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Abstract. In this paper, we describe a residual distribution (RD) method where,
contrarily to ”standard” this type schemes, the mesh is not necessarily conformal. It
also allows to use discontinuous elements, contrarily to the ”standard” case where
continuous elements are requested. Moreover, if continuity is forced, the scheme is
similar to the standard RD case. Hence, the situation becomes comparable with the
Discontinuous Galerkin (DG) method, but it is simpler to implement than DG and
has guaranteed L∞ bounds. We focus on the second-order case, but the method can
be easily generalized to higher degree polynomials.
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1 Introduction

This paper is devoted to the design of an approximation method for steady hyper-
bolic problems by means of a scheme which enjoys the most possible compact stencil.
There exist many similar methods, for example the Discontinuous Galerkin method,
or the continuous Residual Distribution schemes. In the first case, the solution is rep-
resented in each element of the mesh by polynomial functions where no continuity
is enforced at the element boundaries. Hence, the method is very flexible since the
mesh does not need to be conformal, nor the polynomial degree be the same in each
element. Other approximation techniques than local polynomial representations can
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be chosen In our opinion, one of its disadvantages is its complexity, especially when
one considers mixed hyperbolic/elliptic problems such as the Navier Stokes equa-
tions. Moreover, and this is the point we are interested in here, when discontinuous
solutions are computed, the non linear non oscillatory stabilization mechanisms are
not completely satisfactory because they depend on parameters or are quite complex
to design, see [1–4] for example. Either they are very complex to set up, or they intro-
duce too much dissipation.

In the case of the residual distribution (RD) methods, the solution is also approxi-
mated by piecewise polynomial functions, but here the approximation is globally con-
tinuous. Hence, the algorithmic complexity is lower (in term of memory especially).
Another property is that there exists a very general and systematic method that en-
ables us to guaranty accuracy formal O(hk+1) accuracy, even at local extrema, and L∞

stability. However, the mesh must be conformal, see [5–7] among several others.
In this note, we describe a residual distribution method where the functional rep-

resentation does not need to be continuous across edges. The method is general and
could be extended to any order of accuracy, following the lines of [8], but here, we have
only developed it for a local P1 interpolation in each element to present the ideas. Con-
trary to the ”classical” RD schemes, the continuity across edges is no longer enforced.
This method is simpler than the one described in [9]. Indeed, the scheme reduces
to the one of [5, 10] and [6] if continuity is enforced across edges. Compared with
standard DG methods, the scheme non oscillatory properties are obtained without any
parameter.

The paper is organized as follows. We first describe the method for a scalar prob-
lem. Then the method is extended to the Euler equations for fluid dynamics. The
extension to 3D is straightforward as well as on non conformal meshes. This paper
opens the road for h-p adaptation for RD schemes.

This paper is a translation of a 2007 report written in French, [11], with some im-
provements. In the meantime, Hubbard [12] has published a similar technique. How-
ever, the similarity starts and ends in that we both use discontinuous elements. Hub-
bard then develops his method using an extension of the N scheme. We have used
Lax-Friedrichs method, but following [13], any standard finite volume scheme can be
rewritten as a RD scheme, and hence can be plugged into our framework. The method
is also much simpler than the one in [9].

2 The scalar case

Let us consider the following problem, defined in Ω⊂R2 to make the presentation
simpler

div f (u) = 0, if x ∈ Ω, (2.1a)
u = g, if x ∈ Γ−, (2.1b)



34 R. Abgrall / Adv. Appl. Math. Mech., 2 (2010), pp. 32-44

where Γ− is the inflow boundary

Γ− = {x ∈ ∂Ω, such that ∇u f ·~n(x) < 0},

and ~n(x) is the outward unit normal x ∈ ∂Ω.
In a first step, we consider a conformal triangulation of Ω using triangles. We

explain the method, and in a second step, we show how to generalize it to non confor-
mal triangulations and for non triangular meshes. The 3D case can be dealt with in a
similar way.

Let us denote by K a generic element of Th. The real number h represents the
maximum of the diameters of the elements of Th.

In K, we say that the degrees of freedom are located at the vertices, and we repre-
sent the approximated solution in K by the degree one interpolant polynomial at the
vertices of K. Let us denote by uh this piecewise linear approximation, that is in prin-
ciple discontinuous at across edges. In the following, we use the notations described
in Fig. 1.

Figure 1: Geometrical elements for defining the scheme.

In [9], the degrees of freedom are located at the midpoint of the edges that connect
the centroid of K and its vertices. This choice was motivated by the fact that the P1 ba-
sis functions associated to these nodes are orthogonal in L2(K). This property enables
us to reinterpret the DG schemes as RD schemes, and hence to adapt the stabilization
techniques of RD to DG. In particular, we are able to enforce a L∞ stability property.
However, this method was a bit complex, and it is not straightforward to generalize it
to more general elements than triangles.

The geometrical idea behind the new version of the method is to forget the RD
interpretation of the DG scheme and to let the geometrical localization of the degrees
of freedom move to the vertices of the element.

With this in mind, we define two types of total residuals:
(i) A total residual per element K

ΦK =
∫

∂K
f (u) ·~ndl,
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which is evaluated thanks to a quadrature formula;
(ii) A total residual per edge Γ, i.e.,

ΦΓ =
∫

Γ

[
f (u) ·~n]

dl,

where [ f (u) ·~n] represents the jump of the function f (u) ·~n across Γ. Here, if ~n is the
outward unit normal to K (see Fig. 1), this enables us to define a right side and a left
side. Hence we set

[ f (u) ·~n] = ( f (uR)− f (uL)) ·~n.

We notice that ΦΓ only depends on the values of u on each side of Γ.

The idea is to split the total residuals into sub-residuals so that a monotonicity
preserving scheme can be defined. Here, we choose the (local) Lax–Friedrichs scheme,
but other choices could be possible, see [13] for rephrasing finite volumes into the RD
framework. Thus we consider:

• For the element K which vertices are {i, j, k} and l ∈ {i, j, k},

ΦK
l =

ΦK

3
+ αK(ul − u), (2.2)

with
u =

ui + uj + uk

3
, and ffK ≥ max

x∈K
||f′(uh(x)||,

where || . || is any norm in R2, for example the Euclidian norm.
• For the edge Γ,

ΦΓ
l =

ΦΓ

4
+ αΓ(ul − u), (2.3)

with
u =

ui + uj + uk + up

3
,

where ui, uj, uk, up are the values on each side of Γ and

αΓ ≥ max
K=K+,K−

max
x∈∂K∪Γ

|| f ′(uh(x)||,

see Fig. 1 for a definition of K±.

We have the following conservation relations

∑
i∈K

ΦK
i = ΦK, (2.4a)

∑
i∈Γ

ΦΓ
i = ΦΓ. (2.4b)

The choice

αK ≥ max
x∈K

|| f ′(uh(x)||, and αΓ ≥ max
K=K+,K−

max
x∈∂K∪Γ

|| f ′(uh(x)||,

are justified by the following standard argument.
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If we set Q = K or Γ, we can rewrite the two residuals as

ΦQ
l = ∑

j∈Q
cQ

ij (ui − uj),

with cQ
ij ≥ 0 under the above mentioned conditions. Indeed, if we introduce the value

u that appears in the formulas, we get (for Q = K for example)

ΦK
l =

ΦK

3
+ αK(ul − u)

=
1
3

∫

∂K

(
f (u)− f (ū)

) ·~ndl + αK(ul − u)

= ∑
j∈K

1
3

[ ∫

∂K

( ∫ 1

0
f ′(su + (1− s)ū)ds ·~ndl

)
ds− αK

]
(ui − uj),

which proves the result.
We get a first order scheme by determining uh the solution of: find uh linear in each

triangle K such that for any degree of freedom i (i.e., vertex of the triangulation),

∑
K,i∈K

ΦK
i + ∑

Γ,i∈Γ
ΦΓ

i = 0. (2.5)

We specify later the boundary conditions.
Using standard arguments, as defining uh as the limit of the solution of

un+1
i = un

i −ωi

(
∑

K,i∈K
ΦK

i + ∑
Γ,i∈Γ

ΦΓ
i

)
,

with
ωi

(
∑

K,i∈K
cK

ij + ∑
Γ,i∈Γ

cΓ
ij

)
≤ 1,

we see that we have a maximum principle.
It is possible to construct a scheme that is formally second order accurate by setting

ΦK,?
i = βK

i ΦK, and ΦΓ,?
i = βΓ

i ΦK, (2.6)

with setting

xK
i =

ΦK
i

ΦK , xΓ
i =

ΦΓ
i

ΦΓ ,

and

βK
i =

max(xK
i , 0)

∑
j∈K

max(xK
j , 0)

, βΓ
i =

max(xΓ
i , 0)

∑
j∈K

max(xΓ
j , 0)

. (2.7)

As in the ”classical” RD framework, the coefficients β are well defined thanks to the
conservation relations (2.4). The scheme writes as (2.5) where the residuals ΦK

i (resp.
ΦΓ

i ) are replaced by ΦK,?
i (resp. ΦΓ,?

i ).
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Boundary conditions. If Γ is an inflow boundary edge, we need to set weakly the
boundary condition u=g. Consider a numerical flux, say an upwind flux, denoted by
F (uh, g,~n(x)). We consider the boundary residual

ΦΓ =
∫

Γ

(
F(

uh, g,~n(x)
)− f (uh) ·~n

)
dl,

that we split into two parts following the same procedure as above. If l and l′ are the
two vertices of Γ, we have defined ΦΓ

l and ΦΓ
l′ , and

ΦΓ
l + ΦΓ

l′ = ΦΓ.

The scheme, when we take into account the boundary conditions, is again (2.5) where
the list of edges takes into account the boundary edges, if needed.
Conservation and accuracy issues. In [9], we have shown that a scheme of the type
(2.5) where the residual satisfies the conservation constraints (2.4) (including on the
boundary) and standard stability assumptions (as in the Lax Wendroff theorem) is
convergent and the limit solution is a weak solution of the PDE (2.1).

The accuracy constraint (2.6) and (2.7) are also analyzed in the same reference [9].
In that case, the assumption that the problem is steady is essential in showing that the
residuals (including the boundary residuals) satisfies

ΦQ(uh) = O(hd+1),

where uh is the interpolant of the exact solution (assuming it is smooth) and d is the
dimension of Q: d=2 for a triangle and d=1 for an edge.
Extension to non conformal meshes. In what follows, we refer to Fig. 2. The scheme
(2.5) stays the same. Only the evaluation of the the residuals need to be precised. The
total residuals per elements or edges remain identical. By edge Γ, we mean an edge
seen from a given element. In the case of Fig. 2, for the element K, we get the edge

Figure 2: Example of a non conformal mesh.
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[i, q], while for K′, we take [i, j]. Notice that the degree of freedom q, again referring to
2, is active of each of the elements of the figure except K′: this explains the definition
we have taken for edges. The rest is identical.

3 Application to the scalar case

We test the scheme on a standard benchmark: the Burgers equations which is non
linear. The Burgers problem is

1
2

∂u2

∂x
+

∂u
∂y

= 0, (x, y) ∈ [0, 1]2, (3.1a)

u(x, y) =





1− 2x, x ∈ [0, 1], y = 0,
1.5, x = 0, y ∈ [0, 1],
−0.5, x = 1, y ∈ [0, 1].

(3.1b)

One of the problem we had to deal with is the visualization of the results. We have
used a software that is only able to represent point value data ones, not cell centered
data as here. Hence to transform our data into cell centered data, we had to compute,
for any vertex Mi,

ui =
∑

K,Mi∈K
uK

i

∑
K,Mi∈K

1
,

where uK
i represents the value at Mi when Mi is seen as belonging to K.

Fig. 3 represents the isolines obtained for problem (3.1). The results are non oscil-
latory and similar to those obtained by other methods, for example in [6, 9].
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Figure 3: Results obtained for (3.1).
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4 Extension to the Euler equations

For a system, the scheme remains formally identical: we can rephrase word to word
the definitions of the total residuals, as well as that of the Lax-Friedrichs scheme. The
parameter α in (2.2) and (2.3) becomes

max
||n||=1

ρ
(

Anx + Bby
)
,

where A (resp. B) is the x- (resp. y-) Jacobian of the Euler flux and ρ(M) is the spectral
radius of the matrix M. In the system case, the scheme is formally identical. The
only difference is in the definition of the ”limited” residuals (2.6) and (2.7), i.e., in the
definition of the matrices βK

i and βΓ
i needs to be precised.

The methods is the one described by [5] that we recall. The Euler equations write

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)
∂y

= 0,

where the vector of conserved variables is

U =




ρ
ρu
ρv
E


 ,

and the fluxes F and G are

F(U) =




ρu
ρu + p

ρuv
u(E + p)


 , G(U) =




ρv
ρuv

ρv + p
v(E + p)


 .

Here, as usual, ρ represents the density, u and v are the two components of the velocity
vector, E is the total energy and p is the pressure. The system is closed by an equation
of state, here we assume that the fluid is a caloricaly perfect gas,

p = (γ− 1)
(

E− 1
2

ρ(u2 + v2)
)

.

The ratio of specific heats γ is set to 1.4.
Let us consider a direction (in practice the velocity vector)~n which components are

nx and ny. Denoting A and B the Jacobian matrices of the flux F and G with respect to
U, we know that the matrix

Anx + Bny,

is diagonalizable with distinct real eigenvalues: the system is strictly hyperbolic. The
eigenvalues are λ1 = ~u ·~n which is double and λ± = ~u ·~n± c. As usual, c represents
the speed of sound,

c2 = γ
p
ρ

.
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Let us denote by r1, r2 the eigenvectors associated to λ1 and r3,4 those associated to
λ±. More precisely, if H represents the total enthalpy, un = ~u ·~n and ut = −nyu + nxv,
we have

r1 =




1
u
v

u+v
2


 , r2 =




0
−ny
nx
ut


 , r3 =




1
u− cnx
v− cny
H − unc


 , r4 =




1
u + cnx
v + cny
H + unc


 .

By itself, the choice of the eigenvectors is not important, what is important is that
these eigenvectors are orthonormal for the quadratic form defined by the Hessian of
the entropy. Here, the quantities involved in the definition of the eigenvectors, i.e. the
speed of sound, the velocity, the enthalpy, are evaluated at an average state. Many
choices have been tested, and these experiences have revealed that the choice is not
very important. We have taken a state defined by the primitive variables that are the
arithmetic averages of the states at the vertices of K or Γ, the elements for which we
are computing the second order residuals.

Once this is done, we proceed as follows, for the element Q = K or Γ.

1. We decompose ΦQ
l , l = 1, . . . , N (N=3 for a triangle, 4 for an edge), in the eigen-basis

ΦQ
l = ∑

`=1,4
(ΦQ

l )`r`,

2. For each parameter ` (hence for any eigenvector r`), we notice that

N

∑
l=1

(ΦQ
l )` = (ΦQ)`,

and we define (ΦQ
l )?

` by

(ΦQ
l )?

` =

(
(ΦQ

l )`/(ΦQ)`

)+

N
∑

j=1

(
(ΦQ

j )`/(ΦQ)`

)+
(ΦQ)`,

with x+ = max(x, 0).
3. Then

(ΦQ
l )? =

4

∑
`=1

(ΦQ
l )?

` r`.

In any of the results that we have obtained, we have not added any filtering term
as it was necessary in [6]. For the moment, it is not possible to tell if such a term is
needed or not for the following reason: The graphic software we have used needs
data at the vertices of the mesh. Here, a vertex carries several degrees of freedom (one
per element), and we have made an arithmetic average. This certainly smoothes the
results.

We have run a quite complex case, that has been already documented in [6]. It is a
scramjet with the following boundary conditions:
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• Left and right boundary: supersonic inflow and outflow conditions. The inflow
conditions are

ρ = 1.4, u = 3.6, v = 0, p = 1.

• The other boundaries are solid walls.

The boundary conditions at the solid walls are obtained by mirror conditions.
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Figure 4: Density isolines for the ”classical” scheme continuous elements and the scheme discontinuous
element described in this paper. 30 isolines are represented.
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Figure 5: Pressure field for the ”classical” scheme continuous elements and the scheme discontinuous
element described in this paper. 30 isolines are represented.
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Figure 6: Mach number for the ”classical” scheme continuous elements and the scheme discontinuous
element described in this paper. 20 isolines are represented.
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Figure 7: Zoom of the Mach number for the ”classical” scheme continuous elements and the scheme
discontinuous element described in this paper. Exit of the scramjet. 20 isolines are represented.
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The density isolines (Fig. 4), pressure isolines (Fig. 5) and Mach number isolines
(Fig. 6) are given. They are compared with the results obtained by the continuous
residual distribution method of [6], which is also second order in space.

The isolines are almost identical for the two schemes. Fig. 7 represents a zoom of
the Mach number isolines at the exit of the scramjet. Once again, the quality of the
results is similar.

5 Conclusions and perspectives

We have described an extension of the Residual distribution schemes using discon-
tinuous elements. The main difference between these schemes and the discontinuous
Galerkin ones is in the stabilization mechanism. For scalar problems we are able to
prove L∞ stability. Extension to more than second order accuracy, following the lines
of [14] should be straightforward as well as for meshes using non triangular elements.
After this work (a preliminary version is in [11]) and [9] was completed, the refer-
ence [12] has been published. Though some similarities, we believe that our approach
is more general and more suitable to high order extension : it does not rely on a spe-
cific choice of a residual distribution mechanism (here we have chosen Lax Friedrichs,
but other choices could have been done).
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