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Abstract. The deterministic discrete gradient method for stochastic differential equa-

tions is extended to equations with multiple conserved quantities. The equations with

multiple conserved quantities in the Stratonovich sense are written in the skew-gradient

form, which is used in the construction of the stochastic discrete gradient method. It is

shown that the stochastic discrete gradient method has the mean-square convergence

order one and preserves all conserved quantities. Besides, for a given skew-gradient

form, the stochastic discrete gradient method is equivalent to the stochastic projection

method. Numerical examples confirm the theoretical results and show the effectiveness

of the method.
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1. Introduction

Stochastic differential equations (SDEs) are an important tool for describing stochastic

phenomena arising in physics, engineering, economics, chemistry, and biology [7,12,17,18,

20]. However, analytical solutions of such equations are rarely available. Therefore, there

are various numerical methods developed for their solution — cf. [2,3,11,13,25,28–30].

In the last decades, the numerical methods preserving the geometric invariants along the

flows, such as symplectic and Lie group structures, and quantities showing that the exact

solution evolves on a manifold of the dimension smaller than that of Rn, have been widely

studied [5, 8, 9, 27, 32]. Such numerical approaches are called the structure-preserving or

geometric numerical integration (GNI) methods. They have a number of advantages and

provide reliable numerical solutions. Therefore, GNI for SDEs with geometric attributes
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attracted a considerable attention [4,14,19,24,33]. In this work, we are mainly interested

in SDEs with the conserved energy and momentum.

Consider the following general autonomous SDEs:

dx(t) =

d
∑

i=0

G i
�

x (t)
�

◦ dW i(t), x(0) = x0, (1.1)

where “◦” refers to the Stratonovich integral, W 0(t) := t and W i(t), i = 1, . . . , d are inde-

pendent one-dimensional standard Wiener processes defined on a complete filtered prob-

ability space (Ω,F ,P, {Ft}t∈[0,T]) and satisfying the usual conditions. Besides, the initial

value x0 is a Rn-valued random variable such that E|x0|2 <∞, | · | the Euclidean norm,

and the functions G i : Rn → Rn, i = 0, . . . , d , satisfy the conditions under which (1.1) has

a unique solution [20].

To simplify the presentation, throughout this paper we use the Einstein’s summation

convention — i.e. repeated indices in a single term mean the summation of such terms

over all range of the indices. Thus the Eq. (1.1) can be written as

dx(t) = G i
�

x(t)
�

◦ dW i(t). (1.2)

Assume that the Morse functions Im : Rn → R, m = 1, . . . , M are conserved quantities of

(1.2), i.e.

(G i)⊤∇I j = 0, i = 0, . . . , d , j = 1, . . . , M ,

where ∇I j denotes the gradient of I j . This means that the exact solution evolves on the

manifold

Mx0
=
¦

y ∈ Rn|Im(y) = Im(x0) for m= 1, . . . M
©

.

When constructing numerical methods for SDEs with multiple conserved quantities, it

is natural to require the numerical solutions to preserve all multiple conserved quantities.

We note that there are two different sets of numerical methods which preserve conserved

quantities of SDEs — viz. the ones that use the terms Im explicitly and the ones that do

not. The latter include symplectic methods automatically preserving the quadratic Hamil-

tonian energy [24] and the methods preserving the matrix Lie group structure, which are

equivalent to the preservation of conserved quantity determined by the corresponding Lie

group [1,19]. The former comprise stochastic averaged vector field methods [6], stochastic

projection methods [15,34] and stochastic discrete gradient methods [10,15].

It is worth noting that most of the existing works are devoted to SDEs with single con-

served quantity. On the other hand, to the best of our knowledge there are only a few

researches concerning conservative numerical methods for SDEs with multiple conserved

quantities. Thus Chen et al. [4]modified the stochastic averaging vector field (AVF) method

to preserve multiple conserved quantities, Zhou et al. [34] introduced multiple Lagrange

multipliers and directly applied a linear projection method to SDEs with multiple conserved

quantities. In comparison to the case of a single conserved quantity, this can increase the

computational costs. In this paper, we extend a stochastic gradient method for SDEs with

single conserved quantity [10] to SDEs with multiple conserved quantities and show that
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the stochastic linear projection method with multiple Lagrange multipliers can also be writ-

ten in the same form.

The rest of the paper is organised as follows. In Section 2, the stochastic discrete gradi-

ent method for SDEs with multiple conserved quantities is presented and the mean-square

convergence of the stochastic discrete gradient method based on a symmetric discrete gradi-

ent is illustrated. It is also proved that the stochastic linear projection method with multiple

Lagrange multipliers can be written in the form of the stochastic discrete gradient method

in a skew-gradient form. The numerical examples presented in Section 3, demonstrate the

effectiveness of the method.

2. A Stochastic Discrete Gradient Method

In this section, we work with the SDEs (1.2) with M conserved quantities Im, m =

1, . . . , M . First, considering the special case M = 1, we obtain the classical stochastic gra-

dient method for SDEs with single conserved quantity [10].

Theorem 2.1. Under the assumption |∇I | 6= 0, there exist skew-symmetric matrices S i , i =

0, . . . , d such that

G i = S i∇I . (2.1)

Proof. Since I is conserved, we have

0= dI =
dI

dx
· dx = (dx)⊤∇I = (G i)⊤∇I ◦ dW i,

which implies (G i)⊤∇I = 0. Let

S i =
1

|∇I |2
�

G i(∇I)⊤ −∇I(G i)⊤
�

=
1

|∇I |2 G i ∧∇I , (2.2)

where ∧ is the wedge product

(u∧ v)i j = ui v j − u j vi, u, v ∈ Rn.

Observing that G i(∇I)⊤/|∇I |2 maps ∇I to G i , we can easily show that (2.2) is a particular

solution of (2.1).

Generally, the choice of the skew-gradient form is not unique, since the solutions to

(2.1) can be written as the sum of a particular solution and the solution to the homogeneous

equation S i∇I = 0. The following proposition shows the general form of the solution to

the homogeneous equation.

Proposition 2.1. For a given non-zero vector v ∈ Rn, the general solution to homogeneous

equation S i v = 0 can be written as

S i
jk
= T i

jkl
vl ,

where T i are skew-symmetric 3-tensors, i = 0, . . . , d.
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Proof. For any S i, let

T i
jkl
=

1

|v|2
�

S i
jk

vl + S i
kl

v j + S i
l j

vk

�

.

Since S i v = 0, i.e. S i
jk

vk = 0, we have

T i
jkl

vl =
1

|v|2
�

S i
jk

vl vl + S i
kl

v j vl + S i
l j

vkvl

�

=
1

|v|2 S i
jk
(vl)

2 = S i
jk

.

Rewriting (1.2) in the equivalent skew-gradient form

dx(t) = S i
�

x(t)
�

∇I
�

x(t)
�

◦ dW i(t),

we can construct a stochastic discrete gradient method based on the discrete gradient.

Definition 2.1 (cf. McLachlan et al. [21]). For a differentiable function I , the function ∇̄I

is the discrete gradient of I if it is continuous and satisfies the equations

∇̄I(x ′, x) · (x ′ − x) = I(x ′)− I(x),

∇̄I(x , x) =∇I(x),

for any x ′, x ∈ Rn.

For example, the function ∇̄I = [∇̄I1, · · · , ∇̄In]
⊤, where

∇̄Ik =
1

2

�

I
�

x ′
1
, · · · , x ′

k−1
, x ′

k
, xk+1, · · · , xn

�

− I
�

x ′
1
, · · · , x ′

k−1
, xk, xk+1, · · · , xn

�

x ′
k
− xk

+
I
�

x1, · · · , xk−1, xk, x ′
k+1

, · · · , x ′n
�

− I
�

x1, · · · , xk−1, x ′
k
, x ′

k+1
, · · · , x ′n
�

xk − x ′
k

�

(2.3)

is a symmetric discrete gradient [21].

Consider the discretisation of the time interval [0, T ]with the step size h, and let t l = lh,

l = 0, . . . , T/h. The stochastic discrete gradient one-step approximation x l+1 of the exact

solution at time t l+1 started from x l = x(t l) has the form

x l+1 = x l + S i

�

x l+1+ x l

2

�

∇̄I
�

x l , x l+1
�

∆W i . (2.4)

The Eqs. (2.4) represents the stochastic discrete gradient method for SDEs with single con-

served quantity. Hong et al. [10] proved that the stochastic discrete gradient method based

on the one-step approximation (2.4) has the mean-square convergence order 1.

Remark 2.1. As we can see, the construction of the stochastic discrete gradient method de-

pends on the approximation of S i and on the discrete gradient ∇̄I(x ′, x). According to The-

orems 2.1 and (2.1), the choice of S i is not unique, so that we can obtain better numerical

integrators by adding appropriate homogeneous solutions. Besides, if the discrete gradient

∇̄I(x ′, x) is symmetric, the corresponding numerical method is also symmetric [31].
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Similar to the case M = 1, we first show that SDEs with M > 1 conserved quantities

can be written in a skew-gradient form and show that the choice of skew-gradient form

is not unique. Then, based on a given skew-gradient form and given discrete gradients of

I1, · · · , I M , we construct a stochastic discrete gradient method for (1.2) with M conserved

quantities and prove that the stochastic discrete gradient method has the mean-square con-

vergence order 1.

Theorem 2.2. Let D = [∇I1, · · · ,∇I M ], B = D⊤D, i.e. B jk = ∇I j · ∇Ik. Assume that

∇I1, · · · ,∇I M are linearly independent, so that B is non-singular. Then there are skew-

symmetric (M + 1)-tensors S i such that

G i
j = S i

j j1··· jM∇I1
j1
· · ·∇I M

jM
. (2.5)

Proof. Since G i · ∇I j = 0 for all j, we have

�

G i ∧∇I1 ∧ · · · ∧∇I M
�

·
�

∇I1, · · · ,∇I M
�

= G i det B.

The non-singularity of B yields that

S i
j j1 ··· jM =

1

det B

�

G i ∧∇I1 ∧ · · · ∧∇I M
�

is a particular solution to (2.5).

Consider now the homogeneous solutions of (2.5).

Proposition 2.2. For skew-symmetric (M + 1)-tensors S i and linearly independent vectors

v1, · · · , vM ∈ Rn, the general solution to homogeneous equation

S i
j j1··· jM v1

j1
· · · vM

jM
= 0 (2.6)

can be written as

S i
j j1··· jM = C il

j j1··· jM k
v l

k
, l = 1, . . . , M , (2.7)

where C il is a skew-symmetric (M + 2)-tensor corresponding to v l .

Proof. Notice that the skew-symmetric (M + 1)-tensor S i has
�

n
M+1

�

independent com-

ponents. Using the coordinate system v j := e j , j = 1, . . . , M , where em, m = 1, . . . , M are

the unit vectors, we obtain S i
j12···M = 0. The the skew symmetry of S i implies S i

j12···M = 0

for j ≤ M . Therefore, the skew-symmetric S i has
�

n
M+1

�

−(n−M) independent components

left. In order to establish the general form of solutions, we exploit (2.7), thus obtaining

S i ·
�

v1, v2, · · · , vM
�

= C il ·
�

v l , v1, v2, · · · , vM
�

= 0,

which has M( n
M+2 ) independent components. For n> M + 2, we have

M

�

n

M + 2

�

>

�

n

M + 1

�

− (n−M).
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This means that there are sufficient solutions available. Then, we have to determine the

terms C il in (2.7). Let us illustrate this procedure for C i1. Note that

S̃ i := S i ·
�

v2, · · · , vM
�

= C i1
�

v1, v2, · · · , vM
�

,

because S̃ · v j = 0 for all j. This implies

�

S̃ i ∧ v1 ∧ · · · ∧ vM
�

·
�

v1, v2, · · · , vM
�

= S̃ i det B,

where B is a non-singular matrix with the entries B jk = v j · vk. Thus,

C i1
�

v1, v2, · · · , vM
�

= S̃ i =
1

det B

�

S̃ i ∧ v1 ∧ · · · ∧ vM
�

·
�

v1, v2, · · · , vM
�

,

which means

C i1 =
1

det B

�

S̃ i ∧ v1 ∧ · · · ∧ vM
�

.

Remark 2.2. According to [21], the basis of skew-symmetric (M + 1)-tensors satisfying

(2.6) is composed of skew-symmetric (M + 1)-tensors satisfying the condition Ai · vk = 0

for some k. They can be written as Ai = C ik · vk with the skew-symmetric (M + 2)-tensor

C ik = (1/|vk|2)Ai ∧ vk.

Writing (1.2) in the equivalent skew-gradient form

dx j(t) = S i
j j1··· jM∇I1

j1
· · ·∇I M

jM
◦ dW i(t), j = 1, . . . , n (2.8)

with

S i =
1

det B
G i ∧∇I1 ∧ · · · ∧∇I M ,

we can obtain a one-step approximation of the stochastic discrete gradient method for (1.2)

with M conserved quantities — viz.

x l+1
j = x l

j + S̃ i
j j1··· jM ∇̄I1

j1
· · · ∇̄I M

jM
∆W i, j = 1, . . . , n,

where

S̃ i =
1

det B̃
G̃ i ∧ ∇̃I1 ∧ · · · ∧ ∇̃I M

is an approximation to

S i =
1

det B
G i ∧∇I1 ∧ · · · ∧∇I M ,

G̃ i and ∇̃Im are approximations to G i and ∇Im.

For convenience, we denote x l+1 by x ′ and x l by x , so that the above one-step approx-

imation takes the form

x ′
j
= x j + S̃ i

j j1··· jM ∇̄I1
j1
· · · ∇̄I M

jM
∆W i, j = 1, . . . , n. (2.9)
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Usually, the increments of Wiener processes∆Wj, j = 1, . . . , r are represented by
p

hξ j , j =

1, . . . , r with independentN (0,1)-distributed random variables ξ j. The unboundedness of

the standard Gaussian random variable yields that the random variable
p

hξ j should be

replaced by
p

hζh, j , where

ζh, j =









ξ j , |ξ j| ≤ Ah,

Ah, ξ j > Ah,

−Ah, ξ j < −Ah

(2.10)

with Ah =
p

2k| lnh| and a positive integer k. It is known that E(ξ j − ζh, j)
2 ≤ hk [24].

According to [16,34], the truncated methods have the same mean-square convergence or-

der. Thus from now on, we assume that the increments
p

hξ j are replaced by the truncated

forms
p

hζh, j with a properly chosen integer k.

3. Properties of Stochastic Discrete Gradient Method

In this section, we consider the conservation property and the mean-square convergence

of the stochastic discrete gradient method. In addition, we show that the stochastic linear

projection method with M Lagrange multipliers can also be written as a stochastic discrete

gradient method with a given skew-gradient form.

Theorem 3.1. Assume that G i , i = 0, . . . , d and∇Im, m= 1, . . . , M have bounded second mo-

ments and uniformly bounded derivatives up to a required order, G̃ i and ∇̃Im are, respectively,

the approximations of G i and∇Im using the mid-point rule. Then the stochastic discrete gradi-

ent method based on the one-step approximation (2.9) and on the symmetric discrete gradient

(2.3) satisfies the conditions

1. Im(x ′) = Im(x) for all m= 1, . . . , M.

2. The stochastic discrete gradient method (2.9) has mean-square convergence order 1.

Proof. By the definition of the discrete gradient, we have

Im(x ′)− Im(x) = ∇̄Im · (x ′ − x) = S̃ i ·
�

∇̄I1, · · · , ∇̄I M
�

· ∇̄Im
∆W i.

According to the skew symmetry of S i , we have Im(x ′) = Im(x). For simplicity, we illustrate

the mean-square convergence in the case M = 2. If M > 2, the proof is analogous but more

lengthy. For M = 2, we have

dx j(t) = S i
j j1 j2
∇I1

j1
∇I2

j2
◦ dW i(t), j = 1, . . . , n, (3.1)

where

S i
j j1 j2
=

1

det B

�

�

�

�

�

�

G i
j
∇I1

j
∇I2

j

G i
j1
∇I1

j1
∇I2

j1

G i
j2
∇I1

j2
∇I2

j2

�

�

�

�

�

�

.
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Our assumptions give that S i
jkl

has uniformly bounded derivatives up to the required order.

Let ∆ := x ′ − x . The Taylor expansion yields

S̃ i
j j1 j2
= S i

j j1 j2

�

x +
∆

2

�

= S i
j j1 j2
(x) +

1

2
∂kS i

j j1 j2
(x)∆k +

1

8
∂k1k2

S i
j j1 j2

�

x + θ
∆

2

�

∆k1
∆k2

. (3.2)

The k-th component of ∇̄Im has the form

∇̄Im
k
= ∂k I (x) +

1

2
∂kl I(x)∆l +

1

4

∑

j1, j2 6=k

∂k j1 j2
I(x + θ∆)∆ j1

∆ j2

+
1

4

∑

j 6=k

∂kk j I(x + θ∆)∆k∆ j +
1

6
∂kkkI(x + θ∆)(∆k)

2. (3.3)

Substituting (3.2) and (3.3) into the stochastic discrete gradient method defined by (2.9)

yields

x ′
j
= x j + S̃ i

j j1 j2
∇̄I1

j1
∇̄I2

j2
∆W i. (3.4)

Therefore,

∆ j = x ′j − x j = S i
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x)∆W i

+
1

2

�

∂kS i
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x) + S i

j j1 j2
(x)∂ j1k I1(x)∂ j2

I2(x)

+ S i
j j1 j2
(x)∂ j1

I1(x)∂ j2k I2(x)
�

∆k∆W i

+
1

4

�

S i
j j1 j2
(x)∂ j1k1

I1(x)∂ j2k2
I2(x) + ∂k1

S i
j j1 j2
(x)∂ j1

I1(x)∂ j2k2
I2(x)

+ ∂k1
S i

j j1 j2
(x)∂ j1k2

I1(x)∂ j2
I2(x)
�

∆k1
∆k2
∆W i + O
�

∆
3
�

.

Iteratively, we have

x ′j = x j + S i
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x)∆W i

+
1

2

�

∂kS
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x) + S

i1
j j1 j2
(x)∂ j1k I1(x)∂ j2

I2(x)

+ S
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2k I2(x)
�

×
�

S
i2
k j3 j4
(x)∂ j3

I1(x)∂ j4
I2(x)
�

∆W i1∆W i2

+
1

2

�

∂k1
S

i1
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x) + S

i1
j j1 j2
(x)∂ j1k1

I1(x)∂ j2
I2(x)

+ S
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2k1
I2(x)
�

×
�

∂k2
S

i2
k1 j3 j4

(x)∂ j3
I1(x)∂ j4

I2(x) + S
i2
k1 j3 j4

(x)∂ j3k2
I1(x)∂ j4

I2(x)

+ S
i2
k1 j3 j4

(x)∂ j3
I1(x)∂ j4k2

I2(x)
�
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×
�

S
i3
k2 j5 j6

(x)∂ j5
I1(x)∂ j6

I2(x)
�

∆W i1∆W i2∆W i3

+
1

4

�

S
i1
j j1 j2
(x)∂ j1k1

I1(x)∂ j2k2
I2(x) + ∂k1

S
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2k2
I2(x)

+ ∂k1
S

i1
j j1 j2
(x)∂ j1k2

I1(x)∂ j2
I2(x)
�

×
�

S
i2
k1 j3 j4

(x)∂ j3
I1(x)∂ j4

I2(x)
��

S
i3
k2 j5 j6

(x)∂ j5
I1(x)∂ j6

I2(x)
�

×∆W i1∆W i2∆W i3 + O
�

∆W i1∆W i2∆W i3∆W i4
�

.

Note that the Milstein method for (2.8) has the form

x̄ ′j = x j + S i
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x)∆W i

+
1

2

�

∂kS
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x) + S

i1
j j1 j2
(x)∂ j1k I1(x)∂ j2

I2(x)

+ S
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2k I2(x)
�

×
�

S
i2
k j3 j4
(x)∂ j3

I1(x)∂ j4
I2(x)
�

∆W i1∆W i2 .

Thus,

x ′j − x̄ ′j =
1

2

�

∂k1
S

i1
j j1 j2
(x)∂ j1

I1(x)∂ j2
I2(x) + S

i1
j j1 j2
(x)∂ j1k1

I1(x)∂ j2
I2(x)

+ S
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2k1
I2(x)
�

×
�

∂k2
S

i2
k1 j3 j4

(x)∂ j3
I1(x)∂ j4

I2(x) + S
i2
k1 j3 j4

(x)∂ j3k2
I1(x)∂ j4

I2(x)

+ S
i2
k1 j3 j4

(x)∂ j3
I1(x)∂ j4k2

I2(x)
�

×
�

S
i3
k2 j5 j6

(x)∂ j5
I1(x)∂ j6

I2(x)
�

∆W i1∆W i2∆W i3

+
1

4

�

S
i1
j j1 j2
(x)∂ j1k1

I1(x)∂ j2k2
I2(x) + ∂k1

S
i1
j j1 j2
(x)∂ j1

I1(x)∂ j2k2
I2(x)

+ ∂k1
S

i1
j j1 j2
(x)∂ j1k2

I1(x)∂ j2
I2(x)
�

×
�

S
i2
k1 j3 j4

(x)∂ j3
I1(x)∂ j4

I2(x)
��

S
i3
k2 j5 j6

(x)∂ j5
I1(x)∂ j6

I2(x)
�

×∆W i1∆W i2∆W i3 + O
�

∆W i1∆W i2∆W i3∆W i4
�

.

It follows that

�

�

�E

�

x ′j − x̄ ′j

�
�

�

�= O
�

h2
�

,

�

E

�

x ′j − x̄ ′j

�2
�1/2

= O
�

h3/2
�

.

By [23, Theorem 1.1] and the triangle inequality, we have

�

�

�E

�

x ′j − x j

�

t l
�
�
�

�

�= O
�

h2
�

,

�

E

�

x ′j − x j

�

t l
�
�2
�1/2

= O
�

h3/2
�

.

Thus the stochastic discrete gradient method (3.4) has the mean-square convergence of

order 1.
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Now we show that the stochastic linear projection method with M Lagrange multipliers

can also be written as the stochastic discrete gradient method with a skew-gradient form.

Consider the one-step numerical methods for SDEs (1.2)

x ′ = x + G̃ i
�

x ′, x ,h,∆W r , r = 1, . . . , d
�

∆W i. (3.5)

The following proposition provide the conditions for preserving all multiple conserved

quantities by the numerical method (3.5).

Proposition 3.1. The numerical method (3.5) preserve all multiple conserved quantities if

and only if

G̃ i
�

x ′, x ,h,∆W r , r = 1, . . . , d
�

∈ span
�

∇̄I1, · · · , ∇̄I M
	⊥

.

Proof. Using the definition of the discrete gradient, we write

Im(x ′)− Im(x) = ∇̄Im · (x ′ − x) = ∇̄Im · G̃ i
∆W i .

In order to preserve conserved quantities, we require that Im(x ′)− Im(x) = 0, i.e. ∇̄ImG̃ i =

0, which means G̃ i ∈ span{∇̄I1, · · · , ∇̄I M }⊥.

Recall that the main idea of the standard stochastic linear projection method [34] is to

use the Lagrange multiplier λ ∈ RM and to project the numerical solutions generated by

a classical numerical method into the manifold

Mx0
=
¦

y ∈ Rn|Im(y) = Im(x0) for all m= 1, . . . M
©

,

determined by the multiple conserved quantities of the original SDEs.

The following lemma shows that the standard stochastic linear projection method can

be written as an equivalent stochastic projection method determined by the projection op-

erator

P := I− D̃(D̄⊤D̃)−1D̄⊤,

where I is the identity operator, D̄ = [∇̄I1, · · · , ∇̄I M ] and D̃ = [∇̃I1, · · · , ∇̃I M ].

Lemma 3.1. Let λ be the Lagrange multiplier determined by Im(x ′) = Im(x) for all m. If

(D̄⊤D̃) is invertible, then the standard stochastic linear projection method

x ′ = x + G̃ i
�

x ′, x ,h,∆W r , r = 1, . . . , d
�

∆W i + D̃λ (3.6)

is equivalent to the stochastic projection method determined by the projection operator P,

x ′ = x + PG̃ i
∆W i. (3.7)

Proof. For the standard stochastic linear projection method (3.6), we have

0= Im(x ′)− Im(x) = ∇̄Im · (x ′ − x) = ∇̄Im · (G̃ i
∆W i + D̃λ).

This means that

0= (∇̄Im)⊤G̃ i
∆W i + (∇̄Im)⊤ D̃λ.
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Therefore,

0= D̄⊤G̃ i
∆W i + D̄⊤D̃λ

and, consequently,

λ= −(D̄⊤D̃)−1D̄⊤G̃ i
∆W i.

Substituting λ into (3.6) gives

x ′ = x + G̃ i
∆W i − D̃(D̄⊤D̃)−1D̄⊤G̃ i

∆W i

= x +
�

I− D̃(D̄⊤D̃)−1D̄⊤
�

G̃ i
∆W i

= x + PG̃ i
∆W i.

Let us illustrate the equivalence between the stochastic discrete gradient method (2.9)

with

S̃ i =
1

det(D̄⊤D̃)
G̃ i ∧ ∇̃I1 ∧ · · · ∧ ∇̃I M

and the stochastic linear projection method (3.7). First, we recall two useful lemmas.

Lemma 3.2 (cf. Meyer [22]). For matrix A∈ Rn×n and vectors c,d ∈ Rn, we have

det
�

A+ cd⊤
�

= det (A)
�

1+ d⊤A−1c
�

.

Lemma 3.3 (cf. Meyer [22]). For vectors u1, · · · ,uM , v1, · · · , vM ∈ Rn and matrices U =

[u1, · · · ,uM ] ∈ Rn×M , V = [v1, · · · , vM ] ∈ Rn×M , we have
�

u1 ∧ · · · ∧ uM
�

j1··· jM
v1

j1
· · · vM

jM
= det
�

U⊤V
�

.

Now, we can present the equivalence theorem.

Theorem 3.2. Under the assumptions of Theorem 3.1 and (3.1), the stochastic discrete gra-

dient method (2.9) with the skew-gradient form

S̃ i =
1

det(D̄⊤D̃)
G̃ i ∧ ∇̃I1 ∧ · · · ∧ ∇̃I M

is equivalent to the stochastic linear projection method (3.7).

Proof. For any vector v ∈ Rn, we have
�

G̃ i ∧ ∇̃I1 ∧ · · · ∧ ∇̃I M
�

j j1··· jM
v j∇̄I1

j1
· · · ∇̄I M

jM

= det
��

G̃ i∇̃I1 · · · ∇̃I M
�⊤ �

v∇̄I1 · · · ∇̄I M
��

= det









G̃ i · v G̃ i · ∇̄I1 · · · G̃ i · ∇̄I M

∇̃I1 · v ∇̃I1 · ∇̄I1 · · · ∇̃I1 · ∇̄I M

...
. . .

...

∇̃I M · v ∇̃I M · ∇̄I1 · · · ∇̃I M · ∇̄I M









= det









G̃ i · v (G̃ i)⊤ D̄

∇̃I1 · v
... D̃⊤D̄

∇̃I M · v








.
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Expanding the determinant along the first column gives
�

G̃ i ∧ ∇̃I1 ∧ · · · ∧ ∇̃I M
�

j j1 ··· jM
v j∇̄I1

j1
· · · ∇̄I M

jM

= (G̃ i · v)det(D̃⊤D̄) +

M
∑

j=1

(−1) j(∇̃I j · v)det
�

(D̃ j)⊤ D̄
�

,

where

D̃ j =
�

G̃ i , ∇̃I1, · · · , ∇̃I j−1, ∇̃I j+1, · · · , ∇̃I M
�

.

Writing D̃ j as

D̃ j =
�

∇̃I1, · · · , ∇̃I j−1, G̃ i , ∇̃I j+1, · · · , ∇̃I M
�

,

we have

S̃ i
j j1 ··· jM v j∇̄I1

j1
· · · ∇̄I M

jM
=



G̃ i −
M
∑

j=1

det(D̄⊤D̃ j)

det(D̄⊤D̃)
∇̃I j



 · v.

Notice that

D̄⊤D̃ j = D̄⊤
�

D̃+ (G̃ i − D̃e j)e
⊤
j

�

= D̄⊤D̃+ D̄⊤
�

G̃ i − D̃e j

�

e⊤j ,

where e j , j = 1, . . . , n are the unit vectors. By Lemma 3.2, we have

det(D̄⊤D̃ j) = det(D̄⊤D̃)
�

1+ e⊤j (D̄
⊤D̃ j)−1D̄⊤(G̃ i − D̃e j)

�

,

so that

det(D̄⊤D̃ j)

det(D̄⊤D̃)
= 1+ e⊤

j
(D̄⊤D̃ j)−1D̄⊤(G̃ i − D̃e j)

= 1+ e⊤j (D̄
⊤D̃ j)−1D̄⊤G̃ i − e⊤j (D̄

⊤D̃ j)−1D̄⊤D̃e j

= e⊤j (D̄
⊤D̃ j)−1D̄⊤G̃ i .

Consequently,

S̃ i
j j1··· jM v j∇̄I1

j1
· · · ∇̄I M

jM
=

�

G̃ i −
M
∑

j=1

�

e⊤
j
(D̄⊤D̃ j)−1D̄⊤G̃ i

�

∇̃I j

�

· v

=
�

G̃ i − D̃(D̄⊤D̃ j)−1D̄⊤G̃ i
�

· v
=
��

E − D̃(D̄⊤D̃ j)−1D̄⊤
�

G̃ i
�

· v
= (PG̃ i) · v.

Remark 3.1. As the proof shows, the equivalence of the stochastic discrete gradient method

and the stochastic projection method does not depend on the discrete gradient. Besides, the

mean-square convergence of the stochastic discrete gradient method in the above theorem

is equivalent to the mean-square convergence of the corresponding stochastic projection

method.
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4. Numerical Examples

Example 4.1 (Stochastic cyclic Lotka-Volterra system). In this example, we consider the

three-dimensional stochastic dynamical system in the Stratonovich sense

d





x(t)

y(t)

z(t)



=





x(t)(z(t) − y(t))

y(t)(x(t) − z(t))

z(t)(y(t) − x(t))





�

dt + c ◦ dW (t)
�

, (4.1)

which models three species competing in a chaotic environment [26]. Here, c = 0.5 and

initial values are x(0) = 1, y(0) = 2, z(0) = 1. It is easily seen that the total derivative

of functions I1(x , y, z) = x + y + z and I2(x , y, z) = x yz are equal to zero along the exact

solution to (4.1). This means that I1 and I2 are conserved quantities of (4.1). Thus, the

exact solution evolves on the manifold

M =
¦

(x , y, z)|I1(x , y, z) = x + y + z = const, I2(x , y, z) = x yz = const
©

,

which is the intersection of a surface and a plane in R3.

Setting G = (x(z− y), y(x−z), z(y− x))⊤, ∇I1 =∇I1 = (1, 1, 1)⊤ and∇I2 =∇I2 =

(yz, xz, x y)⊤, we arrive at a stochastic discrete gradient method for (4.1), viz.

x ′j = x j +
1

det(D̄⊤D̃)

�

�

�

�

�

�

G̃ j ∇̃I1
j
∇̃I2

j

G̃ j1
∇̃I1

j1
∇̃I2

j1

G̃ j2
∇̃I1

j2
∇̃I2

j2

�

�

�

�

�

�

∇̄I1
j1
∇̄I2

j2
(h+ c∆W ), (4.2)

where

G̃ = G

�

x ′ + x

2

�

, ∇̃Im =∇Im

�

x ′ + x

2

�

, m = 1,2,

and B = D̄⊤D̃ with D̄ = [∇̄I1, ∇̄I2] and D̃ = [∇̃I1, ∇̃I2].

On the one hand, we apply the stochastic discrete gradient method (4.2) to (4.1) with

step size h = 0.01 and T = 100. Fig. 1 shows the sample path of the numerical solution

and the errors of the conserved quantities I1 and I2. Note that the conserved quantities are

preserved by the stochastic discrete gradient method (4.2) and the numerical solution lies

exactly on the correct manifold.

The errors of the numerical solution are defined as the mean-square sample errors at

the terminal time T = 1 over 1000 different discretised sample paths — i.e. as
√

√

√

√

1000
∑

i=1

��

�x
re f

T,W i − xN ,W i

�

�
2
+
�

�y
re f

T,W i − yN ,W i

�

�
2
+
�

�z
re f

T,W i − zN ,W i

�

�
2
�

/1000.

For each path, the stochastic discrete gradient method (4.2) is applied with five different

step sizes h= 2−3, h = 2−4, h= 2−5, h = 2−6, and h= 2−7. Table 1 and Fig. 2 demonstrate

the mean-square sample error and a log-log plot, respectively. Here, the reference solutions

are obtained by mid-point method with the step size h = 2−12. Note that the stochastic

discrete gradient method (4.2) converges with the mean-square order 1, consistent with

the theoretical results.
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Figure 1: Numerical sample path and errors of I1 and I2 of the stochastic discrete gradient method
(4.2) for (4.1).

Figure 2: Convergence rate of the stochastic discrete gradient method (4.2) for (4.1).

Table 1: The mean-square error of the stochastic discrete gradient method (4.2) for solving (4.1).

Method h= 2−7 h = 2−6 h = 2−5 h= 2−4 h= 2−3 Order

Method (4.2) 1.8729e-3 3.8292e-3 7.9771e-3 7.9771e-2 3.6242e-2 1.0672
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Example 4.2 (Stochastic rigid body problem). This numerical example demonstrates the

effectiveness of the stochastic discrete gradient method in preserving multiple conserved

quantities and its equivalence to the corresponding stochastic projection method. Consider

the following SDE in the Stratonovich sense driven by two Brownian motions,

d





x1

x2

x3



 =





0 x3/I3 −x2/I2

−x3/I3 0 x1/I1

x2/I2 −x1/I1 0









x1

x2

x3





×
�

c1dt + c2 ◦ dW 1(t) + c3 ◦ dW 2(t)
�

(4.3)

with the initial value (x10, x20, x30), t ∈ [0, T ] and constants c1, c2, c3. The SDE (4.3)

models the motion of a free rigid body affected by Brownian noises. The center of the

mass located at the origin. Besides, x1, x2, x3 represent the angular momenta of the body

frame and I1, I2, I3 are the principal moments of inertia. Actually, the SDE (4.3) has two

conserved quantities

I1(x1, x2, x3) = x2
1 + x2

2 + x2
3 ,

I2(x1, x2, x3) =
1

2

�

x2
1

I1

+
x2

2

I2

+
x2

3

I3

�

.

This fact can be easily established by differentiating I1 and I2 and substituting (4.3) into

the result. Thus, we can conclude that the exact solution to (4.3) evolves on the manifold

M =

�

(x1, x2, x3)|x2
1 + x2

2 + x2
3 = R2,

1

2

�

x2
1

I1

+
x2

2

I2

+
x2

3

I3

�

= C

�

,

where R and C are constants. Geometrically, this means that the exact solution to (4.3) lies

on the intersection of the sphere x2
1 + x2

2 + x2
3 = R2 and ellipsoid 1

2 (
x2

1

I1
+

x2
2

I2
+

x2
3

I3
) = C .

Introducing the notations

G =

�
�

1

I3

− 1

I2

�

x2 x3,

�

1

I1

− 1

I3

�

x1 x3,

�

1

I2

− 1

I1

�

x1 x2

�⊤
,

∇I1 = (2x1, 2x2, 2x3)
⊤ , ∇I2 =

�

x1

I1

,
x2

I2

,
x3

I3

�⊤
,

we write the stochastic discrete gradient method for (4.3) as

x ′
j
= x j +

1

det(D̄⊤D̃)

�

�

�

�

�

�

G̃ j ∇̃I1
j
∇̃I2

j

G̃ j1
∇̃I1

j1
∇̃I2

j1

G̃ j2
∇̃I1

j2
∇̃I2

j2

�

�

�

�

�

�

∇̄I1
j1
∇̄I2

j2

�

c1h+ c2∆W 1 + c3∆W 2
�

, (4.4)

where

G̃ = G

�

x ′ + x

2

�

, ∇̃Im =∇Im

�

x ′ + x

2

�

, m = 1,2,

and B = D̄⊤D̃ with D̄ = [∇̄I1, ∇̄I2], D̃ = [∇̃I1, ∇̃I2].
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Figure 3: Numerical sample path and errors in I1 and I2 of the stochastic discrete gradient method (4.4)
for (4.3).

Choosing the parameters c1 = 1, c2 = 0.1, c3 = 0.1, R = 4, I1 = 2, I2 = 1, I3 = 2/3,

T = 400 and the initial values x10 = R cos(1.1), x20 = 0, x30 = R sin(1.1), we apply

the stochastic discrete gradient method (4.4) and the corresponding stochastic projection

method (3.7) to the problem (4.3) with the step size h= 0.1. Figs. 3 and 4 show the sample

path and the errors of the conserved quantities I1 and I2 for the stochastic discrete gradient

method (4.4) and the corresponding stochastic projection method (3.7). The CPU time of

the methods (4.4) and (3.7) are 5.85575 and 7.10106 seconds, respectively. Observe that

the conserved quantities are preserved well by the methods (3.7) and (4.4), and in both

cases the numerical solutions lie on the correct manifold — i.e. on the intersection of the

sphere and ellipsoid. Besides, Fig. 5 displays the difference between the numerical solutions

obtained by the stochastic discrete gradient method (4.4) and the corresponding stochastic

projection method (3.7). Fig. 5 shows that the methods are equivalent.

5. Conclusions

We extend the deterministic discrete gradient method to the stochastic counterpart for

solving SDEs with multiple conserved quantities. The SDEs with multiple conserved quan-

tities in the Stratonovich sense are written in the skew-gradient form, which is used in

the construction of the stochastic discrete gradient method. It is shown that the stochas-

tic discrete gradient method has the mean-square convergence order 1 and preserves all

conserved quantities of the original SDEs. Besides, for a given skew-gradient form, the cor-
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Figure 4: Numerical sample path and errors in I1 and I2 of the stochastic projection method (3.7) for
solving (4.3).

Figure 5: The difference between the stochastic discrete gradient method (4.4) and stochastic projection
method (3.7) for solving (4.3).

responding stochastic discrete gradient method is equivalent to the stochastic projection

method. Numerical examples confirm the theoretical results and show the effectiveness of

the method.
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