
Analysis in Theory and Applications
Anal. Theory Appl., Vol. 37, No. 3 (2021), pp. 404-425

DOI: 10.4208/ata.2021.lu80.08
September 2021

Borderline Weighted Estimates for Commutators of
Fractional Integrals

Zhidan Wang1, Huoxiong Wu2 and Qingying Xue1,∗

1 School of Mathematical Sciences, Beijing Normal University, Laboratory of
Mathematics and Complex Systems Ministry of Education, Beijing 100875, China
2 School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005,
China

Received 8 August 2020; Accepted (in revised version) 21 July 2021

Dedicated to Prof. Shanzhen Lu with admiration on the occasion of his 80th birthday

Abstract. Let I
α,~b be the multilinear commutators of the fractional integrals Iα with the

symbol~b = (b1, · · · , bk). We show that the constant of borderline weighted estimates
for Iα is 1

ε , and for I
α,~b is 1

εk+1 with each bi belongs to the Orlicz space Oscexp Lsi .
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1 Introduction

Let M be the Hardy-Littlewood maximal function, which is defined by

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)|dy,

where the supremum is taken over all cubes Q containing x in Rn with the sides paral-
lel to the coordinate axes. Since the 1930s, there have been many outstanding works in
the study of the Hardy-Littlewood maximal function. Among such achievements are the
celebrated works of Hardy, Littlewood and Wiener, Fefferman and Stein [9], and Muck-
enhoupt [13]. Recall that the Hardy-Littlewood-Wiener theorem states that M is bounded
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from Lp(Rn) to Lp(Rn) (1 < p ≤ ∞) and from L1(Rn) to L1,∞(Rn), and the Fefferman-
Stein inequality [9] can be expressed in the way that

‖M f ‖L1,∞(ω) ≤ C
∫

Rn
| f |Mωdx. (1.1)

The question whether one can extend inequality (1.1) to other type of operators, such
as the Hilbert transforms and the Calderón-Zygmund singular intergrals, is known as
Muckenhoupt and Wheeden conjecture. In 2012, Reguera and Thiele [22] surprisingly
showed that the Muckenhoupt and Wheeden conjecture was not true for the Hilbert
transform, which fully indicates that the Hilbert transform does not enjoy the similar
weak type inequality as in (1.1). In 1994, Pérez [17] obtained the following less fine in-
equaltiy for the Calderón-Zygmund singular intergrals.

‖T f ‖L1,∞(ω) ≤ Cε,T

∫
Rn
| f |ML(log L)ε ωdx, ω ≥ 0, ε > 0. (1.2)

Since then, efforts have been made to clarify and separate the constant Cε,T. It was
Hytönen and Pérez [10] who first showed that the constant can be gained is ε−1 for T and
its corresponding maximal singular integral operators T∗. Recently, Domingo-Salazar,
Lacey, Rey [8] generalized the results in [10] and further proved that T∗ is bounded as
a map from L1(ML log log L(log log log L)α w) into weak-L1(w) for 1 < α < 2 and the constant
can be obtained is (α− 1)−1.

Now we turn to the background of the commutators of T, which can be traced back to
the celebrated works of Coifman, Rochberg and Weiss [3]. For a suitable smooth function
f , the commutator of T is defined as [b, T] f = T(b f )− bT( f ). In [3], the authors proved
that if b belongs to BMO(Rn), then [b,T] is bounded from Lp(Rn) onto itself (1 < p < ∞).
Conversely, if all commutators of Riesz transform [Rj, b], 1 ≤ j ≤ n, are Lp bounded, then
b ∈ BMO(Rn).

In 1995, Pérez [18] pointed out that the commutators of CZOs are not weak type (1, 1)
operators. As a replacement, he gave the following L log L endpoint estimate:

ω
(
{x ∈ Rn : |[b, T] f (x)| > λ}

)
≤ C‖b‖BMO

[w]A1

∫
Rn

Φ
(
| f |/λ

)
ωdx, (1.3)

where Φ(t) = t(1 + log+t), ω ∈ A1.
Quite naturally, one may ask whether the commutators [b, T] still enjoy the similar

inequality as in (1.2) or not. In 2001, Pérez and Pradolin [19] established the following
inequality for arbitrary non negative weights w.

ω
(
{x ∈ Rn : |[b, T] f (x)| > λ}

)
≤ CT,ε

∫
Rn

Φ
(
| f |‖b‖BMO/λ

)
ML(log L)1+ε ωdx. (1.4)

In 2017, Pérez et al [20] further figured out that the constant in (1.4) is CT
ε2 , that is

ω
(
{x ∈ Rn : |[b, T] f (x)| > λ}

)
≤ CT

ε2

∫
Rn

Φ
(
| f |‖b‖BMO/λ

)
ML(log L)1+ε ωdx. (1.5)
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In this paper, our object of investigation is the fractional integral and its commutators.
It is well known that the study of weighted estimates of fractional integrals orginated
from the works of Muckenhoupt and Wheeden [14] in 1974. They proved that the frac-
tional integral operator was of strong type (Lp(wp), Lq(wq)) if p > 1 and of weak type
(L1(w), L

n
n−α ,∞(w

n
n−α )) if p = 1. In 2001, endpoint L log L type estimates for the commuta-

tors of the fractional integral were studied by Ding, Lu and Zhang [7]. Later on, Carro [1]
considered borderline weighted estimates for fractional integrals and he proved that

ω
(
{x ∈ Rn : |Iα f (x)| > λ}

)
≤ C

λ

∫
Rn
| f (x)|MΨ,αu(x)dx, (1.6)

where Ψ(t) = t log(e + t)1+ε. Some other weighted results can be found in the works of
Cruz-Uribe and Fiorenza [5], Chen and Xue [2].

This paper is concerned with the borderline weighted estimates of the fractional inte-
gral and its commutators, for such particular inequalities as (1.2) and (1.5). We show that
the constants in the norm inequalities of Iα and Iα,b are still 1

ε and 1
ε2 (just take k = 1 in

Theorem 1.2), respectively.
The main results of this paper are:

Theorem 1.1. Let 0 < ε < 1 and ω be a weight, then for any α ∈ (0, nε
2(2+ε)

), c = 2n
2n+α(ε+2) ,

there exists a constant CIα such that

‖Iα f ‖L1,∞(ω) ≤
CIα

ε

[( ∫
Rn
| f (x)|

(
Mc

L(log L)ε ω(x)dx
) 1

c
+
∫

Rn
| f (x)|Mω(x))dx

]
.

Theorem 1.2. Let w be a weight,~b = (b1, · · · , bk), 0 < ε < 1, φρ(t) = t(1 + log+ t)ρ, ρ > 0.
For α ∈ (0, 5nε

24(1+ 1
s )+10ε

),

c =
12n(1 + 1

s )

12(n + α)
(

1 + 1
s

)
+ 5αε

, u = M
L(log L)

1
s +ε,α

ω(x), v = M
L(log L)

1
s +ε ω(x),

there exits a constant CIα such that

ω
( {

x ∈ Rn : |I
α,~b f (x)| > λ

} )
≤ CIα

εk+1

{ ∫
Rn

Φ 1
s

(
‖~b‖| f (x)|/λ

)
(u + v)dx +

( ∫
Rn

Φ 1
s
(‖~b‖| f (x)|/λc)vcdx

) 1
c

+
(
(1 + λ1−c)

∫
Rn

Φ 1
s
(‖~b‖| f (x)|/λ)vcdx

) 1
c
}

.

Remark 1.1. When p = q, the above results are consistent with the result in [20].

The article is organized as follows. In Section 2, some definitions and basic lemmas
will be given. Section 3 will be devoted to demonstrate Theorem 1.1 and Theorem 1.2.
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2 Definitions and main lemmas

We begin by introducing some definitions and notations.

Definition 2.1 (Orlicz spaces, [20]). The Orlicz spaces are defined in the way that

Oscexp Ls =
{

f ∈ L1
loc(R

n) : ‖ f ‖Oscexp Ls < ∞
}

,

where
‖ f ‖Oscexp Ls = sup ‖ f − fQ‖Ψs,Q, Ψs(t) = ets − 1

with t ≥ 0, s > 0.

From the John-Nirenberg’s theorem, it is known that BMO = Oscexp L and for every
s > 1, it holds that Oscexp Ls $ BMO.

Definition 2.2 (Young functions, Orlicz maximal functions, [6]). A function Φ is called a
Young function, if it is a continuous, nonnegative, strictly increasing and convex function defined
on [0, ∞) such that

Φ(0) = 0 and lim
t→∞

Φ(t) = ∞.

The local Luxembourg norm of a function f with respect to Φ is defined in the way that

‖ f ‖Φ,Q = ‖ f ‖Φ(L),Q = inf
{

λ > 0 :
1
|Q|

∫
Q

Φ
( | f (x)|

λ

)
dx ≤ 1

}
,

which is equivalent to

‖ f ‖′Φ,Q = inf
µ>0

{
µ +

µ

|Q|

∫
Q

Φ
( | f (x)|

µ

)
dx
}

.

The Orlicz maximal function associated to Φ is defined by

MΦ,α f (x) = sup
x∈Q
|Q| αn ‖ f ‖Φ,Q for α ≥ 0.

Let
Φρ(t) = t(1 + log+(t))ρ with log+(t) = χ(1,∞)(t)log(t)

and ρ > 0, t ≥ 0. Then we use the notation

‖ f ‖Φ,Q = ‖ f ‖L(log L)ρ,Q.

Definition 2.3 (Commutators of Iα). Let bi ∈ Oscexp Lsi , si ≥ 1, i = 1, · · · , k, k ∈ N+.
The symbol-multilinear commutators of the fraction integral Iα with respect to the symbol~b =
(b1, · · · , bk) is defined as follows :

I
α,~b f (x) =

∫
Rn

1
|x− y|n−α

k

∏
i=1

(bi (x)− bi (y)) f (y) dy.
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Definition 2.4 (Ap weights, [13]). A weight ω belongs to the class Ap, 1 < p < ∞, if

[ω]Ap = sup
Q

( 1
|Q|

∫
Q

ω
)( 1
|Q|

∫
Q

ω
− 1

p−1

)p−1
< ∞.

A weight w belongs to the class A1 if there is a finite constant C such that

1
|Q|

∫
Q

ω(y)dy ≤ C inf
Q

ω,

and the infimum of these constants C is called the A1 constant of w denoted by [ω]A1 .

We will need to use the following Hölder inequality in our proof later.

Lemma 2.1 (Hölder inequality, [21]). Let Φ0, Φ1, , · · · , Φk be Young functions. If

Φ−1
1 (t)Φ−1

2 (t) · · ·Φ−1
k (t) ≤ κΦ−1

0 (t),

then the following inequality holds

‖ f1 f2 · · · fk‖Φ0,Q ≤ κ‖ f1‖Φ1,Q‖ f2‖Φ2,Q · · · ‖ fk‖Φk ,Q

for all functions f1, · · · , fm and all cubes Q.

In Particular, if ∑k
i=1

1
si
= 1

s with each si ≥ 1, then it holds that

1
Q

∫
Q
| f1 f2 · · · fkg| ≤ Cs‖ f1‖exp Ls1 ,Q‖ f2‖exp Ls2 ,Q · · · ‖ fk‖exp Lsk ,Q‖g‖L(log L)

1
s ,Q

.

It was known that M#
δ(Iα f )(x) ≤ Cδ Mα f (x) pointwisely (see for example [2]). For the

commutators of Iα, one may get

Lemma 2.2 (Sharp Estimate). Let 0 < δ < ε < 1, M# be the Fefferman-Stein sharp maximal
function and M#

δ( f ) = M#(| f |δ) 1
δ . Then there exists a constant C > 0, depending only on δ and

ε such that

M#
δ(I

α,~b)(x) ≤ C‖~b‖
(

M
L(log L)

1
s ,α

f (x) +
m

∑
i=1

∑
σ∈Cm

j

‖~σ‖Mε(I
α, ~bσ′

f )(x)
)

. (2.1)

Here b = σ ∪ σ′, where σ and σ′ are pairwise disjoint sets be a splitting of b.

This lemma can be obtained with small and straightforward modifications in the
proof of Lemma 3.1 in [21].

Lemma 2.3 ([15,16]). Let 0 < p < ∞, 0 < δ < 1 and w ∈ A∞, Md denotes the dyadic maximal
function. Then for any function f and t > 0 satisfying |{x : | f (x)| > t}| < ∞, it holds that

‖ f ‖Lp(w) ≤ Cp[w]A∞‖M#,d
δ f ‖Lp(w).



Z. Wang, H. Wu and Q. Xue / Anal. Theory Appl., 37 (2021), pp. 404-425 409

Lemma 2.4 ( [20]). Let 0 < p < ∞, 0 < ε ≤ 1 and w ∈ A∞. Suppose that |{x : | f (x)| >
t}| < ∞ for all t > 0. Then there is a constant C = Cn,ε such that

‖Md
ε f ‖Lp(w) ≤ Cp[w]A∞‖M#,d

ε f ‖Lp(w).

Lemma 2.5 ([11]). Let 0 < α < mn, 1 < pi < ∞, i = 1, · · · , m, m ∈N+, 1
p = 1

p1
+ · · ·+ 1

pm
,

1
m < p < n

α , 1
q = 1

p −
α
n . Suppose that Xi is Banach space and MX′i

is bounded on Lpi(Rn), u
and v1, · · · , vm are weights satisfying

K = sup
Q

(u(Q)

|Q|

) 1
q

m

∏
i=1
‖v−1

i ‖Xi ,Q < ∞,

then

‖Mα(~f )‖Lq(u) ≤ CK
m

∏
i=1
‖MX′i

‖Lpi (Rn)‖ fi‖Lpi (v
pi
i ).

Next we will give a key lemma which will be useful in the proof of Lemma 2.8.

Lemma 2.6. Let ω ≥ 0 be a weight,

v = Mp/q

L(log L)(1+
1
s )q−1+δ

(ω), s ≥ 1 and 0 < δ < 1.

Then there exists C > 0 such that for every p ∈ (1, ∞)∥∥∥∥∥M
L(log L)

1
s ,α

f

v

∥∥∥∥∥
Lp′ (v)

≤ Cq1+ 1
s

(
q− 1

δ
q′
) 1

p′
∥∥∥∥ f

ω

∥∥∥∥
Lq′ (ω)

. (2.2)

Proof. To prove inequality (2.2), it is equivalent to show that

∫
Rn

M
L(log L)

1
s ,α

( f ω
1
q )p′
(

M
p
q

L(log L)(1+
1
s )q−1+δ

(ω)
)1−p′

≤Cp′
n

(
q1+ 1

s

)p′
(

q− 1
δ

q′
)(∫

Rn
| f |q′

) p′
q′

. (2.3)

We now introduce the notations

A 1
s
(t) = t(1 + log+(t))

1
s , X 1

s
(t) =

t

(1 + log+ t)
1
s

.

Then by [20], it holds that
A−1

1
s
(t) ≥ X 1

s
(t).
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Moreover, one can see that

X 1
s
(t) =

( t

(1 + log+(t))(1+
1
s )q−1+δ

) 1
q
(t(1 + log+(t))1+δ(q′−1))

1
q′

= : F1(t)
1
q F2(t)

1
q′ ,

where
F1(t) = X(1+ 1

s )q−1+δ(t), F2(t) = A1+δ(q′−1)(t).

Again, by [20], one may get

M
L(log L)

1
s ,α

( f w
1
q ) ≤ Cq1+ 1

s MX̃1+δ(q′−1)(Lq′ ),α( f )
(

M
L(log L)(1+

1
s )q−1+δ(w)

) 1
q
.

Now we give the proof of inequality (2.3).∫
Rn

M
L(log L)

1
s ,α

( f ω
1
q )p′
(

M
p
q

L(log L)(1+
1
s )q−1+δ

ω
)1−p′

dx

≤
∫

Rn

(
Cq1+ 1

s MX̃1+δ(q′−1)(Lq′ ),α( f )
(

M
L(log L)(1+

1
s )q−1+δ w

) 1
q
)p′

×
(

M
p
q

L(log L)(1+
1
s )q−1+δ

w
)1−p′)

dx

=(Cq1+ 1
s )
∫

Rn
MX̃1+δ(q′−1)(Lq′ ),α( f )p′dx.

Let B = X̃1+δ(p−1)(Lp), by [4] we know

X̃1+δ(p−1)(Lp) 4 tp.

Then

|Q| αn ‖ f ‖B,Q = |Q| αn ‖ f ‖
αp
n

B,Q‖ f ‖1− αp
n

B,Q ≤ C‖ f ‖
1− p

q
p ‖ f ‖

p
q
B,Q,

which yields that

Mα,B f (x) ≤ C‖ f ‖
1− p

q
p M0,B f (x)

p
q .

Hence, Lemma 2.1 in [10] gives that∫
Rn
(Mα,B f (x))qdx ≤ C‖ f ‖q−p

p p
∫ ∞

1

B(t)
tp

dt
t
‖ f ‖p

Lp ≤ Cp
cp− 1

δ
‖ f ‖q

p.

Therefore, ∫
Rn

MX̃1+δ(q′−1)(Lq′ ),α( f )p′dx ≤ Cq′
q− 1

δ
‖ f ‖p′

q′ .

Consequently, we have shown that

‖M
L(log)

1
s
( f w

1
q )‖Lp′ (v1−p′ ) ≤ Cq1+ 1

s

(q− 1
δ

q′
) 1

p′ ‖ f ‖Lq′ (Rn).

Thus, we complete the proof.
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Lemma 2.7. Let ω be a weight and A be a Young function, p ∈ (1, ∞), 1
q = 1

p −
α
n , then there

exists a constant CIα such that

‖Iα( f )‖Lq(ω) ≤ CIα p′‖MĀ‖Lq′ (Rn)‖ f ‖
Lp(M

p
q
Aq (ω))

,

where Ā is the complementary function of A, Aq(t) = A(t
1
q ). Moreover, if

A(t) = tq(1 + log+ t)q−1+δ,

it holds that

‖Iα( f )‖Lq(ω) ≤ CIα p′q2
(1

δ

) 1
q′ ‖ f ‖

Lp
(

M
p
q

L(log L)q−1+δ (ω)
), 0 < δ < 1.

Proof. By Proposition 2.2 and Proposition 2.3 of [12], it suffices to show that

‖IS
α ( f )‖Lq(ω) ≤ CIα p′‖MĀ‖Lq′ (Rn)‖ f ‖

Lp(M
p
q
Aq (ω))

, (2.4)

where S ∈ D is a sparse set and D is a standard dyadic grid,

IS
α f = ∑

Q∈S

1
|Q|1− α

n

∫
Q

f dx · χQ.

Let v = M
p
q
Aq
(ω). By duality, there exists ‖g‖Lq′ (ω) = 1 such that

‖IS
α ( f )‖Lq(ω) =

∫
Rn

IS
α gω

v
f vdx ≤

∥∥∥ IS
α gω

v

∥∥∥
Lp′ (v)
‖ f ‖Lp(v).

Observe that the adjoint of IS
α is itself. Then, to prove inequality (2.4), it suffices to show

that ∥∥∥ IS
α gω

v

∥∥∥
Lp′ (v)

≤ CIα p′‖MĀ‖Lq′ (Rn). (2.5)

First, we consider to prove ∥∥∥ IS
α g
v

∥∥∥
Lp′ (v)

≤ p′
∥∥∥Mαg

v

∥∥∥
Lp′ (v)

. (2.6)

By duality, there exists a nonnegative function h with ‖h‖Lp(v) = 1 such that

I =
∥∥∥ IS

α g
v

∥∥∥
Lp′ (v)

=
∫

Rn
IS
α g(x)h(x)dx.
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Now we consider the operator:

S(h) =
M(hv

1
p )

v
1
p

,

and use S to build the Rubio de Francia algorithm

R(h) =
∞

∑
k=0

1
2k

Sk(h)
‖s‖k

Lp(v)

,

where R satisfies

(1) 0 ≤ h ≤ R(h);

(2) ‖R(h)‖Lp(v) ≤ 2‖h‖Lp(v);

(3) R(h)v
1
p ∈ A1, [R(h)v

1
p ]A1 ≤ Cp′.

Note that [v
1

2p ]2A1
≤ Cn, by Lemma 4.2 in [10]. Taking this into account yields that

[Rh]A3 = [R(h)v
1
p (v−

1
p(1−q) )1−q]A3 ≤ [Rhv

1
p ]A1 [v

1
2p ]2A1

≤ Cn p′.

Therefore [Rh]A∞ ≤ [Rh]A3 ≤ Cn p′ gives that

I ≤
∫

Rn
IS
α g(x)Rh(x)dx ≤ [Rh]A∞

∫
Rn

Mαg · Rhdx ≤ Cp′
∥∥∥Mαg

v

∥∥∥
Lp′ (v)

. (2.7)

Eq. (2.7) can be obtained by similar reasoning as in Lemma 4.1 of [10] with slight modifi-
cations. So we have shown that inequality (2.6) holds. In order to prove (2.5), it suffices
to show that ∥∥∥Mα f

v

∥∥∥
Lp′ (v)

≤ C‖MĀ‖Lq′ (Rn)

( ∫
Rn

( f

ω
1
q

)q′

dx
) 1

q′ .

Note that Lemma 2.5 and Theorem 6.4 in [6] yield that

K = sup
Q

( 1
|Q|

∫
Q

v1−p′
) 1

p′ ‖ω
1
q ‖A,Q

= sup
Q

( 1
|Q|

∫
Q

M
p
q
Aq
(ω)

1−p′

dy
) 1

p′ ‖ω
1
q ‖A,Q

≤‖ω‖
− 1

q
Aq,Q‖ω

1
q ‖A,Q = ‖ω

1
q ‖−1

A,Q‖ω
1
q ‖A,Q = 1.

Moreover, if A(t) = tq(1 + log+ t)q−1+δ, from the inequality (25) in [10], one may get

‖MĀ‖Lq′ (Rn) ≤ Cn

( ∫ ∞

1

( t
A(t)

)q′

A′(t)dt
) 1

q′ ≤ q2
(1

δ

) 1
q′ .
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Therefore

‖Iα( f )‖Lq(ω) ≤ CIα p′q2
(1

δ

) 1
q′ ‖ f ‖

Lp
(

M
p
q

L(log L)q−1+δ (ω)
).

Thus, we complete the proof.

Lemma 2.8. Let~b = (b1, · · · , bk), k ∈N, ω be a weight, for δ ∈ (0, 1),

p ∈ (1, ∞),
1
q
=

1
p
− α

n
, ν = M

p
q

L(log L)(1+
1
s )q−1+δ

ω,

there exists a constant CIα such that

‖I
α,~b f ‖Lq(ω) ≤ CIα p′k+1q(1+

1
s )

(
q− 1

δ
q′
) 1

p′

‖~b‖‖ f ‖Lp(ν).

Proof. We will divide the proof in two cases, as follows.

Case 1: k = 1. We denote

v = Mp/q

L(log L)(1+
1
s )q−1+δ

ω, m = CIα(p′)2q1+ 1
s

(q− 1
δ

q′
) 1

p′ .

By duality, there exists ‖g‖Lq′ (ω) = 1 such that

‖Iα,b( f )‖Lq(ω) =
∫

Rn
Iα,b f (x)g(x)ωdx =

∫
Rn

Iα,bgω

v
f vdx ≤

∥∥∥ Iα,bgω

v

∥∥∥
Lp′ (v)
‖ f ‖Lp(v).

We only need to show that

∥∥∥ It
α,b( f )

v

∥∥∥
Lp′ (v)

≤ m‖ f
w
‖Lq′ (w),

where It
α,b is the adjoint of Iα,b. The method of duality allows us to find a non-negative

function h ∈ Lp(v) with ‖h‖Lp(v) = 1 such that

∥∥∥ It
α,b( f )

v

∥∥∥
Lp′ (v)

=
∫

Rn

|It
α,b( f )|

v
hvdx =

∫
Rn
|It

α,b|hdx = I.

Now we consider the same operator S as we used in Theorem 2.7 and build the Rubio de
Francia algorithm R using the operator S. From the properties of R, we have

I ≤
∫

Rn
|It

α,b f |Rhdx ≤ Cn[Rh]A∞

∫
Rn

M#
r (It

α,b f )Rhdx ≤ Cn p′
∫

Rn
M#

r (It
α,b f )Rhdx.
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Observing that [b, T]t = −[b, Tt], so [b, T]t is also a commutator. By Lemma 2.2, it holds
that

I ≤Cn p′‖b‖OscexpLs

[ ∫
Rn

M
L(log L)

1
s ,α

f (x)Rh(x)dx +
∫

Rn
Mε(It

α, f )(x)Rh(x)dx
]

=Cn p′‖b‖OscexpLs (I1 + I2).

Applications of Hölder inequality and the second property of operator R lead to the in-
equalities that

I1 ≤
( ∫

Rn
M

L(log L)
1
s ,α

f p′(x)v1−p′(x)dx
) 1

p′
( ∫

Rn
Rhp(x)v(x)dx

) 1
p

≤2
∥∥∥M

L(log L)
1
s ,α

f

v

∥∥∥
Lp′ (v)

.

Now, Lemma 2.4 will be used to estimate I2.

I2 ≤Cn[Rh]A∞

∫
Rn

M#
ε(It

α f )(x)Rh(x)dx ≤ Cn p′
∫

Rn
M#

ε(It
α f )(x)Rh(x)

≤cn,ε p′
∫

Rn
Mα f (x)Rh(x)dx ≤ Cn p′

∥∥∥Mα f
v

∥∥∥
Lp′ (v)

.

The last inequality can be obtained the same as what we have done to deal I1. Conse-
quently, when

v = M
p
q

L(log L)(1+
1
s )q−1+δ

ω,

it holds that

∥∥∥ It
α,b( f )

v

∥∥∥
Lp′ (v)

≤ Cn(p′)2‖b‖Oscexp Ls

∥∥∥M
L(log L)

1
s ,α

f

v

∥∥∥
Lp′ (v)

.

Therefore by Lemma 2.6, there exists Cn > 0 such that

∥∥∥ It
α,b( f )

v

∥∥∥
Lp′ (v)

≤ Cn(p′)2q1+ 1
s

(q− 1
δ

q′
) 1

p′
∥∥∥ f

ω

∥∥∥
Lp′ (ω)

.

Case2: k > 1. The following argument is essentially taken from [20], and we only prepare
to give an outline of the proof. We will divide it in two steps.

Step 1. Due to the homogeneity of the operator we may assume that

‖b1‖Oscexp Ls1
= ‖b2‖Oscexp Ls2

= · · · ‖bk‖Oscexp Lsk
= 1.
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Repeated reasoning as the case k = 1 yields that

I =
∫

Rn
|It

α,~b
f |hdx

≤Cn p′
[ ∫

Rn
M

L(log L)
1
s ,α

f Rhdx +
m

∑
j=1

∑
σ∈Cm

j

∫
Rn

Mε(It
α,~σ′

f )Rhdx
]

=Cn p′(I1 + I2).

Similarly as the case for k = 1, one can get

I1 ≤ 2
∥∥∥ML(log L)1/s,α f

v

∥∥∥
Lp′

(v).

Step 2. Now we consider the contribution of I2. Let

Γ(j) =


1, j = 0,
2, j = 1,

2 +
j−1

∑
i=0

(
j
i

)
Γ(i), j > 1.

(2.8)

For every ε ∈ (0, 1), we claim that:∫
Rn

Mε(It
α,~σ′

f )(x)Rh(x)dx ≤ CΓ(#σ′)(p′)#σ′+1
∫

Rn
M

L(log L)
∑

i∈σ′
1
si

, α f (x)Rh(x)dx.

Now we turn to the proof of this claim. It will be proved by induction on the number of
symbols of It

α,~σ′
. We will use the notation I

α,~σ′ instead of It
α,~σ′

and denote k = #σ′.
If #σ′ = 0, since

∑
i∈∅

1
si

= 0,

then ∫
Rn

Mε(Iα f )(x)Rh(x)dx ≤ Cp′Mα f (x)Rh(x)dx.

If #σ′ = 1, then∫
Rn

Mε(Iα,b f )Rhdx ≤ 2C(p′)2
∫

Rn
M

L(log L)
1
s1 ,α

f (x)Rh(x)dx.

Suppose that the claim holds for 0 ≤ #τ < k, then for every ε ∈ (0, 1):∫
Rn

Mε(Iα,~τ f )(x)Rh(x)dx ≤ CΓ(#τ)(p′)#τ+1
∫

Rn
M

L(log L)
∑

i∈τ

1
si ,α

f (x)Rh(x)dx.
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We only need to show the case for #τ′ = k. With Lemma 2.4 and the inductive hypothesis
in hand, one may get∫

Rn
Mε(I

α,~σ′ f )(x)Rh(x)dx

≤
(

1 +
k

∑
j=1

∑
τ∈Ck

j

Γ(#τ′)
)

Cp′k+1
∫

Rn
M

L(log L)
∑

i∈σ′
1
si ,α

f (x)Rh(x)dx.

Denoting (
1 +

k

∑
j=1

∑
τ∈Ck

j

Γ(#τ′)
)
= Γ(k),

then
I2 ≤ Cn,δ,ε(p′)m+1

∫
Rn

M
L(log L)

1
s ,α

f Rhdx.

Therefore, the same reasoning as what we have done in dealing with I1 yields that

I2 ≤ Cn,δ,ε(p′)m+1
∥∥∥M

L(log L)
1
s ,α

f

v

∥∥∥
Lp′ (v)

.

Consequently, by Lemma 2.6, as already noted, it holds that∥∥∥∥∥ It
α,~b

f

v

∥∥∥∥∥
Lp′ (v)

≤ Cn(p′)k+1q(1+
1
s )

(
q− 1

δ
q′
) 1

p′
∥∥∥∥∥M

L(log L)
1
s ,α

f

ω

∥∥∥∥∥
Lp′ (ω)

.

Thus, we complete the proof.

3 The proof of borderline estimates

Now we turn to prove Theorem 1.1. The following argument is essentially taken from [10].

Proof of Theorem 1.1. By Proposition 2.2 and 2.3 in [12], it suffices to show that

‖IS
α f ‖L1,∞(ω) ≤

CIα

ε

[ ∫
Rn
| f (x)|(Mc

L(log L)ε,αω(x)dx)
1
c +

∫
Rn
| f (x)|Mω(x)dx

]
,

where S ∈ D is the sparse set, D is the dyadic grid,

IS
α f = ∑

Q∈S

1
|Q|1− α

n

∫
Q

f dx · χQ.
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Thanks to the homogeneity of the operator, it is enough to show

ω({x ∈ Rn : |IS
α f | > 2})

≤CIα

ε

[ ∫
Rn
| f (x)|(Mc

L(log L)ε,αω(x)dx)
1
c +

∫
Rn
| f (x)|Mω(x)dx

]
.

Decompose f = g + b at height λ = 1 with

b = ∑
j
( f − fQj)χQj .

Introduce the notations
Ω =

⋃
j

Qj, Ω̃ =
⋃

j

3Qj,

then ‖g‖L∞ ≤ 2n and

ω({x ∈ Rn : |IS
α f (x)| > 2})

≤ω(Ω̃) + ω
(
{(Ω̃)c : IS

α g(x) > 1}
)
+ ω

(
{(Ω̃)c : IS

α b(x) > 1}
)

= : I + I I + I I I.

Consider first the contribution made by I. The Chebyshev inequality gives that

I ≤∑
j
|3Qj|

1
|3Qj|

∫
3Qj

ω(x)dx ≤∑
j
|3Qj| inf

z∈Qj
Mω(z) ≤

∫
Rn

f (y)Mω(y)dy.

By [10], it is easy to see I I I=0. Moreover, by the fact that ‖g‖L∞ ≤ 2n, Then

I I ≤‖IS
α g‖q

Lq(ωχ(Ω̃)c )

≤C
(

q2 p′
(1

δ

) 1
q′
)q( ∫

(Ω̃)c
|g|

p
q M

p
q

L(log L)q−1+δ

) q
p

≤Cq2q
(1

δ

) q
q′
(p′)q

( ∫
(Rn)c
| f |M

p
q

L(log L)q−1+δ

) q
p
.

Let q− 1 = ε
2 = δ < 1, then

q =
ε

2
+ 1, q2q

(1
δ

) q
q′
(p′)q ≤ 1

ε
, c =

p
q
=

2n
2n + α(ε + 2)

.

Therefore in all,

‖IS
α f ‖L1,∞(ω) ≤

CIα

ε

[ ∫
Rn
| f (x)|(Mc

L(log L)ε ω(x)dx)
1
c +

∫
Rn
| f (x)|Mω(x)dx

]
.

Thus, we complete the proof.
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We now begin the proof of Theorem 1.2.

Proof of Theorem 1.2. We will divide it in two cases.

Case 1: k = 1. Due to the homogeneity of the operator, we may assume that ‖b1‖Oscexp Ls =
1. Consider the Calderón-Zygmund decomposition of f at height λ. It bears emphasis
that there exists a family of dyadic cubes Qj which are pairwise disjoint such that

λ ≤ 1
|Qj|

∫
Qj

| f | ≤ 2nλ.

Denote Ω =
⋃

jQj, and write f = g + h, where g is denoted to be the ”good” part of f ,
defined by

g(x) =
{

f (x), x ∈ Ωc,
fQj , x ∈ Qj,

with the property that |g(x)| ≤ 2nλ a.e., and h = ∑ hj with

hj = ( f − fQj)χQj and fQj =
1
|Qj|

∫
Qj

| f |dx.

Now we introduce the notations

w∗(x) = w(x)χRn\Ω̃(x) and wj(x) = w(x)χRn\Q̃j
(x),

where Q̃j = 5
√

nQj and Ω̃ =
⋃

jQ̃j. The Calderón-Zygmund decomposition allows us to
write

w({x ∈ Rn : |Iα,b f (x)| > λ})

≤w

({
x ∈ Rn\Ω̃ : |Iα,bg(x)| > λ

2

})
+ w(Ω̃) + w

({
x ∈ Rn\Ω̃ : |Iα,bh(x)| > λ

2

})
= : I + I I + I I I.

Consider first the contribution of I, Chebyschev’s inequality gives that

I ≤ 2q

λq

∫
Rn
|Iα,bg(x)|qw∗(x)dx.

Now we choose

q = 1 +
5ε

12
(
1 + 1

s

) and δ = ε−
(

1 +
1
s

)
(q− 1).
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Then it follows that

(p′)2q p(1+
1
s )q
(q− 1

δ

) q
p′ ≤ Cs

1
ε2 ,

(
1 +

1
s

)
q− 1 + δ =

1
s
+ ε,

c =
p
q
=

12n(1 + 1
s )

12(n + α)(1 + 1
s ) + 5αε

.

By Lemma 2.8, one may obtain

2q

λq

∫
Rn
|Iα,bg(x)|qω∗(x)dx

≤ 2q

λq C
(
(p′)2q(1+

1
s )
(q− 1

δ
q′
) 1

p′
)q( ∫

Rn
|g(x)|p M

p
q

L(log L)(1+
1
s )q−1+δ

ω∗(x)dx
) q

p

≤C
1
ε2

1

λ
q
p

( ∫
Rn\Ω

| f (x)|M
p
q

L(log L)
1
s +ε

ω∗(x)dx
) q

p
.

This means, of course, that there exists C > 0 such that

I ≤ C
1
ε2

( ∫
Rn

| f (y)|
λ

Mc
L(log L)

1
s +ε

w(y)dy
) 1

c
.

We have the following standard estimate for I I

I I ≤∑
j

∫
5
√

nQj

w(x)dx ≤∑
j
(5
√

n)n|Qj| inf
z∈Qj

Mw(x) ≤ (5
√

n)n
∫

Rn

f (y)
λ

Mw(y)dy.

Now we turn to the discussion of I I I. Since

Iα,bh = ∑
j

Iα,bhj = ∑
j
(b(x)− bQj)Iαhj(x)− Iα(b− bQj)hj,

we may split III into two parts

I I I ≤w

({
x ∈ Rn\Ω̃ : |∑

j
(b(x)− bQj)Iαhj(x)| > λ

4

})

+ w

({
x ∈ Rn\Ω̃ : |∑

j
Iα[b− bQj ]hj(x)| > λ

4

})
:=A + B.
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The Chebyschev’s inequality and the cancellation of hj yield that

A ≤C
λ ∑

j

∫
Rn\Q̃j

|b(x)− bQj |w(x)
∫

Qj

|hj(y)||
( 1
|x− y|n−α

− 1
|x− y′|n−α

)
|dydx

≤C
λ ∑

j

∫
Qj

|hj(y)|
∫

Rn\Q̃j

|y− y′|n−α

|x− y|n−α|x− y′|n−α
|b(x)− bQj |wj(x)dxdy

≤C
λ ∑

j

∫
Qj

|hj|
∞

∑
k=1

∫
2k l(Qj)≤|x−y′|≤2k+1l(Qj)

(2l(Qj))
n−α|b− bQj |wj

(2k−1l(Qj))n−α(2kl(Qj))n−α
dxdy

≤C
λ ∑

j

∫
Qj

|hj(y)|dy
∞

∑
k=1

2−k(n−α) 1
|2k+1Qj|n−α

∫
2k+1Qj

|b(x)− bQj |wj(x)dx.

By Lemma 2.1 and

|b(x)− bQj | ≤ |b(x)− b2k+1Qj
|+ |b2k+1Qj − bQj |,

it follows that
∞

∑
k=1

2−k(n−α)

|2k+1Qj|n−α

∫
2k+1Qj

|b(x)− bQj |wj(x)dx

≤
∞

∑
k=1

2−k(n−α) inf
z∈Qj

M
Llog L

1
s ,α

wj(z) +
∞

∑
k=1

2−k(n−α)(k + 1) inf
z∈Qj

M
Llog L

1
s ,α

wj(z)

≤ inf
z∈Qj

M
Llog L

1
s ,α

wj(z).

Therefore,

A ≤ C
λ ∑

j

∫
Qj

M
Llog

1
s ,α

wj(y)|hj(y)|dy ≤ C
λ

∫
Rn
| f (y)|M

Llog L
1
s ,α

w(y)dy.

On the other hand, B may be split into four parts

B ≤ C
λε ∑

j
inf

z∈Qj
(MLlogε wj(z))

( ∫
Qj

|b(x)− bQj || f (x)|dx +
∫

Qj

|b(x)− bQj || fQj |dx
) 1

c

+
C
λε ∑

j
inf

z∈Qj
Mwj(z)

( ∫
Qj

|b(x)− bQj || f (x)|dx +
∫

Qj

|b(x)− bQj || fQj |dx
)

≤1
ε
(B1 + B2 + B3 + B4).

By the generalized Hölder inequality and definition of Orlicz maximal function, one may
obtain

B1 ≤C ∑
j

inf
z∈Qj

(MLlog Lε wj(z))
1
λ
|Qj|

1
c ‖ f ‖

1
c

L(log L)
1
s ,Qj

≤
( ∫

Rn
Φ 1

s

( | f (x)|
λc

)
Mc

Llog Lε w(x)dx + λ1−c
∫

Rn
Φ 1

s

( | f (x)|
λ

)
Mc

Llog Lε w(x)dx
) 1

c
.
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Similarly, it holds that

B2 ≤
( ∫

Rn
Φ 1

s
(
| f (y)|

λc )Mc
Llog Lε wj(y)dy

) 1
c
,

B3 + B4 ≤ C
∫

Rn
Φ 1

s
(
| f (y)|

λ
)Mw(x)dx.

This completes the proof of Case 1.
Case 2 : k ≥2. We will use inductive discussion here, i.e., suppose that the inequality
holds for l ≤ k− 1 symbols, we need to show it holds for l = k. Due to the homogeneity
of the operator, we may assume that

‖b1‖Oscexp Ls1
= · · · = ‖b1‖Oscexp Lsk

= 1.

We decompose f like in the same way as the case k = 1. Then

w
({

x ∈ Rn : |I
α,~b f (x)| > λ

})
≤w
({

x ∈ Rn\Ω̃ : |I
α,~bg(x)| > λ

2

})
+ w(Ω̃) + w

({
x ∈ Rn\Ω̃ : |I

α,~bh(x)| > λ

2

})
= : I + I I + I I I.

The Chebyschev’s inequality gives that

I ≤ 2q

λq

∫
Rn
|I

α,~bg(x)|qω∗(x)dx. (3.1)

Choosing

q = 1 +
5ε

12(1 + 1
s )

, δ = ε−
(

1 +
1
s

)
(q− 1),

and therefore

c :=
p
q
=

12n(1 + 1
s )

12(n + α)(1 + 1
s ) + 5αε

, (p′)(k+1)q p(1+
1
s )q
(q− 1

δ

) q
p′ ≤ Cs

1
εk+1 ,(

1 +
1
s

)
q− 1 + δ =

1
s
+ ε.

Then (3.1) is controlled by

Cn(p′)(k+1)q p(1+
1
s )q
(q− 1

δ

) q
p′
( ∫

Rn
|g(x)|q Mc

L(log L)(1+
1
s )q−1+δ,α

ω∗(x)dx
)1/c

.

Proceeding as k = 1 yields that

I ≤ Cn
1

εk+1

(∫
Rn

| f (y)|
λ

Mc
L(log L)

1
s +ε,α

ω(y)dy
) 1

c

,

I I ≤ (5
√

n)n
∫

Rn

| f (y)|
λ

Mω(y)dy.
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We continue to estimate I I I. It can been written in the following way

I I I ≤ω

({
y ∈ Rn\Ω̃ :

∣∣∣∑
j
(b1(x)− (b1)Qj) · · · (bk(x)− (bk)Qj)Iαhj(x)

∣∣∣ > λ

6

})

+ ω

({
y ∈ Rn\Ω̃ :

∣∣∣Ck Iα((b1 − (b1)Qj) · · · (bk − (bk)Qj)hj)(x)
∣∣∣ > λ

6

})

+ ω

(y ∈ Rn\Ω̃ :
∣∣∣∑

j

k−1

∑
i=1

∑
σ∈Ck

i

Cσ I~σα ((b− ~bQj)σ′hj)(x)
∣∣∣ > λ

6


)

= : L1 + L2 + L3.

Now we deal with L1. Denote

ωj = ω · χRn\5
√

nQj
and B(x) =

k

∏
i=1
|bi(x)− (bi)Qj |.

Same reasoning as what we have done in dealing with k = 1 gives that

L1 ≤∑
j

C
λ

∫
Qj

|hj(y)|∑
m

8n−α

2m(n−α)

1
(2m+1l(Qj))n−α

∫
|x−y′|≤2m+1l(Qj)

B(x)ωj(x)dxdy

≤Ck

λ ∑
j

∫
Qj

|hj(y)|ML(log L)
1
s ,α

ωj(y)dy

≤Ck

λ

∫
Rn
| f (y)|M

L(log L)
1
s ,α

ω(y)dy.

Consider now the contribution of L2. By Theorem 1.1, L2 can be written as

L2 ≤
C
λ

1
ε

{
∑

j

[ ∫
Qj

B(x)| f − fQj |M
c
L(log L)ε ωj(x)dx

] 1
c

+
∫

Qj

B(x)| f − fQj |Mωj(x)dx
}

≤C
λ

1
ε ∑

j
inf

z∈Qj
ML(log L)ε ωj(z)

( ∫
Qj

B(x)| f (x)|dx +
∫

Qj

B(x)| fQj |dx
) 1

c

+
C
λ

1
ε ∑

j
inf

z∈Qj
Mωj(z)

(∫
Qj

B(x)| f (x)|dx +
∫

Qj

B(x)| fQj |dx
)

≤1
ε
(B1 + B2 + B3 + B4).

Lemma 2.1 tells us that

1
|Qj|

∫
Qj

B(x)dx ≤ C
m

∏
i=1
‖bi − (bi)Qj‖expLsi ,Qj

≤ C‖~b‖ = C,
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therefore

B2 ≤
C
λ

(∫
Rn

φ
( | f (x)|

λc

)
(Mc

L(log L)ε ωj(x))dx
) 1

c

.

Proceeding similarly as before, one may obtain

B1 ≤
C
λ ∑

j
inf

z∈Qj

(
ML(log L)ε ωj

)
|Qj|

1
c ‖ f (x)‖

1
c

L(log L)
1
s ,Qj

≤ C
(∫

Rn
Φ 1

s

(
| f |
λc

)(
Mc

L(log L)ε ω
)

dx + λ1−c
∫

Rn
Φ 1

s

(
| f |
λ

)(
Mc

L(log L)ε ω
)

dx
) 1

c

,

B3 + B4 ≤ C
∫

Rn
Φ 1

s

(
| f (y)|

λ

)
Mω(x)dx,

which means that we have shown that the desired estimate holds for L2.
Finally, we consider the last term L3.

L3 ≤ω

({
y ∈ Rn\Ω̃ :

∣∣∣ k−1

∑
i=1

∑
σ∈Ci(b)

Cσ I~σα
(

∑
j
(b−~λ)σ′ f χQj

)
(x)
∣∣∣ > λ

12

})

+ ω

({
y ∈ Rn\Ω̃ :

∣∣∣ k−1

∑
i=1

∑
σ∈Ci(b)

Cσ I~σα
(

∑
j
(b−~λ)σ′ fQj χQj

)
(x)
∣∣∣ > λ

12

})
= : L31 + L32.

By the inductive hypothesis and the Chebyshev’s inequality, L31 can be estimated as

L31 ≤C
k−1

∑
i=1

∑
σ∈Ci(b)

∑
j

1
ε#σ+1

{
inf

z∈Qj

(
M

L(log L)
∑

i∈σ′
1
si
+ε

,α
ωj(z) + M

L(log L)
∑

i∈σ′
1
si
+ε ωj(z)

)
∫

Qj

Φ ∑
i∈σ

1
si

( | f (x)|
λ

(b(x)− bQj)σ′

)
dx

+
(

inf
z∈Qj

Mc

L(log L)
∑

i∈σ′
1
si
+ε

ωj(z)
∫

Qj

Φ ∑
i∈σ

1
si

( | f (x)|
λc (b(x)− bQj)σ′

)) 1
c

+
(

inf
z∈Qj

Mc

L(log L)
∑

i∈σ′
1
si
+ε

ωj(z)(1 + λ1−c)
∫

Qj

Φ ∑
i∈σ

1
si

( | f (x)|
λ

(b(x)− bQj)σ′

)
dx
) 1

c
}

.

=L311 + L312 + L313 + L314.

By Lemma 2 of [17], we have

∫
Qj

Φ ∑
i∈σ

1
si

( | f (x)|
λ

(b(x)− bQj)σ′

)
dx ≤ Ck

∫
Qj

Φ 1
s

( | f (x)|
λ

)
dx.
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We may continue with the estimate

L3110 ≤Ck

k−1

∑
i=1

∑
σ∈ck

i

∑
j

1
ε#σ+1 inf

z∈Qj
M

L(log L)
∑

i∈σ′
1
si
+ε

,α
ωj(z)

∫
Qj

Φ 1
s

( | f (x)|
λ

)
dx

≤Ck
1
εk ∑

j
inf

z∈Qj
M

L(log L)
∑

i∈σ′
1
si
+ε

,α
ωj(z)

∫
Qj

Φ 1
s

( | f (x)|
λ

)
dx

≤Ck
1
εk

∫
Rn

Φ 1
s

( | f (x)|
λ

)
M

L(log L)
1
s +ε,α

ω(x)dx.

The remainders of L31 can be treated in the similar way. Repeated reasoning as L3.1 may
lead to our desired estimate for L3.2 This completes the proof for Case 2 and therefore
also finishes the proof of Theorem 1.2.
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Birkhäuser/Springer Basel AG, Basel, 2011.

[7] Y. Ding, S. Lu, and P. Zhang, Weak estimates for commutators of fractional integral opera-
tors, Sci. China Ser. A, 44(7) (2001), 877–888.

[8] C. Domingo-Salazar, M. Lacey, and G. Rey, Borderline weak-type estimates for singular in-
tegrals and square functions, Bull. Lond. Math. Soc., 48(1) (2016), 63–73.

[9] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107–115.
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