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Abstract. In this paper, we consider the area function SQ related to the Schrödinger
operator L and its commutator SQ,b, establish the boundedness of SQ from Hp

ρ (w) to
Lp(w) or WLp(w), as well as the boundedness of SQ,b from H1

ρ(w) to WL1(w).
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1 Introduction

Throughout this paper, L always denotes the following Schrödinger differential operator

L = −∆ + V(x) on Rn, n ≥ 3,

where V is a nonnegative potential belongs to reverse Hölder class RHn/2 (see Section
1.2).

The study of the Schrödinger operator L has recently attracted much attention, see [1,
2, 4, 5, 12, 19]. In particular, Shen [12] proved the Schrödinger type operators, such as
∇(−∆ + V)−1∇, ∇(−∆ + V)−1/2, (−∆ + V)−1/2∇ with V ∈ RHn, and (−∆ + V)iγ with
γ ∈ R and V ∈ RHn/2, are standard Calderón-Zygmund operators.

In 2011, Bongioanni, etc. [1] introduced a new space of functions BMOθ(ρ) as a gener-
alization of the classical BMO space. They [2] also introduced a new weight class Aρ,θ

q that
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locally behaves as Muckenhoupt’s one and actually contains that. Both BMOθ(ρ) and
Aρ,θ

q are associated with the potential V. The authors [1, 2] also established Lp(Rn) (1 <
p < ∞) boundedness for commutators of Riesz transforms associated with Schrödinger
operators with BMOθ(ρ) functions, and weighted boundedness for Riesz transforms,
fractional integrals and Littlewood-Paley functions related to Schrödinger operator with
Aρ,θ

q weights. Recently, Tang, etc. [14–16] established weighted norm inequalities for
some Schrödinger type operators, including commutators of Riesz transforms, fractional
integrals, Littlewood-Paley functions and area functions related to Schrödinger opera-
tors, etc.

On the other hand, the function spaces related to L has attracted wide concern for
years. In 1999, Dziubański and Zienkiewicz [4] defined the Hardy space related to L, and
gave some equivalent characterizations. In 2005, Dziubański, etc [5] defined the BMO
space related to L, and proved that it is the dual space of the above Hardy space. The
weighted version of these theory have been also considered recently; see [8,13]. It should
be pointed out that in [8, 13], the authors considered the weight functions belonging to
Munckhoupt weight class. Very recently, Tang and Zhu [17] studied the properties of
weighted Hardy spaces with Aρ,θ

q weights.
In this paper, we continue to study weighted norm inequalities for area functions

related to Schrödinger operators and their commutators. In fact, the weights we consider
here are Aρ,θ

q weights, and the weighted boundedness are of the type Hp
ρ (ω)→ Lp(ω) or

WLp(ω), where Hp
ρ (ω) denotes weighted Hardy space related to ρ.

We first introduce some definitions. The area SQ function related to L is defined by

SQ( f )(x) :=
(∫ ∞

0

∫
|x−y|<t

|Qt( f )(y)|2 dydt
tn+1

)1/2

, (1.1)

where

(Qt f )(x) := t2
(

dTs

ds

∣∣∣∣
s=t2

f
)
(x), Ts = e−sL, (x, t) ∈ Rn+1

+ = (0, ∞)×Rn. (1.2)

The commutator of SQ with b ∈ BMOθ(ρ) is defined by

SQ,b( f )(x) :=
(∫ ∞

0

∫
|x−y|<t

|Qt((b(x)− b(·)) f )(y)|2 dydt
tn+1

)1/2

. (1.3)

The main results of this paper are as follows.

Theorem 1.1. Let q ≥ 1 and w ∈ Aρ,∞
q ,

(i) if n
n+δ0

< p ≤ 1 and 1 ≤ q ≤ p
(

1 + δ0
n

)
, then for all f ∈ Hp

ρ (ω),

‖SQ f ‖Lp(w) . ‖ f ‖Hp
ρ (ω);
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(ii) if p = n
n+δ0

and w ∈ Aρ,∞
1 , then for all f ∈ Hp

ρ (ω),

‖SQ f ‖WLp(w) . ‖ f ‖Hp
ρ (ω),

i.e., for all λ > 0,

λ · w
(
{x ∈ Rn : |SQ( f )(x)| > λ}

)1/p
. ‖ f ‖Hp

ρ (ω),

where δ0 is defined in Lemma 2.4 and Hp
ρ (ω) is defined in Section 2.

For the commutator SQ,b, we will prove the following result.

Theorem 1.2. If w ∈ Aρ,θ
1 , θ ≥ 0, then for all b ∈ BMOθ(ρ) and f ∈ H1

ρ(ω),

‖SQ,b f ‖WL1(w) . ‖b‖BMOθ(ρ)‖ f ‖H1
ρ(ω).

The paper is organized as follows. In Section 2, we give some notations and basic
results, most of which have been known before. In Section 3, we establish some useful
lemmas for the main result. Finally, we prove Theorems 1.1 and 1.2 in Section 4.

2 Preliminaries

2.1 Some basic notations

Without opposite claim, B always denotes a ball of Rn in this paper, i.e., B = B(x, r) :=
{z ∈ Rn : |z− x| < r}. The ball λB := B(x, λr) for λ > 0 and B = B(x, r).

Given a Lebesgue measurable set E, |E| denotes the Lebesgue measure of E. If |E| > 0,
We write fE or −

∫
E f to denote 1

|E|
∫

E f (x)dx.
A weight w(x) always means a nonnegative locally integrable function, which corre-

sponds with a measure dw := w(x)dx. Let w(E) :=
∫

E dw denotes the weighted measure
of E, and

‖ f ‖Lp
w(X) :=

( ∫
Rn
| f (y)|pw(x)dx

)1/p
for 0 < p < ∞.

The weighted Lp(X) space Lp
w(X) is defined as the set of all measurable functions f satis-

fying ‖ f ‖Lp
w(X)<∞. If X can be omitted, we may write Lp(w) or Lp

w instead of Lp
w(X) in the

notations of both spaces and norms. The weighted weak Lp norm ‖ f ‖WLp
ω(E) is defined

as
supλ>0

{
λ · w

(
{x ∈ E : | f (x)| > λ}

)1/p},

too. For p ≥ 1, denote p′ as the conjugate index of p, i.e., 1/p + 1/p′ = 1.
Throughout this paper, it is usually supposed that C denotes a positive constant in-

dependent of the main parameters involved, yet the value may differ from line to line.
The notation A . B means A ≤ C · B, and A & B the opposite. By A ∼ B, we mean that
A . B and A & B simultaneously. If we want to emphasize that the the constant C of a
notation “ . ” probably depends on a parameter, for example M, we may write “ .M ”.
So do the notations “ &M ” and “ ∼M ”.
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2.2 Reverse Hölder class

We say a nonnegative locally Lq integral function V(x) on Rn belongs to the reverse
Hölder class RHq (1 < q < ∞), if and only if there exists C > 0 such that the reverse
Hölder inequality(

1
|B(x, r)|

∫
B(x,r)

Vq(y)dy
)1/q

≤ C
(

1
|B(x, r)|

∫
B(x,r)

V(y)dy
)

(2.1)

holds for every x ∈ Rn and 0 < r < ∞, where B(x, r) denotes the ball centered at x with
radius r. Apparently, provided 1 < p < q < ∞, RHq(Rn) ⊂ RHp(Rn), so it is natural to
define

RH∞ =
⋂
q>1

RHq.

For instance, if V is a nonnegative polynomial, then V ∈ B∞. It is worth pointing out
that if V ∈ RHq for some q > 1, there exists ε > 0 depends on n and the constant C
in (2.1) merely, such that V ∈ RHq+ε. Throughout this paper, we always assume that
0 6≡ V ∈ RHn/2.

2.3 Critical radius function ρ(x) and the basic estimates of the kernel function
Qt(·, ·)

The critical radius function ρ(x) is defined by

ρ(x) = supr>0

{
r :

1
rn−2

∫
B(x,r)

V(y)dy ≤ 1
}

. (2.2)

Obviously, 0 < ρ(x) < ∞ if V 6= 0. In particular, ρ(x) ∼ 1 with V = 1 and ρ(x) ∼
(1 + |x|)−1 with V = |x|2.

The next lemma has basic importance regarding ρ(x).

Lemma 2.1 ([12]). There exist constants l0 > 0 and C0 > 1 such that

1
C0

(
1 +
|x− y|
ρ(x)

)−l0
≤ ρ(y)

ρ(x)
≤ C0

(
1 +
|x− y|
ρ(x)

)l0/(l0+1)
.

From this Lemma, it is easy to prove the next corollary.

Corollary 2.1. If ρ(z) & |x− z|,
ρ(x) ∼ ρ(z).

If ρ(z) . |x− z|, ( ρ(z)
|x− z|

)l0+1
.

ρ(x)
|x− z| .

( ρ(z)
|x− z|

)1/(l0+1)
.

The constant l0 refers to Lemma 2.1.
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Remark 2.1. For B = B(x0, r), we always denote Ψ(B) = 1 + r/ρ(x0) in this paper.

We write Qt(·, ·) as the integral kernel of the operator Qt defined at (1.1). The follow-
ing estimates of Qt(·, ·) is basic and crucial in this paper.

Lemma 2.2 ([5]). There exist constants c > 0, 0 < δ0 ≤ 1 such that for each N > 0, both of the
estimates

(i) |Qt(y, z)| .N t−n
(

1 + t
ρ(y) +

t
ρ(z)

)−N
exp

(
− c|y−z|2

t2

)
;

(ii) |Qt(y, z)−Qt(y, x)| .N

(
|x−z|

t

)δ0
t−n

(
1 + t

ρ(y) +
t

ρ(z)

)−N
exp

(
− c|y−z|2

t2

)
;

hold for all x, y, z ∈ Rn with |x− z| ≤ t.

2.4 Aρ,θ
q weights

Bongioanni, etc, in [1] introduced a new kind of weight class Aρ,θ
q , which associates with

the potential V by the critical radius function ρ(x).

Definition 2.1 ( [2]). For 0 ≤ θ < ∞, 1 < q < ∞, we say a weight w(x) belongs to the Aρ,θ
q

class, if it satisfies the so-called Aρ,θ
q condition(
−
∫

B
w
)1/q (

−
∫

B
w−

q′
q

)1/q′

. Ψ(B)θ (2.3)

for all balls B = B(x0, r). As for q=1, the Aρ,θ
1 condition is defined as

Mθ
V(w)(x) . w(x), a.e. x ∈ Rn, (2.4)

for all balls B = B(x0, r), where

Mθ
V f (x) := supx∈B

1
Ψ(B)θ

−
∫

B
| f |.

In this paper, we let
Aρ,∞

q =
⋃
θ>0

Aρ,θ
q for q ≥ 1.

Remark 2.2. (i) In previous definitions, balls B can be replaced by cubes Q, since Ψ(B)θ ≤
Ψ(λB)θ ≤ λθΨ(B)θ for all balls B and all λ > 1.
(ii) The infimum C of all feasible constants related to “ . ” in formula (2.3) or (2.4) is
called the Aρ,θ

q weight constant or Aρ,θ
1 weight constant of w, where C is independent of

the selection of B.
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Since Ψ(B) ≥ 1, the class Aρ,θ
q increases when θ increases, so we define

Aρ,∞
q :=

⋃
θ≥0

Aρ,θ
q ,

naturally. It is also obvious that Ap ⊂ Aρ,θ
q for 1 ≤ p < ∞, where Aq denote the classical

Muckenhoupt weights; see [6, 10]. We will see that Aq  Aρ,θ
q for 1 ≤ p < ∞ in some

cases. In fact, let θ > 0 and 0 ≤ γ ≤ θ, it is easy to check that

w(x) = (1 + |x|)−(n+γ) 6∈ A∞ =
⋃
p≥1

Aq

and dw = w(x)dx does not satisfy the doubling condition, but

w(x) = (1 + |x|)−(n+γ) ∈ Aρ,θ
1

provided V = 1 and thus
Ψθ(B(x0, r)) ∼ (1 + r)θ .

According to the definition, the difference between Aq weight and Aρ,θ
q weight is just

on ρ(x), so for such balls B = B(x0, r) with r . ρ(x0), Aρ,θ
q weights behave as same as Aq

weights.
When V = 0 and θ = 0, M0,0 f (x) is actually the standard Hardy-Littlewood maximal

function M f (x). Obviously,

| f (x)| ≤ Mθ
V f (x) ≤ M f (x) for a.e. x ∈ Rn and θ ≥ 0.

Similarly as the condition of Ap weight, the following basic properties of Aρ,θ
q weights

hold, whose proofs are really elementary by the definition and so that to be omitted.

Lemma 2.3 ([14]). Suppose 1 ≤ q < p ≤ ∞ and θ ≥ 0, we have

(i) Aρ,θ
q ⊂ Aρ,θ

p ;

(ii) w ∈ Aρ,θ
p if and only if w−

1
p−1 ∈ Aρ,θ

p′ ;

(iii) If w ∈ Aρ,θ
q , then for all balls B and measurable set E ⊂ B,

w(B)
w(E)

.
(
|B|
|E|

)q

·Ψ(B)θq.

As a deep result, reverse Hölder inequality is of remarkable importance in the the-
ory of Aq weight, from which we can acquire the property A∞ weight condition for Aq

weights. Similarly, such properties can be paralleled to Aρ,θ
q weights with minor differ-

ence.
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Proposition 2.1 ([2]). Let 1 ≤ q < ∞, θ ≥ 0, w ∈ Aρ,θ
q .

(i) (Reverse Hölder property). There exist constants ε, η0 > 0, such that(
−
∫

B
w1+ε

) 1
1+ε

.
(
−
∫

B
w
)

Ψ(B)η0

for all balls B. It is worth emphasizing that the constant ε depends on w(x) only concerning
the Aρ,θ

q constant of w(x), while η0 can depend on n, q, θ and l0 (as in Lemma 2.1) only.

(ii) If q > 1, there exists p ∈ (1, q) and θ′ ≥ 0 satisfying w ∈ Aρ,θ′
p . As in (i), p depends on

w(x) only concerning the Aρ,θ
q constant of w(x).

(iii) There exists a constant δ = ε
1+ε ∈ (0, 1) such that

w(E)
w(B)

.
(
|E|
|B|

)δ

Ψ(B)η0

holds for all balls B and measurable set E ⊂ B, where the constants ε, η0 have appeared in
(i).

Proof. For (i) and (ii), we refer to the proof of Lemma 5 And Proposition 5 in [2], so we
will just prove (iii).

By Hölder inequality and (i), for all balls B and measurable set E ⊂ B,

w(E) =
∫

B
w1E ≤

(∫
B

w1+ε

) 1
1+ε

|E| ε
1+ε

.|B|− ε
1+ε w(B)Ψ(B)η0 |E| ε

1+ε .

Thus, (iii) holds.

2.5 BMOθ(ρ) space

Bongioanni, etc. [1] introduced the following new space BMOθ(ρ) as the substitution of
classical BMO space.

Definition 2.2 ( [1]). Let θ ≥ 0, ρ is defined in (2.2). For a locally integrable function f(x), the
BMOθ(ρ) norm is defined by

‖ f ‖BMOθ(ρ) = supB⊂Rn
1

Ψ(B)θ
−
∫

B
| f (x)− fB|dx < ∞,

where B is a ball. The following spaces are defined

BMOθ(ρ) := { f ∈ Lloc(R
n) : ‖ f ‖BMOθ(ρ) < ∞},

BMO∞(ρ) :=
⋃
θ>0

BMOθ(ρ).
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Clearly from the definition, if θ = 0, BMO0(ρ) is the classical BMO in actual. And the
space BMOθ(ρ) enlarges while θ increases. Bongioanni, etc. [1] also proved the following
result.

Lemma 2.4 ([1]). Let s ≥ 1 and b ∈ BMOθ(ρ), then(
−
∫

B
|b− bB|s

)1/s

. ‖b‖BMOθ(ρ)Ψ(B)θ′

for all balls B, where θ′ = (l0 + 1)θ and l0 correspond with that in Lemma 2.1.

Corollary 2.2 ([1]). Let s ≥ 1 and b ∈ BMOθ(ρ), then(
−
∫

2kB
|b− bB|s

)1/s

. k‖b‖BMOθ(ρ)Ψ(2kB)θ′

for all balls B and all k ∈N∗, with θ′ as in Lemma 2.4.

By Lemma 2.4, Tang [14] established the John-Nirenberg type inequality for BMOθ(ρ)
functions as well.

Proposition 2.2 ( [14]). If b ∈ BMOθ(ρ), then there exists a constant c > 0 such that both of
the inequalities

(i)
1
|B|
∣∣{x ∈ B : |b(x)− bB| > λ}

∣∣ . exp

(
−cλ

‖b‖BMOθ(ρ)Ψ(B)θ′

)
.

(ii)

supB−
∫

B
exp

(
c| f (x)− bB|

‖b‖BMOθ(ρ)Ψ(B)θ′

)
dx . 1

hold for all balls B and all λ > 0, where θ′ corresponds with that in Lemma 2.4.

2.6 Weighted Hardy spaces Hp
L(w) and Hp

ρ (ω)

The two weighted Hardy spaces Hp
L(w) and Hp

ρ (ω) are defined and studied by Tang and
Zhu in [17]. More precisely, let

Hp
L(w) := { f ∈ S ′ : ‖T∗ f ‖Lp

w
< ∞}, where T∗ f (x) = supt>0|e

−tL f (x)|,
Hp

ρ (ω) := { f ∈ S ′ : ‖T̃∗ f ‖Lp
w
< ∞}, where T̃∗ f (x) = sup0<t<ρ(x)|e

−t4 f (x)|,

where the symbols S ′ is the dual space of Schwartz functions.



370 L. Tang, J. Wang and H. Zhu / Anal. Theory Appl., 37 (2021), pp. 362-386

Moreover, the norm of the spaces Hp
L(w) and Hp

ρ (ω) is defined respectively

‖ f ‖Hp
L(w) := ‖T∗ f ‖Lp

w
, ‖ f ‖Hp

ρ (ω) := ‖T̃∗ f ‖Lp
w
.

We remark that when ω = 1 and p = 1, the Hp
ρ (ω) space has been studied by Yang and

Zou in [18], and the Hp
L(ω) space with ω = 1 has been studied by Dziubański, etc. [4, 5].

As in the classical condition, we can also give the theory of atomic decomposition for
Hp
L(w) and Hp

ρ (ω). We first introduce some definitions.
From Lemma 2.1, for any given w ∈ Aρ,∞

q , define the critical index of w by

qw := inf{p ∈ [1, ∞) : w ∈ Aρ,∞
p }. (2.5)

Let ω ∈ Aρ,∞
∞ =

⋃
q>1 Aρ,∞

q and qω be as in (2.5). A triplet (p, q, s)ω is called to be admissi-
ble, if p ∈ (0, 1], q ∈ (qω, ∞] and s ∈ N with s ≥ [n( qω

p − 1)]. A function a on ρ is said to
be a (p, q, s)ω − atom associated with a ball B = B(x0, r), if

(i) suppa ⊂ B with r ≤ 2ρ(x0);

(ii) ‖a‖Lq
w
≤ w(B)1/q−1/p;

(iii) If γ0r < ρ(x0), then∫
Rn

a(x)xαdx = 0 for α ∈ ({0}
⋃

N)n with |α| ≤ s.

The constant γ0 = 4nC2
0 , where C0 appears in Lemma 2.1.

Moreover, we call a is a (p, q)ω single atom if

‖a‖Lq
w(Rn) ≤ [w(Rn)]1/q−1/p

provided that w(Rn) < ∞.
Let ω ∈ Aρ,∞

∞ and (p, q, s)ω be an admissible triplet. The weighted atomic local Hardy
space hp,q,s

ρ (ω) is defined to be the set of all f ∈ S ′ satisfying that f = ∑∞
i=0 λiai in S ′,

where {λi}i∈N0 ⊂ C, ∑∞
i=0 |λi|p < ∞ and {ai}i∈N are (p, q, s)ω-atom and a0 is a (p, q)ω

single atom. Moreover, the quasi-norm of f ∈ Hp,q,s
ρ (ω) is defined by

‖ f ‖Hp,q,s
ρ (ω) ≡ inf


[

∞

∑
i=0
|λi|p

]1/p
 ,

where the infimum is taken over all the decompositions of f as above.
It is easy to see that if the triplets (p, q, s)ω and (p, q̄, s̄)ω are admissible and satisfy

q̄ ≤ q and s̄ ≤ s, then (p, q, s)ω-atoms are (p, q̄, s̄)ω-atoms, which further implies that

Hp,q,s
ρ (ω) ⊂ Hp,q̄,s̄

ρ (ω)

and the inclusion is continuous.
Recently, Tang and Zhu [17] proved the following results.
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Theorem 2.1. Let 0 6≡ V ∈ RHn/2, w ∈ Aρ,∞
∞ , qw be as in (2.5) and (p, q, s)ω be an admissible

triplet.

(i) If 0 < p ≤ 1 and q ∈ (qw, ∞), then

‖ f ‖Hp
ρ (ω) ∼ ‖ f ‖Hp,q,s

ρ (ω).

(ii) If n
n+δ0

< p ≤ 1 and q ∈ (qw, p(1 + δ0
n )), then

‖ f ‖Hp
ρ (ω) ∼ ‖ f ‖Hp

L(w) ∼ ‖ f ‖Hp,q,s
ρ (ω).

Let w ∈ Aρ,∞
∞ and (p, q, s)w be an admissible triplet. Denote by Hp,q,s

ρ, f in(ω) the vector
space of all finite linear combination of (p, q, s)ω atoms and single atom, and the norm of
f in Hp,q,s

ρ, f in(ω) is defined by

‖ f ‖Hp,q,s
ρ, f in(ω) := inf

{(
k

∑
j=0
|λj|p

)1/p

: f =
k

∑
j=0

λjaj, k ∈N

}
,

where aj are all (p, q, s)ω atoms and a0 is a (p, q)ω single atom.
Obviously, for any admissible triplet (p, q, s)ω atom and (p, q)ω single atom, the set

Hp,q,s
ρ, f in(ω) is dense in Hp,q,s

ρ (ω) with respect to the quasi-norm ‖ · ‖Hp,q,s
ρ, f in(ω).

Theorem 2.2. Let w ∈ Aρ,∞
∞ , qw be as in (2.5) and (p, q, s)ω be an admissible triplet. If q ∈

(qw, ∞), then ‖ · ‖Hp,q,s
ρ, f in(ω) and ‖ · ‖Hp

ρ (ω) are equivalent quasi-norms on Hp,q,s
ρ, f in(ω).

3 Basic estimates for SQ and some lemmas

Applying some results in Section 2.2, we establish an estimate of SQa(x) for (p, q)ω :=
(p, q, 0)ω atoms a(x) as a basis of the proof of our main results.

Proposition 3.1. Let 1 ≤ q < ∞, w ∈ Aρ,∞
∞ . For any (p, q)ω atoms a associated with B =

B(x0, r) and all x ∈ (4B)c,
Case 1. if γ0r < ρ(x0) and |x− x0| ≤ 2ρ(x0),

SQa(x) . ‖a‖L1
rδ0

|x− x0|n+δ0
,

Case 2. if γ0r < ρ(x0) and |x− x0| ≥ ρ(x0), for each M > 0,

SQa(x) .M ‖a‖L1
rδ0

|x− x0|n+δ0

(
ρ(x0)

|x− x0|

)M

,
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Case 3. if γ0r ≥ ρ(x0), for each M > 0,

SQa(x) .M ‖a‖L1
rM

|x− x0|n+M .

The constant δ0 corresponds as in Lemma 2.2(ii).

Proof. In the proof, we will use the elementary inequality e−ct2
.c,M (1 + |t|)−M (for all

t ∈ R where c > 0, M ≥ 0 are both constants) and Lemma 2.2 repeatedly. It is obvious
from Theorem 2.1 that a(x) has vanishing property in cases 1 and 2.

For case 1, we have

SQa(x)2 =
∫ ∞

0

∫
|x−y|<t

∣∣∣∣∫B
(Qt(y, z)−Qt(y, x0))a(z)dz

∣∣∣∣2 dydt
tn+1

=

( ∫ r

0
· · ·
)
+

(∫ |x−x0 |
2

r
· · ·
)
+

(∫ ∞

|x−x0 |
2

· · ·
)

= : (I1)
2 + (I2)

2 + (I3)
2.

For I1, y ∈ B(x, t) ⊂ B(x, r) and z ⊂ B(x0, r), so |y− z| ∼ |x− x0|. Then we have

I1 =

(∫ r

0

∫
B(x,t)

∣∣∣∣∫B
Qt(y, z)a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.

∫ r

0

∫
B(x,t)

(∫
B

t−n
(
|y− x0|

t

)−n−δ0

|a(z)|dz

)2
dydt
tn+1

 1
2

.|x− x0|−n−δ0‖a‖L1

(∫ r

0
t2δ0−1dt

) 1
2

∼ ‖a‖L1
rδ0

|x− x0|n+δ0
.

For I2, since |z− x0| < r < t, by Lemma 2.2(ii), we have

I2 =

(∫ |x−x0 |
2

r

∫
B(x,t)

∣∣∣∣∫B
(Qt(y, z)−Qt(y, x0))a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.

∫ |x−x0 |
2

r

∫
B(x,t)

(∫
B

t−n
(
|z− x0|

t

)δ0
(
|y− x0|

t

)−n−δ0−1

|a(z)|dz

)2
dydt
tn+1

 1
2

.
rδ0

|x− x0|n+δ0+1 ‖a‖L1

(∫ |x−x0 |
2

0
tdt

) 1
2

∼ ‖a‖L1
rδ0

|x− x0|n+δ0
.
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For I3, we get

I3 =

(∫ ∞

|x−x0 |
2

∫
B(x,t)

∣∣∣∣∫B
(Qt(y, z)−Qt(y, x0))a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.

∫ ∞

|x−x0 |
2

∫
B(x,t)

(∫
B

t−n
(
|z− x0|

t

)δ0

|a(z)|dz

)2
dydt
tn+1

 1
2

.rδ0‖a‖L1

(∫ ∞

|x−x0 |
2

dt
t2n+2δ0+1

) 1
2

∼ ‖a‖L1
rδ0

|x− x0|n+δ0
.

Thus, Case 1 has been solved.
For Case 2, we have

SQa(x)2 =
∫ ∞

0

∫
|x−y|<t

∣∣∣∣∫B
(Qt(y, z)−Qt(y, x0))a(z)dz

∣∣∣∣2 dydt
tn+1

=

( ∫ r

0
· · ·
)
+

(∫ |x−x0 |
2

r
· · ·
)
+

(∫ ∞

|x−x0 |
2

· · ·
)

= : (I I1)
2 + (I I2)

2 + (I I3)
2,

and M is an arbitrary positive constant.
For I I1, |y− z| ∼ |x− x0| as well, then

I I1 =

(∫ r

0

∫
B(x,t)

∣∣∣∣∫B
Qt(y, z)a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.M

∫ r

0

∫
B(x,t)

(∫
B

t−n
(
|y− z|

t

)−M−n

|a(z)|dz

)2
dydt
tn+1

 1
2

.M |x− x0|−M−n‖a‖L1

(∫ r

0
t2M−1dt

) 1
2

∼ ‖a‖L1
rM

|x− x0|M+n .

Given that r . ρ(x0), we have already obtained the required estimate for I I1.
For I I2, |y− x0| ∼ |x− x0| as well, then

I I2 =

(∫ |x−x0 |
2

r

∫
B(x,t)

∣∣∣∣∫B
(Qt(y, z)−Qt(y, x0))a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.M

(∫ |x−x0 |
2

r

∫
B(x,t)
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×
(∫

B
t−n

(
|z− x0|

t

)δ0
(

ρ(x0)

t

)M ( |y− x0|
t

)−M−n−δ0−1

|a(z)|dz

)2
dydt
tn+1

 1
2

.
rδ0 ρ(x0)M

|x− x0|M+n+δ0+1 ‖a‖L1

(∫ |x−x0 |
2

0
tdt

) 1
2

∼ ‖a‖L1
rδ0

|x− x0|n+δ0

(
ρ(x0)

|x− x0|

)M

.

For I I3, we have

I I3 =

(∫ ∞

|x−x0 |
2

∫
B(x,t)

∣∣∣∣∫B
(Qt(y, z)−Qt(y, x0))a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.M

∫ ∞

|x−x0 |
2

∫
B(x,t)

(∫
B

t−n
(
|z− x0|

t

)δ0
(

ρ(x0)

t

)M

|a(z)|dz

)2
dydt
tn+1

 1
2

.M rδ0 ρ(x0)
M‖a‖L1

(∫ ∞

|x−x0 |
2

dt
t2M+2δ0+2n+1

) 1
2

∼ ‖a‖L1
rδ0

|x− x0|n+δ0

(
ρ(x0)

|x− x0|

)M

.

Thus, Case 2 has already been solved. Finally we turn to consider Case 3 in which r ∼
ρ(x0). As in previous cases,

SQa(x)2 =
∫ ∞

0

∫
|x−y|<t

∣∣∣∣∫B
(Qt(y, z)a(z)dz

∣∣∣∣2 dydt
tn+1

=

( ∫ r

0
· · ·
)
+

(∫ |x−x0 |
2

r
· · ·
)
+

(∫ ∞

|x−x0 |
2

· · ·
)

:=(I I I1)
2 + (I I I2)

2 + (I I I3)
2,

where M is an arbitrary positive constant.
For I I I1, the estimation is the same as that in I I1 exactly, namely

I I I1 .M ‖a‖L1
rM

|x− x0|n+M .

For I I I2, |y− z| ∼ |x− x0| as well. So we have

I I I2 =

(∫ |x−x0 |
2

r

∫
B(x,t)

∣∣∣∣∫B
Qt(y, z)a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.M

∫ |x−x0 |
2

r

∫
B(x,t)

(∫
B

t−n
(

ρ(x0)

t

)M ( |y− z|
t

)−M−n−1

|a(z)|dz

)2
dydt
tn+1

 1
2

.M
ρ(x0)M

|x− x0|M+n+1 ‖a‖L1

(∫ |x−x0 |
2

0
tdt

) 1
2

∼ ‖a‖L1
rM

|x− x0|n+M .
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For I I I3, we have

I I I3 =

(∫ ∞

|x−x0 |
2

∫
B(x,t)

∣∣∣∣∫B
Qt(y, z)a(z)dz

∣∣∣∣2 dydt
tn+1

) 1
2

.M

∫ ∞

|x−x0 |
2

∫
B(x,t)

(∫
B

t−n
(

ρ(x0)

t

)M

|a(z)|dz

)2
dydt
tn+1

 1
2

.M ρ(x0)
M‖a‖L1

(∫ ∞

|x−x0 |
2

dt
t2M+2n+1

) 1
2

∼ ‖a‖L1
rM

|x− x0|n+M .

Thus, Case 3 has been solved.

To estimate ‖a‖L1 in Proposition 3.1, we establish the following result without diffi-
culty.

Lemma 3.1. Let p > 0, q ≥ 1, θ ≥ 0 and ω ∈ Aρ,θ
q . For any (p, q)ω weights ω(x) associated

with B = B(x0, r),
‖a‖L1 . |B|ω(B)−1/pΨ(B)θ ,

where the constant is exactly the Aρ,θ
q weight constant of w.

Proof. If q > 1, by Hölder inequality and the definition formula (2.3),

‖a‖L1 =
∫

B
|a(x)|w(x)1/qw(x)−1/qdx

≤‖a‖Lq(w)

(∫
B

w(x)−q′/qdx
)1/q′

≤w(B)1/q−1/p
(∫

B
w(x)−q′/qdx

)1/q′ (∫
B

w(x)dx
)1/q

w(B)−1/q

≤C|B|w(B)−1/pΨ(B)θ ,

where C is the Aρ,θ
q constant of w.

If q = 1, we know that

w(B) ≤ C|B|Ψ(B)θ essinfx∈B{w(x)},

by the definition formula (2.3), which means

‖w−1‖L∞(B) ≤ C|B|Ψ(B)θw(B)−1,

and thus
‖a‖L1 ≤ ‖a‖L1(w)‖w−1‖L∞(B) ≤ C|B|w(B)−1/pΨ(B)θ .

All of the constants “C” above are exactly the Aρ,θ
1 constant of w.
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Combining Proposition 3.1, Lemma 3.1 and noticing Ψ(B)θ .θ 1, the following result
is obvious.

Corollary 3.1. Let 1 ≤ q < ∞, θ ≥ 0, w ∈ Aρ,θ
q . For any (p, q)ω atoms a associated with

B = B(x0, r) and all x ∈ (4B)c,
Case 1. if γ0r < ρ(x0) and |x− x0| ≤ 2ρ(x0),

SQa(x) . w(B)−
1
p

(
r

|x− x0|

)n+δ0

,

Case 2. if γ0r < ρ(x0) and |x− x0| ≥ ρ(x0), then for each M > 0,

SQa(x) .M w(B)−
1
p

(
r

|x− x0|

)n+δ0
(

ρ(x0)

|x− x0|

)M

,

Case 3. if γ0r ≥ ρ(x0), then for each M > 0,

SQa(x) .M w(B)−
1
p

(
r

|x− x0|

)n+M

.

The constant δ0 corresponds as in Lemma 2.2(ii).

Applying (iii) in Proposition 2.1 and Proposition 2.2, we can establish an analogue of
Lemma 2.4 for Aρ,θ

q weights, and thus the weighed version of Corollary 2.2 holds appar-
ently. They will be used in the proof of Theorem 1.2 in Section 4.2.

Lemma 3.2. Let 1 ≤ s, q < ∞, w ∈ Aρ,θ
q and b ∈ BMOθ(ρ), then(

1
w(B)

∫
B
|b− bB|sdw

)1/s

. ‖b‖BMOθ(ρ)Ψ(B)η0/s+θ′

for all balls B, with η0 = η0(q) in Proposition 2.1(i) and θ′ in Lemma 2.4.

Proof. By homogeneity, we may assume ‖b‖BMOθ(ρ) = 1 without loss of generality. For
all balls B,

1
w(B)

∫
B
|b− bB|sdw =s

∫ ∞

0
λs−1 w

(
{x ∈ B : |b(x)− bB| > λ}

)
w(B)

dλ

.sΨ(B)η0

∫ ∞

0

(∣∣{x ∈ B : |b(x)− bB| > λ}
∣∣

|B|

)δ

λs−1dλ

.sΨ(B)η0

∫ ∞

0
exp

(
− cλδ

Ψ(B)θ′

)
λs−1dλ

=Γ(s + 1)Ψ(B)η0

(
Ψ(B)θ′

cδ

)s

∼ Ψ(B)η0+sθ′ ,

which yields the required inequality immediately.
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Corollary 3.2. Let 1 ≤ s, q < ∞, w ∈ Aρ,θ
q and b ∈ BMOθ(ρ), then

(
1

w(2kB)

∫
2kB
|b− bB|sdw

)1/s

. k‖b‖BMOθ(ρ)Ψ(2kB)η0/s+θ′

for all balls B and all k ∈N∗, with η0 appears in Proposition 2.1(i) and θ′ appears in Lemma 2.4.

Proof. By using Lemma 3.2, the proof is quite similar to the proof of Lemma 1 in [1]. For
each ball B,

|b2B − bB| =
∣∣∣∣−∫B

(b− b2B)

∣∣∣∣ ≤ |2B|
|B| −

∫
2B
|b− b2B| ≤ 2nΨ(2B)θ‖b‖BMOθ(ρ).

Then we have (
1

w(2kB)

∫
2kB
|b− bB|sdw

)1/s

≤
(

1
w(2kB)

∫
2kB
|b− b2kB|sdw

)1/s

+
k

∑
j=1
|b2jB − b2j−1B|

.‖b‖BMOθ(ρ)Ψ(2kB)η0/s+θ′ +
k

∑
j=1

Ψ(2jB)θ‖b‖BMOθ(ρ)

.(k + 1)‖b‖BMOθ(ρ)Ψ(2kB)η0/s+θ′ .

Since 1 ≤ Ψ(2jB) ≤ Ψ(2kB) and θ < θ′. The proof is completed.

The authors [16] proved the following basic results.

Theorem 3.1. Let 1 ≤ q < ∞, θ ≥ 0, w ∈ Aρ,θ
q .

(i) If q > 1, for all f ∈ Lq
w(R

n),
‖SQ f ‖Lq

w
. ‖ f ‖Lq

w
.

(ii) If q = 1, for all f ∈ L1
w(R

n),
‖SQ f ‖WL1

w
. ‖ f ‖L1

w
.

Theorem 3.2. Let 1 < q < ∞, θ ≥ 0, w ∈ Aρ,θ
q , then for all functions f and b ∈ BMOθ(ρ),

‖SQ,b f ‖Lq
w
. ‖b‖BMOθ(ρ)‖ f ‖Lq

w
.



378 L. Tang, J. Wang and H. Zhu / Anal. Theory Appl., 37 (2021), pp. 362-386

4 Proof of main results

4.1 Proof of Theorem 1.1

We prove Theorem 1.1(i) at first.

Proof of Theorem 1.1(i). Without loss of generality, we can assume 1 < q < n(1 + δ0/n).
By Theorems 2.1 and 2.2, it needs only to prove that for all (p, q)ω atoms or single (p, q)ω

atoms a(x),
‖SQa‖p

Lp(w)
. 1.

Firstly, if a(x) is a single atom, the inequality above holds obviously. In fact, by Hölder
inequality, Theorem 3.1(i) and the size condition of single atoms, we have

‖SQa‖Lp
w
≤
∥∥SQa

∥∥
Lq

w
w(Rn)1/p−1/q . ‖a‖Lq

w
w(Rn)1/p−1/q ≤ 1.

Hence, it is sufficient for us to show that for any (p, q)ω atoms a(x) associated with a
ball B = B(x0, r) and satisfies,

‖SQa‖p
Lp(w)

. 1

with the constant independent of a(x).
We divide ‖SQa‖p

Lp
w

into two parts: ‖SQa‖p
Lp

w(4B)
and ‖SQa‖p

Lp
w((4B)c , where B = B(x0, r)

is the ball a(x) associated with.
For the first part, by Hölder inequality, Lq

w boundedness of SQ, the properties of
(p, q)ω atoms and Lemma 2.3,

‖SQa‖p
Lp

w(4B)
=
∫

4B
SQa(x)pw(x)

p
q w(x)

q−p
q dx

≤
∥∥SQa

∥∥p
Lq

w(4B)w(4B)1−p/q

. ‖a‖p
Lq

w
w(4B)1−p/q ≤

(
w(4B)
w(B)

)1−p/q

.
(
|4B|
|B|

)q−p

Ψ(4B)θ(q−p) . 1.

The last inequality holds because r . ρ(x0).
For the second part, we denote the ring

RBj := (2jB) \ (2j−1B) for j ∈N∗.

Consider the following two cases respectively:
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If γ0r ≥ ρ(x0) which means r ∼ ρ(x0), by Case 3 in Lemma 3.1 and Lemma 2.3(iii),
we have

‖SQa‖p
Lp

w((4B)c)
=
∫
|x−x0|≥4r

SQa(x)pw(x)dx

.M
1

w(B)

∞

∑
j=3

∫
RBj

(
r

|x− x0|

)p(n+M)

w(x)dx

.
1

w(B)

∞

∑
j=3

2−jp(n+M)w(2jB)

.
∞

∑
j=3

2−jp(n+M)(2jn)q
(

1 +
2jr

ρ(x0)

)qθ

.
∞

∑
j=3

2−j(p(n+M)−qn−qθ).

As long as we choose the positive constant M big enough such that M > q(n + θ)/p− n,
we obtain ‖SQa‖p

Lp
w((4B)c)

. 1 in the case of γ0r ≥ ρ(x0).

If γ0r < ρ(x0), for such a ball B, there exists N0 ∈N satisfying 2N0−1r ≤ ρ(x0) < 2N0r.
The second part

‖SQa‖p
Lp

w(4B)c =

(
N0

∑
j=3

+
∞

∑
j=N0+1

) ∫
RBj

SQa(x)pw(x)dx

= : I1 + I2.

For I1, |x− x0| < 2jr ≤ 2N0r ≤ 2ρ(x0) implies Ψ(2jB) ≤ 3. By case in Lemma 3.1 and in
Lemma 2.3(iii),

I1 =
N0

∑
j=3

∫
RBj

SQa(x)pw(x)dx

.
1

w(B)

N0

∑
j=3

∫
RBj

(
r

|x− x0|

)p(n+δ0)

w(x)dx

.
1

w(B)

N0

∑
j=3

2−jp(n+δ0)w(2jB)

.
N0

∑
j=3

2−j(p(n+δ0)−nq) . 1.

The last inequality holds because of the assumption q < p(1 + δ0/n).
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For I2, |x − x0| ≥ 2j−1r ≥ 2N0r > ρ(x0) implies Ψ(2jB) ≤ 2j+1r/ρ(x0). By case 2 in
Lemma 3.1 and in Lemma 2.3(iii), for each M > 0,

I2 =
∞

∑
j=N0+1

∫
RBj

SQa(x)pw(x)dx

.M
1

w(B)

∞

∑
j=N0+1

∫
RBj

(
r

|x− x0|

)p(n+δ0) ( ρ(x0)

|x− x0|

)M

w(x)dx

.
∞

∑
j=N0+1

2−jp(n+δ0)
w(2jB)
w(B)

(
ρ(x0)

2jr

)M

.
∞

∑
j=N0+1

2−j(p(n+δ0)−nq)
(

ρ(x0)

2jr

)M−qθ

.1 (Let M = qθ).

Thus, the second part has the required estimate, too.

Now we turn to (ii) in Theorem 1.1. Firstly, we need the following Lemma.

Lemma 4.1. Let w ∈ Aρ,∞
1 and 0 < p < 1. If a sequence measurable functions { f j} satisfy

‖ f j‖WLp
w
≤ 1, ∀j ∈ Z and ∑

j∈Z

|λj|p ≤ 1,

then we have ∥∥∥∥∥∑
j∈Z

λj f j

∥∥∥∥∥
p

WLp
w

≤ 2− p
1− p

.

The proof can be found in [9].

Proof of Theorem 1.1(ii). By Lemma 4.1, we need only to prove the following inequality

supλ>0λpw({x ∈ Rn : |SQ(a)(x)| > λ}) . 1

holds for any atom a(x).
If a(x) is a single atom, then

supλ>0λpw({x ∈ Rn : |SQ(a)(x)| > λ}) ≤ ‖SQa‖p
Lp

w(4B)
. 1.

Therefore, it is sufficient for us to prove that for any λ > 0 and any a (p, q)ω atom a(x),
associated with a ball B = B(x0, r), λpw(Eλ) . 1, where the constant does not dependent
on λ and a(x), and

Eλ = {x ∈ Rn : |SQ( f )(x)| > λ}.
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Divide Eλ into

Eλ = E′λ
⋃ ∞⋃

j=3

Eλ,j

 ,

where
E′λ = Eλ

⋂
4B, Eλ,j = Eλ

⋂
RBj.

As the argument in the proof of Theorem 1.1(i), we still have ‖SQa‖p
Lp

w(4B)
. 1. There-

fore, by Chebshev inequality,

λpw(E′λ) ≤ ‖SQa‖p
Lp

w(4B)
. 1. (4.1)

For Ej,λ, we are going to prove there exists a constant c0 > 0 independent of j and the
selection of “a(x)”, such that

SQa(x) ≤ c0w(2jB)−1/p. (4.2)

Similarly as the proof of (i) in Theorem 1.1, To achieve the goal, we need to consider the
condition γ0r < ρ(x0) and γ0r ≥ ρ(x0) respectively. But we will consider the condition
γ0r < ρ(x0) only. In fact, in Corollary 3.1, the conclusion in case 3 is stronger, so the
condition γ0r ≥ ρ(x0) is easier then that of γ0r < ρ(x0), and we can follow the proof
of the latter without difficulty. The proof of (i) in Theorem 1.1 can also corroborate the
former assertion.

When γ0r < ρ(x0), we consider the case j ≤ N0 and j ≥ N0 + 1 respectively, where
the integer N0 is defined by 2N0−1 ≤ ρ(x0) < 2N0 as in the proof of (i) in Theorem 1.1.

If j ≤ N0, which means |x− x0| < 2jr ≤ 2N0r ≤ 2ρ(x0) and Ψ(2jB) ≤ 3, by case 2 in
Lemma 3.1 and Lemma 2.3(iii), we have

SQa(x) .w(B)−
1
p

(
r

|x− x0|

)n+δ0

.w(2jB)−1/p2−j(n+δ0)

(
w(2jB)
w(B)

)1/p

.w(2jB)−1/p2−j(n+δ0)2jn/pΨ(2jB)θ/p

.w(2jB)−1/p2j(−n−δ0+n/p)

=w(2jB)−1/p,

where all constants do not depend on j and a(x).
If j ≥ N0 + 1, which means

|x− x0| ≥ 2j−1r ≥ 2N0r > ρ(x0) and Ψ(2jB) ≤ 2j+1r/ρ(x0),
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by Case 2 in Lemma 3.1 and Lemma 2.3(iii), we have

SQa(x) .w(B)−
1
p

(
r

|x− x0|

)n+δ0
(

ρ(x0)

|x− x0|

)M

.w(2jB)−1/p2−j(n+δ0)

(
ρ(x0)

2jr

)M (w(2jB)
w(B)

)1/p

.w(2jB)−1/p2−j(n+δ0)

(
ρ(x0)

2jr

)M

2jn/pΨ(2jB)θ/p

.w(2jB)−1/p
(

ρ(x0)

2jr

)M−θ/p

=w(2jB)−1/p (Let M = θ/p),

where all constants do not depend on j and a(x), either. Therefore, formula (4.2) holds.
To end the proof, we now consider two cases about j.

Case 1. There exists a j ∈N such that

c0w(2jB)−1/p ≤ λ.

So there exists a maximum integer K = K(λ) (if no exists such K, there is nothing to
prove) such that

c0w(2KB)−1/p > λ,

which means for each j ≥ K + 1, C0w(2jB)−1/p ≤ λ and therefore Eλ,j = ∅. We may
assume K > 0, since otherwise, Eλ,j = ∅ for all j ∈ N∗ and Eλ = E′λ. When K > 0, we
have

λpw(Eλ \ E′λ) = λp
∞

∑
j=3

w(Eλ,j) ≤ Cp
0 w(2KB)−1

K

∑
j=1

w(Eλ,j) ≤ Cp
0 . (4.3)

Case 2. For any j ∈N such that

c0w(2jB)−1/p ≥ λ.

So
c0w(Rn)−1/p ≥ λ.

Thus,

λpw(Eλ) ≤ cp
0 w(Rn)−1w(Rn) . 1. (4.4)

Combining (4.1), (4.3) and (4.4), the required inequality holds.
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4.2 Proof of Theorem 1.2

We are going to prove Theorem 1.2 in this section.

Proof of Theorem 1.2. We may assume ‖b‖BMOθ(ρ) = 1 by homogeneity. Suppose f =

∑j∈N λjaj, where ∑j∈N |λj| = 1, a0 is a (1, q)ω single atom, and aj (j ≥ 1) is a (1, q)ω

atom supported on Bj, where 1 < q < ∞. Let bj = bBj ∈ R, it is sufficient for us to prove
that for all functions f satisfying the prerequisites above,

‖SQ,b f ‖WL1
w
. 1. (4.5)

By the sublinearity of SQ,

SQ,b f (x) =SQ((b(x)− b) f )(x) = SQ

(
(b(x)− b) ∑

j∈N

λjaj

)
(x)

=SQ

(
λ0(b(x)− b)a0 + ∑

j∈N∗
λj(bj − b)aj + ∑

j∈N∗
λj(b(x)− bj)aj

)
(x)

≤|λ0|SQ,ba0(x) + SQ

(
∑

j∈N∗
λj(bj − b)aj

)
(x) + ∑

j∈N∗
|λj||b(x)− bj|SQaj(x)

:= |λ0|SQ,ba0(x) + SQ

(
∑

j∈N∗
λj Aj

)
(x) + ∑

j∈N∗
|λj| Bj(x),

where

Aj(x) = (bj − b(x))aj(x), Bj(x) = |b(x)− bj|SQaj(x) ≥ 0.

By the formula above and Theorem 3.1(ii), and noticing ∑j∈N |λj| = 1,

‖SQ,b f ‖WL1
w
.|λ0|‖SQ,ba0(x)‖WL1

w
+
∥∥∥SQ

(
∑

j∈N∗
λj Aj

)∥∥∥
WL1

w

+
∥∥∥ ∑

j∈N∗
|λj| Bj(x)

∥∥∥
WL1

w

.|λ0|‖SQ,ba0(x)‖L1
w
+
∥∥∥ ∑

j∈N∗
λj Aj

∥∥∥
L1

w

+
∥∥∥ ∑

j∈N∗
|λj| Bj(x)

∥∥∥
L1

w

≤supj
{
‖SQ,ba0(x)‖L1

w
, ‖Aj‖L1

w
, ‖Bj‖L1

w

}
.

Hence, in order to prove formula (4.5), we just need to prove that for all b ∈ BMOθ(ρ)
satisfying ‖b‖BMOθ(ρ) = 1, single atoms a0, and (1, q)ω atoms a supported on B = B(x0, r),
the following three formulae holds:

‖SQ,ba0‖L1
w
. 1, (4.6a)

‖(b− bB)a‖L1
w
. 1, (4.6b)

‖(b− bB)SQa‖L1
w
. 1. (4.6c)
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Firstly, we consider the case of single atoms, namely formula (4.6a). By Hölder in-
equality, Theorem 1.1 and the size condition of single atoms,

‖SQ,ba0‖L1
w
≤ ‖SQ,ba0‖Lq

w
‖1‖

Lq′
w
. ‖a0‖Lq

w
w(Rn)1/q′ ≤ w(Rn)1/q−1 w(Rn)1/q′ = 1,

which means formula (4.6a) holds.
For formula (4.6b), By (ii) in Theorem 3.2(ii), Hölder inequality, Lemma 3.2, and notic-

ing Ψ(B) ≤ 3,

‖SQ((b− bB)a)‖WL1
w
≤‖(b− bB)a‖L1

w

≤‖b− bB‖Lq′
w (B)
‖a‖Lq

w

.w(B)1/q′Ψ(B)η0/s+θ0 w(B)1/q−1

.1.

Therefore, formula (4.6b) holds.
Finally, we will complete the proof of formula (4.6c), whose basic idea is similarly as

Theorem 1.1(i). Similarly as the discussion in the proof of (4.2), we will just consider the
condition γ0r < ρ(x0).

Suppose γ0r < ρ(x0), we also note N0 ∈ Z satisfying 2N0−1r ≤ ρ(x0) < 2N0r, and We
may assume N0 ≥ 3. Let I is the left side of formula (4.6c), and decompose I as follow:

I =
∫

4B
|b(x)− bB|SQa(x)dw +

N0

∑
j=3

∫
RBj

|b(x)− bB|SQa(x)dw

+
∞

∑
j=N0

∫
RBj

|b(x)− bB|SQa(x)dw

= : I1 + I2 + I3.

For I1, noticing Ψ(4B) ≤ 9, by Hölder inequality, (i) in Theorem 3.1, the size condition
of a, (iii) in Lemma 2.3 and Corollary 3.2,

I1 ≤‖b− bB‖Lq′
w (4B)
‖SQa‖Lq

w
. ‖b− bB‖Lq′

w (B)
‖a‖Lq

w

.w(4B)1/q′Ψ(4B)η0/s+θ0 w(B)1/q−1

.
(
|4B|
|B|

)q/q′

Ψ(4B)θq/q′+η0/s+θ0

.1.

For I2 where j ≤ N0, we have |x− x0| < 2jr ≤ 2N0r ≤ 2ρ(x0) and Ψ(2jB) ≤ 3. By case 1
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of Lemma 3.1, (iii) in Lemma 2.3 and Corollary 3.2,

I2 =
N0

∑
j=3

∫
RBj

|b(x)− bB|SQa(x)dw

.
N0

∑
j=3

2−j(n+δ0)w(B)−1
∫

2jB
|b− bB|dw

.
N0

∑
j=3

2−j(n+δ0)
w(2jB)
w(B)

1
w(2jB)

∫
2jB
|b− bB|dw

.
N0

∑
j=3

j2−j(n+δ0−nq)Ψ(2jB)qθ+η0+θ0

.
∞

∑
j=1

j2−j(n+δ0−nq)

.1 (since q < 1 + δ0/n).

For I3, we have |x − x0| ≥ 2j−1r ≥ 2N0r > ρ(x0), and Ψ(2jB) ≤ 2j+1r/ρ(x0). Conse-
quently,

I3 =
∞

∑
j=N0+1

∫
RBj

|b(x)− bB|SQa(x)dw

.M

∞

∑
j=N0+1

2−j(n+δ0)

(
ρ(x0)

2jr

)M

w(B)−1
∫

2jB
|b− bB|dw

.
∞

∑
j=N0+1

2−j(n+δ0)

(
ρ(x0)

2jr

)M w(2jB)
w(B)

1
w(2jB)

∫
2jB
|b− bB|dw

.
∞

∑
j=N0+1

j2−j(n+δ0−nq)
(

ρ(x0)

2jr

)M

Ψ(2jB)qθ+η0+θ0

.
∞

∑
j=N0+1

j2−j(n+δ0−nq)
(

ρ(x0)

2jr

)M−(qθ+η0+θ0)

. 1 (M = qθ + η0 + θ0).

Therefore, we have proved formula (4.6c) under the condition γ0r < ρ(x0). For the condi-
tion γ0r ≥ ρ(x0), as what we have discussed, the proof is easier, so formula (4.6c) holds.

In summarize, formulae (4.6a)-(4.6c) hold, so formula (4.5) holds and we have proved
the required conclusion.
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