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Abstract

A new understanding of adversarial examples and adversarial robustness is proposed

by decoupling the data generator and the label generator (which we call the teacher). In

our framework, adversarial robustness is a conditional concept—the student model is not

absolutely robust, but robust with respect to the teacher. Based on the new understand-

ing, we claim that adversarial examples exist because the student cannot obtain sufficient

information of the teacher from the training data. Various ways of achieving robustness is

compared. Theoretical and numerical evidence shows that to efficiently attain robustness,

a teacher that actively provides its information to the student may be necessary.

Mathematics subject classification: 68T07, 68T99.
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1. Introduction

The existence of adversarial examples restricts the application of deep learning in many fields

with high demand on the robustness and security, such as autonomous driving and health care.

Hence, improving adversarial robustness of deep neural networks has experienced extensive

study, both theoretically and practically [1, 15]. Originally, adversarial examples are found to

be perturbed images whose perturbations are imperceptible to humans but cause huge error to

the neural networks [2,37]. In most existing works, however, adversarial robustness is defined as

robustness with respect to perturbations measured by the lp distance (e.g. [12,37]). Specifically,

a model fθ(·) is considered to be robust if the adversarial loss

Ladv(fθ) = E(x,y) max
‖δ‖p≤ε

l(fθ(x + δ), y) (1.1)

is small, where ε is a pre-defined value and l is some loss function [25]. This simplification helps

analysis and implementation. In spite of this, the robustness with small lp perturbations is

very different from the robustness with respect to human-imperceptible perturbations [32]. A

human-imperceptible perturbation may not have small lp norm [5,46], and a perturbation with

small lp norm may also not necessarily be imperceptible to humans [35]. In Figure 1.1, inspired

by optical illusions, we show an example of difference between some lp distances and human

perception. This difference makes current “adversarially robust” models easily broken by newly-

designed attacks. Besides lp distances, other measures, such as Wasserstein distance [43] and

structural similarity (SSIM) [41], are also shown to be different from human perception [32].
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In this paper, we propose a conditional explanation of adversarial robustness, which high-

lights the role of human labeler in defining the adversarial examples. Specifically, we decouple

the data generator with the labeler, and make two definitions: the teacher is an object or a

mechanism that assigns true labels to data points, and the student is a machine learning model

used to learn from the data and labels. Within our framework, adversarial robustness is not

a universal concept defined unconditionally for any learning problem (like lp robustness), but

rather a relative concept conditioned on a certain teacher. The teacher is usually human, but

can also be other objects such as physical processes or neural networks. A student model is

said to be (strongly) adversarially robust with respect to a teacher if it can correctly classify

any data the teacher can classify with certainty. This is possible because in our framework the

teacher has an “uncertain set”, and it does not assign labels to data within this set. Hence

a robust student model does not need to have the same decision boundary as the teacher. A

weaker version of adversarial robustness is also defined by considering the data produced by an

“attack”, instead of all the data that the teacher can classify. This weak definition of adversarial

robustness can cover the lp robustness, but in a more proper way. We show that our defini-

tions of adversarial robustness are not equivalent with the lp robustness by simple illustrative

examples—lp robust classifier may not be adversarially robust, vice versa.

(a) Face (b) Fish (c) Face

Fig. 1.1. Difference between human perception and l2 distances illustrated by an optical illusion. (a)

The images looks like a face; (b) The image looks like two fishes; (c) The image in (a) adding a

noise. The l0, l1 and l2 distances between (a) and (b) are 15037, 2534.44 and 43.02, respective-

ly. The l0, l1 and l2 distances between (a) and (c) are 812311, 63413.43 and 89.17, respectively.

Though the images in (a) and (c) are perceptually the same, their lp distances are greater than the

distances between (a) and (b), which are perceptually different. (The original image is taken from

https://pixabay.com/illustrations/fairy-tale-fish-portrait-1077859/)

Based on this new understanding, we point out two reasons that cause adversarial examples:

(1) Some features the student uses to make classification are imperceptible to the teacher. (2)

The training data do not provide sufficient information of the classification mechanism of the

teacher, e.g. which feature the teacher uses to make classification. Combining the two reasons

above, we argue that the adversarial examples are caused by insufficient (out-of-distribution)

information of the teacher provided by the training data. Without necessary information, the

student model cannot select the robust solution among many solutions that perform well on

the original data distribution. Therefore, to achieve adversarial robustness, or at least alleviate

adversarial vulnerability, more teacher information should be provided to the student model.

This can be achieved in two ways:

1. An active student: The student model asks information from the teacher, and the

teacher passively answers the student’s questions, and does not provide extra information.



882 C. MA AND L.X. YING

2. An active teacher: The teacher directly provides information to the student about how

it makes classification.

We show theoretically that the first way is not always efficient. Specifically, we prove that

in some cases an active student cannot get enough information to achieve robustness in a

reasonable time from a passive teacher. Hence, we conclude that an active teacher is required

to achieve real adversarial robustness. By simple illustrative examples we show how an active

teacher helps the student to learn a robust model, and better robustness can be achieved when

more information is provided by the teacher.

Our contributions are summarized as follows:

• We propose a new conditional framework of understanding adversarial robustness. In this

framework, the teacher is decoupled from the distribution that generates the data, and

robustness is defined as a relative concept of a student model with respect to the teacher.

• Based on the new understanding of adversarial robustness, we demonstrate that achieving

robustness requires additional teacher information except the original training data.

• Using both theoretical and empirical approaches, we show that an active teacher helps

attaining robustness, while a passive teacher with an active student may not be as efficient.

2. Related Work

Adversarial examples were first introduced in [37]. The work identified data points that are

very close to another point (imperceptible to human) but lead to totally different predictions

of the model. Several attack methods were then proposed based on the idea of finding the

direction in the input space in which the model’s output changes fastest [12,21,22,27,29]. Due

to the significance of the security of machine learning models, defenses for adversarial attacks

also received extensive study ( [3, 14, 30, 42], etc). Adversarial training [12, 21, 25, 38] is a class

of methods that can effectively defense against certain attacks. It trains a robust model by

including adversarial examples into the training set. Large volume of works arise during an

arm race between attacks and defenses. Interested readers can refer to [1] or [15] for a thorough

review of the attack and defense methods in different application fields.

On the other side of practical methods, theoretical understanding of adversarial examples

also drew attention. Explanations of adversarial vulnerability of machine learning models were

provided from different perspectives, including linearity [12], decision boundary geometry [8,26],

low flexibility of the networks [7], non-robust features [17], etc. In particular, [17] proposed that

adversarial examples exist because the model learns non-robust features. This viewpoint can

be put into our framework: non-robust features, though with good generalization performance,

are not used by the teacher, the student cannot reject these features since the training data do

not provide enough teacher information.

Mathematical analysis were also conducted, e.g. to show the inevitable existence of adver-

sarial examples [6,33], the trade-off between adversarial robustness and clean data accuracy [39],

the trade-off between robustness and classifier complexity [28], and the provable robustness of

highly over-parameterized models [45].

Due to its benefits on analysis and implementation, the lp distances are used to quantify

robustness in most works mentioned above, especially the cases of p = 0, 2,∞. However, lp
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distance is obviously different from human perception. In [5,46], data pairs that are impercep-

tible to human but have large lp distances are identified. On the other side, [35] found image

pairs that are close measured by the lp norm but look very different for humans. Attempts

are made to find metrics that align better with human perception, such as the Wasserstein

distance [43, 44], SSIM [13] and other perceptibility metrics [18, 23]. However, human exper-

iments and statistical tests in [32] show significant difference between human perception and

these metrics.

Among all the theoretical explanations of adversarial examples, the understanding provided

in [40] is most relevant to our work. Like what we do in this paper, the authors of [40]

also decouple the data generator and the label generator (which they call the oracle), and

compare topological properties of the oracle and the student model. They claim that adversarial

examples are caused by the difference of the two (pseudo)metric spaces corresponding to the

student and the oracle. Our work is different from theirs in at least two ways: (1) After

decoupling the data generator and the teacher, we directly compare the decision regions and

decision boundaries of the teacher and the student, instead of considering metric spaces. The

metric spaces help mathematical analysis, but are hard to verify and identify in practice. (2)

Based on the decoupled understanding of adversarial examples, we further explore and compare

possible ways to achieve adversarial robustness, and suggest that an active teacher is required to

efficiently align student decision regions with those of the teacher in order to achieve adversarial

robustness.

3. A Conditional Framework of Adversarial Robustness

3.1. Decoupling data generator and teacher in supervised learning

In this section we introduce a conditional framework to understand adversarial examples

and adversarial robustness. We start from a decoupled understanding of supervised learning

problems. Traditional formulation of supervised learning problems consists of two parts: a joint

distribution of data and label (x, y), and a student model which learns the relation between x

and y using the training data sampled from the distribution. Compared with the traditional

ones, our formulation of supervised learning decouples the process of generating x and y, and

consists of three components: the data generator, the teacher, and the student.

• The data generator is a distribution µ from which data points x are sampled, to form

training and testing data sets.

• The teacher is a mechanism to assign labels to the data points. It takes data x as

input and outputs a label y associated with the data. The teacher can be a deterministic

function or a stochastic mechanism. For practical machine learning problems the teacher

is usually human. We use T to denote the teacher.

• The student is a machine learning model trained using a set of data and labels generated

by the data generator and the teacher, to learn the labeling rules of the teacher. The

student takes data points as inputs and the predicted labels for the input data as outputs.

We use S to denote the student.

Fig. 3.1 shows the learning procedure of our machine learning model: the data generator gen-

erates data, the teacher assigns labels to the data, forming a dataset, and finally the student is

trained using the dataset.
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In our formulation we decouple the data generator and the teacher, so we can study the

teacher alone. The decoupled perspective highlights that the teacher can work out of the data

distribution µ, and we do not have access to all the information of the teacher by just sampling

data from µ. As we are going to clarify in the next section, this is the essential reason for the

existence of adversarial examples. Finally, note that the traditional formulation can also be

included into our framework, by considering the data generator to be the marginal distribution

(of x) and the teacher to be the conditional distribution (of y conditioned on x).

Fig. 3.1. The learning procedure of the machine learning model considered in this paper.

3.2. The conditional definition of adversarial examples

By decoupling the teacher from the data generator, we can now examine adversarial exam-

ples and define adversarial robustness in a conditional way. Specifically, adversarial robustness

is a property of a student model conditioned on a certain teacher. It involves both the student

and the teacher.

We first illustrate the ideas by a simple example. Assume x ∈ X ⊂ Rd. Consider a binary

classification problem with two classes A and B. Since sometimes a classifier cannot assign a

label with high confidence for any x in X, we assume that the teacher can output three values:

A, B, and U . Here A and B mean the input data belongs to classes A and B, respectively, and

U means the teacher is uncertain with the input data. This kind of classifiers are also studied

as “selective classifier” in previous works [4, 9]. Let ΩA ⊂ Rd be the set in which the teacher

outputs A:

ΩA := {x ∈ X : T (x) = A}.

ΩB and ΩU are similarly defined. We require ΩA ∪ ΩB ∪ ΩU = X.

Remark 3.1. The existence of class U is reasonable given that even for humans it is very

common to be uncertain with some hard-to-classify images. We can understand the model

as a classification problem with three classes but we are only interested in two of them. In

traditional understanding of supervised learning the class U is not highlighted because the data

distribution is coupled with the teacher and naturally concentrates in ΩA ∪ΩB . But to address

adversarial robustness the uncertain class U becomes important because we have to consider

adversarially generated unnatural data distributions.

Remark 3.2. The most interesting teachers are humans, which is the case for most CV and

NLP problems. However, it can also be objects such as machine learning models, e.g. in the

case of knowledge distillation [16]. For a simple example, assume we have a neural network

N : Rd → [0, 1], which predicts the probability that the input belongs to class A. Then the
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teacher can be defined as

T (x) =


A if N(x) > 0.99,

B if N(x) < 0.01,

U otherwise,

i.e. the classes A and B are assigned only when the neural network has high confidence. Hence,

adversarial robustness can be considered with respect to general teachers, as in the examples

below.

Now we can give a formal description of adversarial examples within our framework. Usually

an adversarial example is defined as a data point wrongly classified by a machine learning model,

which is very close to another correctly classified data point, and the difference between the

two data points are imperceptible to humans. In our framework, we let humans be the teacher

and the machine learning model be the student. We highlight the fact that the student gives

different prediction from the teacher, then the above definition of the adversarial examples can

be rephrased as follow:

An adversarial example is a data point x that satisfies T (x) = A or B and T (x) 6= S(x).

Later examples will show that, as long as adversarial examples described above exist, there will

naturally be adversarial examples perceptually close to a correctly classified data point.

In the above statement, an adversarial example can be understood as a data point that the

teacher can classify with high confidence, but the student gives different label from the teacher.

This kind of data exists because the student is trained by data sampled from µ, but µ cannot

provide full information of the teacher, e.g. the support of µ cannot fully cover ΩA and ΩB .

As an illustrative example, (See the left panel of Figure 3.2) let x = (x1, x2) ∈ [−1, 1]2 and the

teacher is induced by a linear model:

T (x) =


A if x1 ≥ 0.5,

B if x1 ≤ −0.5,

U otherwise.

On the other side, assume that µ is a uniform distribution on [0.5, 1] × [0.5, 1] ∪ [−1,−0.5] ×
[−1,−0.5]. Then if the student makes max margin classification, the decision boundary will be

close to x1 + x2 = 0. Adversarial examples appear in the second and fourth quadrant (as show

by the grey areas in the figure).

With the above definition of adversarial examples, we can state the following definition of

adversarial robustness:

A student model S is adversarially robust with respect to a teacher T , if T (x) = S(x) for

all x ∈ ΩA ∪ ΩB.

We call this definition Strong Adversarial Robustness, because it requires the student to

generalize on any distribution in ΩA ∪ΩB , i.e. it should give correct classification on any data

point that the teacher can classify with high confidence. It is clear that in this situation no

perturbation imperceptible to the teacher can lead to a change of classification of the student.

Note that strong adversarial robustness does not require the student to be the same as the

teacher, due to the existence of U .

The definition of strong adversarial robustness can be extended to multi-class classification

problems. Assume there are K ≥ 2 classes denoted by C1, C2, · · · , CK , and let ΩCk
be the

regions where T outputs Ck, for k = 1, 2, · · · ,K. Then, we have the following definition for

strong adversarial robustness:
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Definition 3.1 (Strong adversarial robustness). Let µ, T , S be the data distribution,

teacher, and student, respectively. Then, S is strongly adversarially robust with respect to

T if

S(x) = T (x), ∀x ∈
K⋃
k=1

ΩCk
.

Besides strong adversarial robustness, we can also define a weaker version of adversarial

robustness. In this case, we consider an attack A which takes the original data distribution

and the student model as inputs and a family of adversarial data distributions as output. We

say the student S is adversarially robust with respect to the teacher T and the attack A if S

generalizes as well as T on all the distributions generated by the attack A. A mathematical

definition is given as follows.

(a)
(b)

Fig. 3.2. (Left) The simple illustration of adversarial examples. l2 robust model may not be adversar-

ially robust. (Right) Strongly adversarially robust model may not be l2 robust.

Definition 3.2 (Adversarial robustness with respect to an attack). Let µ, T , S be the

data distribution, teacher, and student, respectively. Let A be the attack, and

P = A(µ, S),

where P is a family of adversarial distributions given by A with input µ and S. Then, the

student S is (A, µ, ε)-adversarially robust with respect to T , if

inf
ν∈P

Px∼ν

(
T (x) = S(x)|x ∈

K⋃
k=1

ΩCk

)
> 1− ε. (3.1)

By the definition above, the student is adversarially robust if it can generalize well over the

distributions generated by a specific attack, on the regions where the teacher performs with

certainty. The attack can take many forms. For example, the attack with small lp perturbations

produces all the distributions whose support is within a small distance δ of the support of µ:

P = {ν : ∀x ∈ supp(ν), ∃x′ ∈ supp(µ), s.t. ‖x− x′‖p ≤ δ} .
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Note that the weak adversarial robustness with above attack is not exactly equivalent with

the commonly studied lp robustness. Because in our definition we only require the student to

classify correctly in the region where the teacher can make confident classification, instead of

giving the same classification within the lp ball with radius δ centered at any data point x. (See

the conditional probability in (3.1)) As a result, our definition of adversarial robustness does

not conflict with the clean data accuracy (the accuracy on µ)—the student can be robust at

the same time of having good accuracy on µ. This is a more proper definition of lp robustness.

As a second example, the attack can also be all the distributions whose Radon-Nikodym

derivative with respect to µ is close to 1:

P =

{
ν :

dν

dµ
∈ [c,

1

c
]

}
,

for some constant c > 0. As a third example, it can also depend on the student S, such as the

fast gradient method:

P =

{
ν = Γ#µ : Γ(x) = x + δ

g

‖g‖
, g =

∂S(x)

∂x

}
.

Finally, strong adversarial robustness can be viewed as robustness with an attack that produces

all the probability distributions on X.

3.3. Relation with lp robustness

As we mentioned above, lp robustness is appropriately covered by Definition 3.2. In this

section, we focus on traditional l2 robustness and compare it with our definition of strong

robustness. Using simple illustrative examples, we show that l2 robust students may not be

strongly robust, and strongly robust students may not be l2 robust, either.

The example in the left panel of Fig. 3.2 shows a student that is l2 robust but not strongly

adversarially robust with respect to the teacher. In the example, the teacher conducts classifi-

cation with only x1, and does not use the feature x2. Hence, data points with the same x1 but

different x2 are imperceptible to the teacher. However, the student gathers teacher information

only from the training data, hence it is reasonable for it to make max margin classification.

Using the max margin decision boundary, the student is l2 robust even when the perturbation

is large, but adversarial examples exist. For example, for a data point in the grey area on the

upper-left part of the figure, the student will make wrong classification, while for the teacher

this data a looks similar to the ones on the bottom-left side because they have the same x1.

In the right panel of Fig. 3.2, we show an example that adversarial robustness does not imply

l2 robustness. In this example, the two classes lie in the second and the fourth quadrants,

respectively. And there is no margin between the two classes. The student with decision

boundary shown by the red line is strongly adversarially robust with respect to the teacher,

because the decision boundary passes through the origin. However, since there is no margin

between ΩA and ΩB , the student is not l2 robust with any ε > 0, because for any ε we can

always find a sample in ΩA∪ΩB whose l2 distance from the decision boundary is smaller than ε.

In real problems, such “zero margin” situation is quite common. The teacher’s decision might

have sudden jumps from one class to another in a small region, for example, when the teacher

decides the sign of a number, or compares the sizes of two objects. Humans are usually good

at these tasks.
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4. Adversarial Robustness Requires Active Teacher

By the new understanding of adversarial examples, we tentatively conclude that adversarial

examples exist because the student does not have sufficient information of the teacher. To

achieve adversarial robustness, additional teacher information should be incorporated into the

student. This can be achieved in two ways:

1. A passive teacher and an active student: In this approach, the teacher provides

information to the student only when the student asks for information from the teacher.

For instance, in addition to the training data, the student generates extra data and

asks the teacher to classify these data. Then, the new data and labels are included to

the training set to train an updated student model. (This is like an interactive way of

adversarial training).

2. An active teacher: The teacher directly tells the student information on how it makes

classification, such as the features used, invariances, sparsity, or the structure of the model,

etc. Then, the student tries to encode the information into its learning procedure, e.g.

taking specially designed network structure and learning algorithm.

In this section, we show that an active teacher is preferred, and may even be necessary, for the

student to be adversarially robust.

In the setting of a passive teacher, we theoretically prove that a simple query-based active

student cannot efficiently learn robust models. On the other hand, in the setting of an active

teacher, we show by numerical examples how can the teacher “teach” the student to be robust.

4.1. A passive teacher and an active student

An active student can acquire teacher information in many different ways. In this section,

we consider one of the most natural ways to ask for teacher information—feature query. Specif-

ically, every time the student provides the teacher with a feature, and the teacher returns the

correlation of the feature with the labels (the correlation is computed in a data distribution

generated by the attack, hence it helps achieving adversarial robustness and cannot be approxi-

mated with µ). In this way, the student asks the teacher “to what extent do you use this feature

to make classification”, and the teacher answers the question with a score. Then, the student

updates itself according to the teacher’s answer. Intuitively, the student can learn a robust

classifier if it identifies all the features used by the teacher to make classification. However,

since there are numerous possibilities when choosing the features to query, it can be hard to

find the right ones. In this section, we borrow the theories of hardness of learning to show that

in some cases it is impossible to efficiently learn a robust student with feature querying, even

though we have a very weak attack which only produces one single adversarial distribution.

Mathematically, we put our “feature query” setting into the statistical query framework [19].

Let X = {0, 1}d, D be some probability distribution on X. Let T : X → {0, 1} be the teacher.

Then, a statistical query STAT(T,D) takes a function χ : X × {0, 1} → {0, 1} and returns

Ex∼Dχ(x, T (x)) with some tolerance α, i.e. the returned value lies in [Ex∼Dχ(x, T (x)) −
α,Ex∼Dχ(x, T (x)) + α]. Obviously, the correlation of a feature h : X → {0, 1} with the

labels, Ex∼Dh(x)T (x), is a statistical query with χ(x, T (x)) = h(x)T (x). Statistical queries

are powerful because it can return the correlation of any feature with the teacher’s output with

high accuracy, of course including those features used by the teacher.
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It is proven in [19] that parity functions are not efficiently learnable from statistical queries.

A parity function with respect to a subset S of {1, 2, · · · , d} is defined as

fS(x) =

(∑
i∈S

xi

)
mod 2, (4.1)

i.e. fS takes 1 if an odd number of entries in {xi, i ∈ S} is 1, and takes 0 otherwise.

Theorem 4.1 (Theorem 5 of [19]). Let Fd be all parity functions over {0, 1}d and D be the

uniform distribution on {0, 1}d. Then, for any fixed accuracy ε, there does not exist polynomials

p(d) and q(d), and an algorithm using statistical queries with tolerance α ≥ 1/q(d), such that for

any f ∈ Fd the algorithm can return a hypothesis h within p(d) statistical queries that satisfies

Px∼D(h(x) = f(x)) > 1− ε. (4.2)

Based on the theorem above, we can show that an active student using feature queries

cannot always learn adversarially robust classifiers efficiently. Still consider X = {0, 1}d. Now,

let µ be the uniform distribution on two points (0, 0, · · · , 0) and (1, 0, · · · , 0), A be an attack,

and ν be the uniform distribution on X, which is generated by the attack A. That is to say,

the output of this weak attack contains only one distribution, and even does not depend on the

student. Finding a robust classifier requires the student to generalize on ν. Consider the set of

teachers T to be all parity functions over X with the first coordinate included, i.e.

T = {fS(x) : S ⊂ [d], 1 ∈ S} . (4.3)

Then, since µ only supports on two points, teachers in T can be learned by a simple linear

regression on µ. However, by Theorem 4.1, they cannot be learned efficiently on ν using feature

queries. Hence, the student cannot learn adversarially robust classifiers with respect to the

teachers in T , if the attack gives the distribution ν. To summarize, we have the following

theorem.

Theorem 4.2. Let T , µ, ν, A be defined above. Let T be a teacher from T and S be a student

which has access to the data pairs (x, T (x)) where x is sampled from µ. Besides, the student

can get feature queries Ex∼νh(x)T (x) for any feature h : X → {0, 1}, with a tolerance α that

satisfies α ≥ 1/q(d) for some polynomial q(d). Then, for any fixed ε > 0, there does not exist a

polynomial p(d) such that for any T ∈ T the student can learn an (A, µ, ε)-Adversarially robust

classifier with respect to T within p(d) feature queries.

Proof. For any d ≥ 2, let X0 = {(0, x2, x3, · · · , xd) : xi ∈ {0, 1}, i = 2, 3, · · · , d}. Assume

that the conclusion of Theorem 4.2 does not hold. Then, there exists an algorithm that for any

teacher T ∈ T it can learn a student model h that satisfies

Px∼D(h(x) = T (x)) > 1− ε (4.4)

with at most p(d) feature queries and a tolerance α ≥ 1/q(d). Here, ε is a constant and p(·), q(·)
are two polynomials, which may depend on ε. Equation (4.4) implies

Px∼D(h(x) 6= T (x)) ≤ ε,

which can be rewritten as
1

2d

∑
x∈{0,1}d

1h(x) 6=T (x) ≤ ε.
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Therefore, ∑
x∈X0

1h(x) 6=T (x) ≤
∑

x∈{0,1}d
1h(x) 6=T (x) ≤ 2dε,

which directly gives
1

2d−1

∑
x∈X0

1h(x)6=T (x) ≤ 2ε,

and hence

Px∼unif(X0)(h(x) = T (x)) > 1− 2ε. (4.5)

By the definition, T conditioned on X0 contains all the parity functions of x2, · · · , x3. Hence,

Equation (4.5) is contradictory with Theorem 4.1. This completes the proof. �

The hardness of learnability has recently been studied in the setting of neural networks [10,

11, 24]. Therefore, it is possible to extend Theorem 4.2 to more general teachers, e.g. neural

network models.

4.2. An active teacher

On the other hand, if the teacher actively provides information to the student, then it

is possible to efficiently learn robust classifiers. For the same problem in Theorem 4.2, if

the student knows from the teacher that it is a parity function, then the student can check

whether the teacher considers the i-th coordinate by querying two data points (0, 0, · · · , 0) and

(0, · · · , 0, 1, 0, · · · , 0) where the 1 in the second data point appears in the i-th coordinate. In

this way, the student can learn the teacher within d + 1 data queries. Hence, we have the

following theorem:

Theorem 4.3. Let T , µ, ν, A be defined the same as in Theorem 4.2. The teacher T comes

from T . Let S be a student that can make data query from the teacher, i.e. get T (x) from the

teacher for any x. Then, if the student knows the teacher is a parity function, it can learn a

strongly adversarially robust classifier within d+ 1 data queries.

Proof. Let 0 = (0, 0, ..., 0), and ei = (0, · · · , 0, 1, 0, · · · , 0) for i = 1, 2, · · · , d, where the 1

appears on the i-th coordinate. If the student knows that the teacher T comes from parity

functions, it can query T (0) and {T (ei)}di=1. Then for any i = 1, 2, · · · , d, T (0) = T (ei) implies

i 6∈ S, while T (0) 6= T (ei) implies i ∈ S. �

Therefore, information directly from an active teacher may help the student find a robust

classifier more efficiently. In the following we support this claim by two numerical examples.

Example 4.1. Consider a binary classification problem. Let x ∈ R100 be the input data, and

xi be the i-th element of x. Assume xi ∈ [0, 1]. To assign the label, the teacher only compares

the first element x1 and the last element x100. The teacher assigns label y = −1 if x1 > x100,

and y = 1 if x1 ≤ x100. Obviously a strongly adversarially robust classifier for this problem

cannot be l2 robust, because there is no margin between the two classes. For each class, we

uniformly sample 1000 training data. Linear regression (without bias) is used as the student

model. Let the linear regression model be

ŷ = αTx, (4.6)
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and let αi be the coefficients corresponding to xi. Then the strongly adversarially robust model

satisfies α1 < 0, α100 = −α1, and αi = 0 for other i.

If the student does not have any additional information besides the training data, a plain

linear regression is conducted with 100 variables. A dense vector will be produced, and it will

be easy to find adversarial examples by changing xi’s other than x1 and x100 according to the

sign of the corresponding coefficients. Specifically, for some x correctly classified by the student,

assume x1 > x100 without loss of generality, we can construct x̂ by

x̂1 = x1, x̂100 = x100, x̂i = xi + εsign(αi) for i = 2, 3, · · · , 99.

Then, the prediction of x̂ can be flipped as long as ε > αTx/
∑99
i=2 |αi|, while the difference

between x̂ and x is always imperceptible to the teacher. Fig. 4.1 shows the coefficients and

some adversarial examples in the form of 10× 10 images. On the other hand, if the student is

provided with additional information directly from the teacher beyond the training data, better

adversarial robustness may be achieved. For example, if the student is told that the teacher

only considers x1 and x100, then the student can choose to use a sparse model

ŷ = α1x1 + α2x100. (4.7)

Training this sparse model with the same set of training data, we obtain the model

ŷ = −2.01x1 + 1.98x100, (4.8)

which is much more robust than the plain linear regression model, because perturbing pixels

other than x1 and x100 can no longer change the prediction of the model. However, adversarial

examples still exist for those x1,x100 that satisfies −x1 + x100 > 0 but −2.01x1 + 1.98x100 < 0,

e.g. x1 = 1, x100 = 1.01. If we incorporate further information, e.g. the teacher is a linear

model that takes integer coefficients, then we can round the coefficients in (4.8) and get a model

with strong adversarial robustness.

Fig. 4.1. ( Left) the coefficients of the student model corresponding to every entries of x. ( Others)

some adversarial examples of the student model.

Example 4.2. This example shows that when multiple features can be picked to make gen-

eralizable classification, additional teacher information can help the student find the features

that lead to a robust model. In this problem, the data are images of a disk or a square with

random size and location, and the student model is asked to classify between disks and squares.

Except the shapes, we add textures in the squares as a confounding feature. Examples of the

data are shown on the first row of Fig. 4.2. In the data distribution which generates the training

and testing data (µ), squares always have textures while disks always do not. Therefore, both

features—shape and texture—can be used to build a generalizable classifier. However, for the

teacher (human) shape and texture have different meanings and the teacher expect the student
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(a)

(b)

Fig. 4.2. (a) Examples of the training and testing data. The location and size of the squares and disks

are chosen randomly. The squares have textures while the disks do not. (b) Examples of the data

generated by the attack from adversarial distribution ν. Textures appear in the disks instead of the

squares..

Fig. 4.3. The prediction accuracy on test samples and adversarial samples. ( Left) The training data

are directly used to train the neural network. ( Right) A max pooling of kernel size 3 and stride 1 is

conducted before the data is fed into the convolution layers.

to use shape for classification. Hence, as an adversarial data distribution (ν), we generate disks

with texture and squares without texture, as shown on the second row of Fig. 4.2.

A convolutional neural network is utilized to learn the problem on a training set including

1000 images, with 500 squares and 500 disks. Experiment details are provided in the appendix.

1000 test samples are randomly generated from µ, and another 1000 adversarial examples

are generated from ν. The left panel of Fig. 4.3 shows the accuracy on the test samples and

adversarial samples during the training process, when no teacher information except the training

data is provided. It shows clearly that the student learns to make classification using textures,

hence as the test accuracy goes to 1 the adversarial accuracy goes to 0. On the other hand,

if the teacher tells the student that the classification should be made depending on the shape,

then the student can conduct a low-pass filtering to the images before feeding them into the

neural network, to filter out the texture. For this problem, specifically, we use a max pooling

with kernel size 3 and stride 1 to act as the filtering. The results are shown on the right panel

of Fig. 4.3. In this case the adversarial accuracy is nearly as good as the test accuracy.
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5. Discussion

In this paper we make three points about the cause of and the solution to adversarial

examples. First, the teacher and the data generator should be considered separately, and

adversarial robustness is a relevant concept between the student and the teacher. Second,

adversarial examples are caused by the insufficiency of information provided by the training

data about the teacher. Third, to solve the insufficiency of teacher information, we suggest

that an active teacher is more preferred than an active student with a passive teacher. In the

case where the teacher is human, our study suggests that human labelers should provide more

information besides the labels and the model should be designed to incorporate the additional

information. This is similar to the case when people are learning. For example, when human

teachers teaches image recognition to human students, they usually describe features about the

objects. The description of features certainly contains more information than just labels.

Moreover, in complicated learning problems the features are often hierarchical. In deep

learning, one often prefers end-to-end training and relies on the models to automatically learn

the hierarchical structure of the features. Our study, however, demonstrates that including

information of the feature hierarchy may help the student model be robust. Similar methodology

has been studied in a different context. In [34], it is shown that decomposition learning can be

efficient when end-to-end learning is impossible.

Strictly speaking, any model or algorithm encodes certain prior information and hence

exhibits certain “implicit bias”. The model performs well when its implicit bias coincides with

the prior of the teacher. This is especially crucial in the over-parameterized regime where

there are many solutions which perfectly fit the training data but only a small fraction of

them generalize well. In the case of adversarial robustness, however, we require another level

of implicit bias: the solutions picked by the model not only have to generalize well on the

test data provided by the data generator, but also need to generalize to regions that are not

sufficiently represented by the data generator. This is also a topic studied by out-of-distribution

generalization [20, 36] and distribution shift [31]. However, existing models cannot provide

satisfactory implicit bias to learn human-like classifiers. They are either too simple (like the

linearity of linear regression and the sparsity of LASSO), or hard to interpret (like deep neural

networks). It is very important to design models that can directly and explicitly incorporate

interpretable information provided by humans. We leave this as a major direction of future

work.

Finally, other than achieving robustness, a model whose prior knowledge is better aligned

with that of humans may also help in few-shot learning, meta-learning, and model interpreta-

tion. It is an inevitable step to achieve higher levels of artificial intelligence than today’s deep

learning.

A. Experiment Details

In this section we provide the experimental details of the second example in Section 4.2.

The experiments are run on a 2020 Macbook Pro 13’ with 16GB RAM, and the neural networks

are implemented and trained by Pytorch.
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A.1. Data

The data are images with 100×100 pixels. The half side length of the squares and the radius

of the disks are uniformly sampled from integers within [12, 25], which roughly corresponds to

[a/8, a/4], where a is the side length of the images. The centers of the shapes are then uniformly

sampled from pixels so that the whole shape is within the image. For example, for a square with

half side length 20, the center is a pixel (x, y) with x and y uniformly sampled from integers

within [20, 78]. Then, the area of the square is [x − 20, x + 20] × [y − 20, y + 20]. The images

are in gray scale, with each pixel taking values in [0, 1]. The background pixels take values 0

while the pixels in the shape are 1. The texture is added to the shape by changing the value

from 1 to 0.5 for the pixels (x, y) with x + y being even and leaving the value at other pixels

unchanged.

For training, we sample 500 images of squares with texture and 500 images of disks without

texture, forming a data set consisting of 1000 images. For testing, we sample 1000 new image

each time testing is conducted. The images still consist of squares with textures and disks

without textures. The probability of squares is 0.5. When measuring adversarial performance,

each time we sample 1000 images of squares without texture and disks with texture. The

probabilities of squares and disks are still 0.5.

A.2. Model

We use a multi-layer convolutional neural network (CNN) as the student model. The neural

network has 3 convolution layers and 2 max pooling layers in the middle of convolution layers.

An average pooling and a fully connected layer follow the convolution layers. Specifically, the

architecture of the neural network isInput (100× 100× 1)

↓
Convolution with 16 channels (100× 100× 16)

↓
Max pooling the kernel size 2 and stride 2 (50× 50× 16)

↓
Convolution with 32 channels (50× 50× 32)

↓
Max pooling the kernel size 2 and stride 2 (25× 25× 32)

↓
Convolution with 32 channels (25× 32)

↓
Average pooling the kernel size 5 and stride 5 (5× 5× 32)

↓
Reshape and fully connected layer (2)

The cross entropy loss is used as the loss function. Adam is taken as the optimizer, with

learning rate 0.001 and default momentum factors (0.9, 0.999). The network is trained by 10

epochs and the batch size is 50.
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