an ordered collection of processor identifiers with their key values 0,1, . . . ,q − 1 of

the same color value. It should be noted that we use high performance precondition-

ers and solvers featuring multigrid (HYPRE) library [17] as the distributed linear algebra

backend and good candidate for fast approximations of submatrix inverses that arise. The

subblocks AE + β Iπ, AI and Ag , g = 1, . . . , G, are stored separately in ParCSR form while

the patches Dg g ′ (g 6= g′), Eg , TE , TI and fg ′ , g, g′ = 1, . . . , G, E, I are deposited in ParVec-

tor scheme. Each processor contains a stripe of rows with continuous indices. We refer the

reader to [17] for a more detailed description of ParCSR and ParVector data structures. The

detailed exposition of Fig. 1 is as follows:

• Operation (a). Solve for vg from Ag vg = bg by BoomerAMG [25]with prescribed rela-

tive tolerance δg and maximum number of iterations nmax
g

within subgroups COMM_g

for g = 1, . . . , G.

• Data transfer (A). Send vg , ∆g and DgE from COMM_g to COMM_E among the pro-

cessors of the same key.

(b), (e)

(d)

(a), (c) (a), (c)

operations operations

operations

operation

data transfer  (A
)

d
ata b

ack
h
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l  (D
)

da
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sf
er

  (
A

)

COMM_1 COMM_G

COMM_E

COMM_I

data backhaul  (B
) dat

a 
bac

khau
l  

(B
)

d
ata tran

sfer  (C
)

1q -0 1

Figure 1: Graphical representation of the (G + 2)q-processors partitioning, MPI communication pattern
of Qβ and its parallel operations labeled using (a)-(e) which are simply executed in sequence.
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• Operation (b). After packet is received, the matrix S̃E is computed by formula (3.9),

the vector bE is updated by bE ← bE−
∑G

g=1 DE g vg and then the intermediate electron

segment w∗E is obtained from S̃Ew∗E = bE by BoomerAMG with δE and nmax
E prescribed

within the subgroup COMM_E.

• Data backhaul/transfer (B). Send w∗E from COMM_E to COMM_g, g = 1, . . . , G and

COMM_I among processors with the same key value.

• Operation (c). Receive the message, update bg ← bg − DgEw∗E and apply A−1
g to the

updated vector bg to get wg within subgroups COMM_g for g = 1, . . . , G.

• Operation (d). Within the subgroup COMM_I, receive the patch w∗E , update bI ←

bI − DI Ew∗E and yield the solution w
(1)
I by virtue of (AI + DI E)w

(1)
I = bI with δI and

nmax
I prescribed.

• Data backhaul (C). Within the subgroup COMM_I, send w
(1)
I

to COMM_E using the

same key.

• Operation (e). Calculate w
(2)
I ← (AE+β Iπ)w

(1)
I , solve for wI by (AE+β Iπ−DEI)wI =

w
(2)
I

, send the resultant vector wI to COMM_I, compute vE ← DEI wI , seek the ap-

proximate solution sE given by (AE +β Iπ)sE = vE and obtain the patch wE = w∗E − sE

within the subgroup COMM_E.

MPI functions MPI_Bcast, MPI_Send and MPI_Recv are used to exchange data during data

backhauls/transfers (A), (B) and (C) processes.

3.2. Spectral property and algebraic selection of parameter β

This subsection is devoted to the spectral property of the relaxed splitting right-pre-

conditioned matrix AQ−1
β

and to the algebraic choice of the relaxation parameter β . It is

convenient to introduce G × G block matrices

AR = diagm(A1, · · · ,AG), Iπ = diagm(Iπ, · · · , Iπ), O= diagm(O, · · · ,O)

and G-dimensional block vectors

DRE = [D1E , · · · , DGE]
⊤, DER = [DE1, · · · , DEG],

where diagm(·) is the block diagonal matrix assembled by the input matrices. The inverses

of Q1 and Q2 can be easily obtained in 3× 3 block form — viz.

Q−1
1 :=






S
−1
R

−A−1
R
DRES−1

E

−(AE + β Iπ)
−1
DERS

−1
R

S−1
E

Iπ




 ,
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Q−1
2 :=






Iπ

Iπ + (AE + β Iπ)
−1DEIS

−1
I DI E −(AE + β Iπ)

−1DEIS
−1
I

−S−1
I DI E S−1

I




 ,

where

SR = AR −DRE(AE + β Iπ)
−1
DER,

and SE and SI are defined by (3.8). The following theorem characterises the eigenvalue

distribution of AQ−1
β

, or, equivalently, of Q−1
β

A= Iπ−Q−1
2 Q−1

1 Rβ with Rβ defined by (3.7).

Theorem 3.1. Let A and Qβ be given in (2.4) and (3.6). Then (G + 1)n eigenvalues of the

right-preconditioned matrix AQ−1
β

are 1 and the remaining eigenvalues are 1−µi, i = 1, . . . , n,

where µi is the i-th eigenvalue of the matrix

Zβ = βS−1
E +
�

βS−1
E + (AE + β Iπ)

−1
DERS

−1
R DRE

�

(AE + β Iπ)
−1DEIS

−1
I DI E. (3.11)

Proof. The proof is analogous to that of [19, Theorem 2.1] and is omitted here.

Our next goal is to choose such a parameter β , which would make the eigenvalues of

Zβ to cluster around zero. This would reduce the number of iteration steps in the right-

preconditioned GMRES(m). According to the arguments of Benzi et al. [5] and Frigo et

al. [19], we note that

β† = arg min
β>0

�

(G + 2)n− trace(AQ−1
β )
�

= arg min
β>0

�

trace(Zβ )
�

, (3.12)

where Zβ is defined by (3.11). It is an expensive task to determine analytically the trace

of Zβ , since it is a dense matrix because of the presence of the inverses S−1
E , (AE + β Iπ)

−1,

S
−1
R

and S−1
I

. In order to make (3.12) affordable, in our implementation these inverses are

replaced by diagonal matrices similar to (3.9). As the result, we obtain the cost functional

trace(Zβ )≃

n∑

i=1

Z
(i)

β
,

where

Z
(i)

β
=

β

aE
ii
+ β −
∑G

g=1 d
E g

i
a

g

ii
d

gE

i

+
dEI

i
d I E

i

aE
ii
+ β

�

aI
ii −

dEI
i

d I E
i

aE
ii
+ β

�

×




β

aE
ii
+ β −
∑G

g=1 d
E g

i
a

g

ii
d

gE

i

+

G∑

g=1

d
E g

i
d

gE

i

(aE
ii
+ β)a

g

ii
− d

E g

i
d

gE

i



 (3.13)

with aE
ii
, d

E g

i
, a

g

ii
, d

gE

i
, dEI

i
and d I E

i
are the i-th diagonal elements of AE , DE g , Ag , DgE,

DEI and DI E, respectively. It is easily seen that if trace(Zβ) is the minimum subject to the

constraint β > 0, then so is each entry Z
(i)

β
. By zeroing out the derivative of Z

(i)

β
with regard
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to β , the minimum of Z
(i)

β
is reached at a certain positive scalar βi. Such a cost is perfectly

acceptable. Then their least-square solution takes the form

β‡ =
1

n

n∑

i=1

βi. (3.14)

Unlike (3.12), only n simple nonlinear equations would have to be minimised in parallel

followed by the MPI function MPI_Reduce is invoked to compute β‡ and then MPI_Bcast to

broadcast β‡ within subgroup COMM_E just before the application of our relaxed splitting

preconditioning.

Remark 3.6. The function fmincon provided by MATLAB can be utilised via a mixed pro-

gramming to solve the minimisation problem of one variable (3.13) satisfying the constraint

β > 0.

4. Lower Block Triangular Preconditioner

In working toward a lower block triangular preconditioner, we follow the ideas of Ipsen

[28] thus obtaining the preconditioner

Pt =









Â1

. . .

ÂG

DE1 · · · DEG S

DI E ÂI









,

which we propose to use with the GMRES(m) algorithm. Here, S is the Schur complement

matrix defined by

S = AE −

G∑

g=1

DE gA−1
g DgE − DEIA

−1
I DI E (4.1)

and Âg , g = 1, . . . , G, I are chosen so that the inequality

c̄g ≤
〈Ag y, y〉

〈Âg y, y〉
≤ C̄g (4.2)

is valid for any nonzero vector y ∈ Rn and c̄g , C̄g are positive constants independent of the

step-size and the physical parameters. Similar to the previous considerations, the term S

of (4.1) is approximated by

S̃ = AE −

G∑

g=1

DE g∆
−1
g DgE − DEI∆

−1
I DI E, (4.3)

where ∆g and ∆I are diagonal matrices implemented according to Options 1-4 above. In

this way we obtain a specific implementation procedure for the preconditioning operation

w= P−1
t

b, viz.
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1. wg = Â−1
g

bg , g = 1, . . . , G;

2. wE = S̃−1
�

bE −
∑G

g=1 DE gwg

�

;

3. wI = Â−1
I (bI − DI EwE).

Remark 4.1. We note that the explicit representation of the sub-blocks Âg , g = 1, . . . , G, I

is not needed. The constraints (4.2) are introduced for computationally efficient choice of

preconditioners, including AMG and domain decomposition ones [12,49], in order to make

c̄g and C̄g sufficiently close to each other.

Fig. 2 schematically shows the parallel flow diagram of Pt .
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Figure 2: Schematic representation of the MPI communication pattern of Pt and its parallel operations
labeled using (a)′-(c)′.

Specifically, we have:

• Operation (a)′. Determine wg from Âgwg = bg , g = 1, . . . , G within subgroups

COMM_g.

• Data transfer (A)′. Among processors of the same key, send wg , ∆g and DgE from

COMM_g to COMM_E, and send ∆I from COMM_I to COMM_E, while DI E need not

be sent since DEI = DI E.

• Operation (b)′. The matrix S̃ is calculated by (4.3), the vector bE is updated by

bE ← bE −
∑G

g=1 DE gwg . The solution wE is then obtained from S̃wE = bE within the

subgroup COMM_E.

• Data transfer (B)′. Send wE from COMM_E to COMM_I among processors with the

same key.
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• Operation (c)′. Update bI ← bI − DI EwE and apply Â−1
I

to bI to get wI within the

subgroup COMM_I.

5. Performance Assessment

The numerical tests in this section are aimed to demonstrate the efficiency, robustness,

and the strong and weak parallel scaling properties of our implementation integrated into

JXPAMG (parallel AMG solver developed by IAPCM and XTU) library [35], by a compari-

son with the BoomerAMG [25] and Euclid(1) [27] preconditioners implemented in HYPRE

library (version 2.20.0) [17]. The BoomerAMG parameters are a strength-of-connection

tolerance of 0.25, a single V(1,1)-cycle with Falgout (a hybrid Ruge-Stüben / CLJP) coars-

ening, classical modified interpolation to transfer solutions between adjacent levels, coarse-

grid matrices obtained algebraically using the Galerkin projection, aggressive coarsening

on the finest level, hybrid Gauss-Seidel smoothing in the symmetric ordering and at most

100 DoFs on the coarsest level. We use the pure MPI-based parallelism. Results are ob-

tained over Tianhe-2 supercomputer [31], whose compute nodes are interconnected via

a proprietary high-speed network. Each compute node has two 12-core 2.2 gigahertz Intel

Xeon E5-2692 v2 CPUs and 64 gigabyte memory. These 24 CPU cores per compute node

are all used while the Intel Xeon Phi coprocessors are not utilised. Codes are compiled with

the Tianhe’s self-actualised mpich-3.2 using the icc compiler version 18.0.0 and -O2 opti-

misation level. The right-preconditioned GMRES(m) iterations are halted once the ratio of

the Euclidean norm between the current residual vector and the right-hand side is smaller

than 10−7 or the maximum iteration count of 200 is achieved, where the zero vector is

taken as the initial guess. Herein we set δg = 10−4 and nmax
g
= 3 in Operations (a), (c) and

(a)′ as well as δE = δI = 10−2 and nmax
E
= nmax

I
= 1 in Operations (b), (d), (e), (b)′ and

(c)′. The numerical performance is assessed in accordance with the number of iterations

ni t , CPU time-to-solution measured in seconds t
p
cpu by the MPI function MPI_Wtime using

p processors and the parallel weak efficiency ek
p obtained according to t

p
cpu/t

kp
cpu [43].

5.1. Numerical results on one processor

We first exploit the impact of four different representations of ∆g in (3.9) on our re-

laxed splitting right-preconditioned GMRES(30) algorithms using β = βopt , where βopt is

calculated empirically by the trial-and-error procedure. Herein we consider 6 representa-

tive twenty-group MGD linearised algebraic systems, denoted by M1-M6, respectively from

the 1-st nonlinear iteration at the 22-nd, 41-st, 42-nd, 56-th, 58-th and 59-th time-level on

16.000× 48 grid with the problem size roughly 16.9M DoFs. The comparison results are

presented in Table 1, from which we can see that Option 4 yields the fastest rate of decrease

for the residual norm.

Next we study the dependence of the relaxed splitting right-preconditioned GMRES(30)

iteration count and CPU time-to-solution on the relaxation parameter β using Option 4.

The results refer to problems M1-M6 as shown in Table 2, where β‡ is computed by the
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Table 1: Effect of different representations of ∆g on the right-preconditioned GMRES(30) iteration
counts on 16.000× 48 grid.

Option 1 Option 2 Option 3 Option 4

ni t t1
cpu

ni t t1
cpu

ni t t1
cpu

ni t t1
cpu

M1 3 35.3 4 51.1 3 36.4 2 25.0

M2 3 34.9 4 47.1 3 34.6 3 35.6

M3 4 46.8 6 72.9 4 46.1 3 35.7

M4 4 51.0 6 74.2 5 63.7 4 49.8

M5 4 50.6 5 63.5 4 50.9 3 38.4

M6 4 50.3 7 89.7 5 63.0 4 49.3

criterion (3.14). Fig. 3 gives more details on how the relaxed splitting right-preconditioned

GMRES(30) iteration counts behave with respect to β . We also note the following features.

(i) βopt ∈ (0,1).

(ii) β‡ is very close to βopt with only one more step and β‡ is much easier to find.

(iii) The case β = 0 leads to poor performance compared with β‡.

(iv) The relaxed splitting right-preconditioned GMRES(30) converges robustly with re-

spect to problem character.

Figure 3: Relaxed splitting right-preconditioned GMRES(30) iteration counts regarding the choice of β .
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Table 2: Comparison of the iteration count and CPU time-to-solution between 0, β‡ and βopt on
16, 000× 48 grid.

β‡ βopt

ni t t1
cpu

β = 0 β = β‡ β = βopt β = 0 β = β‡ β = βopt

M1 6.28E-5 6.10E-5 4 3 2 49.1 35.4 25.0

M2 1.07E-4 1.22E-4 5 4 3 60.9 47.3 35.6

M3 4.26E-4 4.85E-4 8 4 3 104.4 45.9 35.7

M4 8.32E-5 7.29E-5 6 5 4 73.8 58.6 49.8

M5 8.49E-6 7.63E-6 7 4 3 85.7 46.8 38.4

M6 4.52E-6 3.81E-6 6 5 4 74.4 58.4 49.3

Table 3: Iteration count and CPU time-to-solution comparison of relaxed splitting preconditioner with
three popular preconditioners on 16.000× 48 grid.

RS-AMG ILU(1) lower block triangular relaxed splitting

ni t t1
cpu ni t t1

cpu ni t t1
cpu ni t t1

cpu

M1 43 211.0 2 9.4 17 106.5 3 35.4

M2 27 131.9 18 35.6 14 81.6 4 47.3

M3 26 126.3 2 9.3 16 93.2 4 45.9

M4 53 253.4 2 9.6 18 106.1 5 58.6

M5 34 174.1 > 200 - 16 94.3 4 46.8

M6 37 185.6 > 200 - 16 92.7 5 58.4

These results show that the criterion (3.14) is sufficient to guarantee a relatively excellent

performance.

We report in Table 3 the iteration count comparison among the classical Ruge-Stüben

style AMG (RS-AMG) [40], incomplete LU factorisation with one fill-in denoted by ILU(1)

[41], lower block triangular and relaxed splitting right-preconditioned GMRES(30) solvers.

It is observed that M5 and M6 are not solvable by ILU(1) within the maximum number

of steps allowed, although ILU(1) runs averagely 2.9 times faster than the relaxed split-

ting preconditioner for M1-M4. Hence, the convergence of ILU(1)-GMRES(30) cannot be

predicted in advance. The lower block triangular and relaxed splitting converge robustly,

however, on average, the latter converges 3.9 times faster. A notable disadvantage of AMG

right-preconditioned GMRES(30) is the substantially varied and excessive number of itera-

tions to achieve convergence. In average, this yields 1.9 slower convergence that the lower

block triangular preconditioner and 3.7 times slower than the relaxed splitting one.

5.2. Parallel results

We now vary the number of processors to perform a strong scaling test for fixed global

mesh 64.000 × 96 in order to demonstrate numerically the robust convergence of these

four preconditioners and commendable numerical scalability in the strong sense. The local
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Table 4: Iteration count comparison of four GMRES(30) solvers in strong scaling test.

BoomerAMG Euclid(1)

np 352 704 1408 2816 352 704 1408 2816

M1 47 49 49 51 3 3 3 3

M2 31 33 34 33 21 21 21 22

M3 29 31 31 30 2 2 3 2

M4 58 59 57 59 4 4 4 4

M5 41 42 41 43 > 200 > 200 > 200 > 200

M6 44 43 46 46 > 200 > 200 > 200 > 200

lower block triangular relaxed splitting

np 352 704 1408 2816 352 704 1408 2816

M1 19 19 20 21 3 4 3 3

M2 16 16 18 18 4 4 4 4

M3 17 17 18 19 4 4 4 4

M4 20 21 22 22 5 5 5 5

M5 17 17 18 18 4 4 5 4

M6 18 18 18 19 5 5 5 5

Table 5: CPU time-to-solution comparison of four GMRES(30) solvers in strong scaling test.

BoomerAMG Euclid(1)

np 352 704 1408 2816 352 704 1408 2816

M1 18.4 16.1 12.7 9.5 1.8 1.2 0.8 0.5

M2 12.2 10.9 8.9 6.6 12.7 7.7 4.8 2.9

M3 11.0 9.8 8.1 6.1 1.3 0.8 0.5 0.3

M4 20.1 17.6 14.0 10.3 2.6 1.6 0.9 0.6

M5 14.3 12.7 10.2 7.7 - - - -

M6 16.2 14.2 11.1 8.3 - - - -

lower block triangular relaxed splitting

np 352 704 1408 2816 352 704 1408 2816

M1 22.2 12.7 7.6 4.8 6.6 5.2 2.3 1.4

M2 18.1 10.2 6.5 3.9 9.2 5.4 3.2 1.9

M3 19.6 10.8 6.4 4.0 9.1 5.3 3.1 1.8

M4 22.3 12.9 7.9 4.4 11.1 6.5 3.8 2.2

M5 19.7 11.0 6.8 4.0 9.2 5.4 4.0 1.9

M6 20.0 11.2 6.3 3.8 11.2 6.6 3.9 2.3

problem size is 48.000 DoFs for 2816 CPU cores. Tables 4 and 5 show that, as the local

number of DoFs decreases, the relaxed splitting preconditioner runs on average 2.2 and 4.2

times faster than the lower block triangular preconditioner and BoomerAMG on 2816 CPU

cores.
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Table 6: Comparisons of four GMRES(30) solvers in weak scaling test. Top: Iteration count. Bottom:
CPU time-to-solution.

BoomerAMG Euclid(1) lower block triangular relaxed splitting

np 176 704 2816 176 704 2816 176 704 2816 176 704 2816

M1 47 49 51 2 3 3 21 22 21 3 3 3

M2 30 32 33 20 22 22 18 18 18 4 4 4

M3 28 30 30 2 3 2 19 19 19 4 4 4

M4 54 57 59 3 4 4 21 22 22 5 5 5

M5 41 43 43 > 200 > 200 > 200 18 18 18 4 5 4

M6 42 45 46 > 200 > 200 > 200 19 19 19 5 5 5

BoomerAMG Euclid(1) lower block triangular relaxed splitting

np 176 704 2816 176 704 2816 176 704 2816 176 704 2816

M1 4.97 6.83 9.49 0.17 0.34 0.48 3.27 4.12 4.82 0.86 1.08 1.41

M2 3.42 4.81 6.62 1.41 2.09 2.93 2.63 3.17 3.89 1.14 1.43 1.87

M3 3.22 4.55 6.08 0.15 0.31 0.29 2.73 3.28 4.03 1.11 1.39 1.82

M4 5.36 7.46 10.31 0.24 0.43 0.61 2.82 3.56 4.38 1.38 1.72 2.24

M5 4.15 5.74 7.67 - - - 2.69 3.24 3.97 1.16 1.81 1.89

M6 4.29 6.07 8.29 - - - 2.60 3.13 3.84 1.41 1.76 2.30

Finally, we carry out weak scaling analysis for a fixed local mesh 16.000 × 24. The

number of CPU cores is increased from 176 to 2816 with 48.000 DoFs per processor, each

time quadrupling their number. The global size of the resulting system matrix varies from

8.5M to 135.2M. From Table 6, it is clear that in numerical sense these four precondition-

ers weakly scale well. The average parallel weak efficiencies of BoomerAMG, Euclid(1),

the lower block triangular and relaxed splitting right-preconditioned GMRES(30) solvers

are 73.2%, 73.6%, 82.2% and 79.7% using 2816 CPU cores compared to 704 CPU cores,

respectively.

6. Conclusion

We introduced a relaxed splitting framework with an inexpensive but stable strategy to

estimate the involved relaxation parameter. It is a promising alternative for the efficient

monolithic solutions of the multidimensional MGD equations. Numerical experiments show

that our relaxed splitting preconditioner scales well both algorithmically and in parallel and

the sensitivity to model parameters is small.
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