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1 Introduction

Given a Schwartz function f ∈ S(Rn), we consider the fractional Schrödinger operator
defined by

Sa(t) f (x) =
( 1

2π

)n ∫
Rn

eixξ+it|ξ|a f̂ (ξ)dξ (1.1)

with a > 0. It is the solution to the initial data problem of the fractional Schrödinger
equation {

∂tu(x, t) = (−∆)
a
2 u(x, t), ∀(x, t) ∈ Rn ×R,

u(x, 0) = f (x).
(1.2)

From the Plancherel theorem, (1.1) can be easily extend to a bounded operator on L2-
based Sobolev space Hs(Rn) for s ∈ R. Here we recall the norm of Hs(Rn) as

‖ f ‖Hs(R) =

(∫
R

(
1 + |ξ|2

)s
∣∣∣ f̂ (ξ)∣∣∣2 dξ

) 1
2

< ∞. (1.3)
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When a = 2, S2(t) becomes the classical Schrödinger operator. We take S(t) as its ab-
breviation. In [3], Carleson posed the following well known problem: To determine the
infimum (critical) index sc such that for any s > sc,

lim
t→0

S(t) f (x) = f (x) a.e. x ∈ Rn, ∀ f ∈ Hs(Rn). (1.4)

For one dimensional case, Carleson [3] showed that (1.4) holds for s ≥ 1
4 . The correspond-

ing opposite result is obtained by Dahlberg and Kenig [7]. Moreover they showed that
(1.4) does not hold for s < 1

4 in any dimension. Thus we can conclude sc = 1/4 for n = 1.
After that, there are enumerate literatures devoted to settling the high dimensional prob-
lems. Sjölin [16] and Vega [20] proved the convergence if s > 1/2 independently. Lee [11]
set up (1.4) when s > 3/8 and n = 2. Bourgain [1] improved these results by showing
that the convergence holds for s > 1

2 −
1

4n and the necessary condition is s ≥ 1
2 −

1
n for

n ≥ 4. More recently, Bourgain [2] constructed a counter example to show that (1.4) does
not hold for s < n

2(n+1) . Du, Guth and Li [6] obtained that sc = 1/3 by setting up (1.4)

if s > 1
3 and n = 2. Forthermore, Du and Zhang [9] proved the convergence holds if

s > n
2(n+1) and n ≥ 3. Thus the solution to Carleson’s problem is sc =

n
2(n+1) for n ≥ 2.

It is nature to ask the same question for general a > 0. An interesting phenomenon is
that when a > 1, the results do not depend on the value of a, but when a < 1, the results
depend on the value of it. For a > 1, the convergence were proved to be true if s > 1/4,
n = 1 by Sjölin [16] and Vega [20]. Miao, Yang, and Zheng [14] obtained the convergence
when s > 3

8 and n = 2. Cho and Ko [4] proved that the convergence also holds when
s > n

2(n+1) and n ≥ 2. The same result was also obtained by Li, Li and Xiao [12] by setting
up the up-bound of Hausdorff dimension of the divergent set.

When 0 < a < 1, Walther [21, 22] set up the convergence when s > a/4 in one di-
mension and for the radial functions in higher dimensional spaces. Very recently Dimou
and Seeger [10] obtained the equivalent condition to time sequence of {tn} such that if
tn → 0 (1.4) holds. Thus we know that sc = a

4 is the critical index when n = 1. For
n ≥ 2, Zhang [24] proved the convergence for s > na

4 . It is still very open to determine
the critical index for the high dimensional case.

An interesting generalization of the point-wise convergence problem is to set up the
convergence in a wider approach region instead of vertical lines, for example, the non-
tangential limit. It is easy to see that it holds for s > n

2 by Sobolev Embeding. Sjölin
and Sjögren [15] showed that non-tangential convergence fails for s ≤ n

2 . Cho, Lee and
Vargas [5] showed that the non-tangential convergence holds if s > β(Θ)+1

4 when a = 2
and n = 2. β(Θ) denotes the upper Minkowski dimension of the upper cover of the cone
which will be given soon. Cho, Lee and Vargas [5] deal with estimating the boundary of
the operator along the restricted direction and time localization argument. Shiraki [17]
extended result of [5] to a > 1. In this paper, we will deal with the case of 0 < a < 1,
n = 1.

To state our main results, we need first introduce in some notations. Let Θ ⊂ R be a
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fixed compact set of R, We call

Γ(x, t) = {x + sθ : s ∈ [−t, t] and θ ∈ Θ}, x ∈ R and t ≥ 0, (1.5)

as a cone respect to the upper cover Θ. It is clear if Θ = [−1, 1], it is exactly a classical
cone in R2. The upper Minkowski dimension of Θ which can be defined as

β(Θ) = inf
{

r > 0 : lim
δ→0

sup N(Θ, δ)δr = 0
}

. (1.6)

Here, N(Θ, δ) denotes the smallest number of δ-intervals which cover Θ.
The main results of this paper can be state as follows.

Theorem 1.1. Let 0 < a < 1, Θ ⊂ R be a compact set. If s > 1
2 −

a
4 (1− β(Θ)), then there

exists a constant Cs > 0, such that∥∥∥∥∥ sup
(t,θ)∈[−1,1]×Θ

|Sa(t) f (·+ tθ)|
∥∥∥∥∥

L2(−1,1)

≤ Cs‖ f ‖Hs(R). (1.7)

Corollary 1.1. Under the condition of Theorem 1.1, we have

lim
y∈Γx ,t→0

Sa(t) f (y) = f (x) a.e. x ∈ R, ∀ f ∈ Hs(R). (1.8)

Remark 1.1. When Θ = [−1, 1], we have β(Θ) = 1. By the results of Sjölin and
Sjögren [15], our result is sharp in this case. For β(Θ) < 1, our results are new. This
result is not coincide with the critical index sc =

a
4 when Θ = {0}. But the latter is only a

very special case of β(Θ) = 0.

The non-tangential convergence means that the convergence is true along any curve
in the cone region. The critic number sc is n

2 when β(Θ) = 1. Theorem 1.1 shows that
along some curve in Γ(Θ) the convergence can also be true for functions with less regu-
larity. Thus is would be interested to understand convergence for the points along some
curves in the cone. Given a continuous curve γ(x, t), such that limt→0 γ(x, 0) = x, we
define the operator along this curve as

St,γ f (x) = St f (γ(x, t)) =
1

2π

∫
R

eiγ(x,t)ξ+it|ξ|a f̂ (ξ)dξ, f ∈ S(R). (1.9)

The question now is to determine the lower index sc,γ, such that for s > sc,γ,

lim
t→0

St,γ f (x) = f (x) a.e. x ∈ Rn, ∀ f ∈ Hs(Rn). (1.10)

For classical Schrödinger operator Lee and Rogers [13], Cho, Lee and Vargas [5] consid-
ered the curve γ(x, t) satisfies the following conditions:

|γ(x, t)− γ(y, t)| ≤ C|t− t′|τ, (1.11a)
c|x− y| ≤ |γ(x, t)− γ(y, t)| ≤ C|x− y|. (1.11b)
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Cho, Lee and Vargas [14] obtained the pointwise convergence holds if

s > max
{1

2
− τ,

1
4

}
.

Ding and Niu [8] obtained the convergence along the curve holds if

s >
a
4

for
1
2
< τ < 1

or
s > min

{ a
2

,
a
4

( 1
τ
− 1
)}

, when a > 1.

Furthermore, Ding and Niu [8] show it is sharp when a ≥ 2 the critical index sc =
max{ 1

2 − τ, 1
4}. We focus on 0 < a < 1. For this aim, we need to consider the maxi-

mal operator

S∗t,γ f (x) = sup
t∈[0,T]

St,γ f (x) (1.12)

with a given constant T > 0.
We now state our next result:

Theorem 1.2. Let 0 < a < 1, 0 < τ ≤ 1. The curve γ satisfies (1.11a) and (1.11b). We have

‖S∗t,γ f ‖L2(R) ≤ C‖ f ‖Hs(R), (1.13)

whenever
s >

1
2
− a

4
for

1
2
< τ ≤ 1,

or
s > min

{1
2

,
1
2
+

a
4

( 1
τ
− 3
)}

for 0 < τ ≤ 1
2

.

Corollary 1.2. Under the condition of Theorem 1.2, we have

lim
t→0

St,γ(t) f (x) = f (x) a.e. x ∈ R, ∀ f ∈ Hs(R). (1.14)

2 Proof of main results

2.1 Two lemmas

In this section, we collect two lemmas which will be used very frequently in our proof.

Lemma 2.1 (Van der Corput’s lemma, [18, p. 309]). Suppose λ > 1 and we have |φk(x)| ≥ 1
for all (a, b). If k = 1 and φ′ is monotonic on (a, b), or simply k ≥ 2, then there exists a constant
Ck such that ∣∣∣ ∫ a

b
eiλφ(x)ψ(x)dx

∣∣∣ < Ckλ−
1
k

( ∫ b

a
|ψ′(x)|dx + ‖ψ‖L∞

)
. (2.1)
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Lemma 2.2 ([19]). Let I denote an open interval in R. For g ∈ C∞
0 (I) and real valued function

F ∈ C∞(I) with F′ 6= 0, if k ∈N, then∫
I

eF(x)g(x)dx =
∫

I
eF(x)hk(x)dx, (2.2)

where hk is a linear combination of functions of the form

g(s)(F′)−k−r
r

∏
q=1

F(jq)

with 0 ≤ s ≤ k, 0 ≤ r ≤ k and 2 ≤ jq ≤ k + 1.

2.2 Proof of Theorem 1.1

Let ϕ be a bump function supported on [−1, 1] and ψ = ϕ(x/2)− ϕ(2x). And we take the
notation that ψk(x) = ψ(2−kx) for any k ∈N. Given f ∈ S(R), we denote the projections
of the function to the dyadic annulus respectively by

f̂0(ξ) = f̂ (ξ)ϕ(ξ) and f̂k(ξ) = f̂ (ξ)ψk(ξ), k ∈ N.

Then we have the following partition of unit

f (x) = f0(x) + ∑
k≥1

fk(x).

Denote the maximal operator

MΘ f (x) = sup{|Sa(t) f (x + tθ)| : −1 ≤ t ≤ 1, θ ∈ Θ}. (2.3)

For fixed k,

MΘ fk(x) = sup
(t,θ)∈B1×Θ

|Sa(t) fk(x + tθ)| ≤
(

N

∑
j=1

sup
θ∈Ωk,j

|St fk(x + tθ)|2
) 1

2

, (2.4)

where Ωk,j = Ωj(2k), and {Ωj(λ)}j=1 is a finite covering of Θ such that

Θ ⊂ ∪N
j=1Ωj(λ) and |Ωj(λ)| ≤ λ−

a
2 . (2.5)

By Minkowski’s inequality, we have

‖MΘ f ‖L2(I) ≤ ‖MΘ f0‖L2(I) + ∑
K≥1
‖MΘ fk‖L2(I). (2.6)

For the low frequency part, it is easy to see that

‖MΘ f0‖L2(I) .
∫

R
ϕ0(ξ)| f̂ (ξ)|dξ . ‖ f ‖L2 . (2.7)
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We then need to obtain some estimates for MΘ fk. Moreover,

∑
k≥1
‖MΘ fk‖2

L2(I) ≤ ∑
K≥1

∑
j=1
‖MΩk,j fk‖2

L2(I), (2.8)

where
MΩk,j fk(x) = sup{|Sa(t) f (x + tθ)| : −1 ≤ t ≤ 1, θ ∈ Ωk,j}.

Firstly, we claim the following estimate and postpone its proof to the next proposition.

‖MΩ f ‖L2(I) ≤ C2k( 1
2−

a
4 )‖ f ‖L2 , ∀Ω is an interval with |Ω| ≤ 2k( a

2 ). (2.9)

And let
L̂k f = ĥk f̂ ,

where

ĥ ∈ C∞
0

((
− 4,−1

4

)
∪
(1

4
, 4
))

with ĥ = 1 on
(
− 2,−1

2

)
∪
(1

2
, 2
)

.

By the definition of the upper Minkowski dimension, there is a constant Cε depending
on ε to hold the inequality

N(Θ, λ−σ) ≤ Cελσβ(Θ)+ε

for any ε > 0. And by (2.8), (2.9), we can obtain that

∑
k≥1
‖MΘ fk‖2

L2(I) ≤ ∑
K≥1

∑
j=1
‖MΩk,j Lk f ‖2

L2(I)

≤∑
k=1

∑
j=1

2(1−
a
2 )k‖Lk f ‖2

L2
2

≤∑
k=1

2k(1− a
2 (1−β(Θ))+ε)‖Lk f ‖2

L2
2
. (2.10)

We conclude that
‖MΘ f ‖L2(I) . ‖ f ‖

H
1
2−

a
4 (1−β(Θ))+ε . (2.11)

We now give the proof of (2.9).

Proposition 2.1. Let k ≥ 1 and Ω be an interval with |Ω| ≤ 2k( a
2 ). Then, there exists a constant

C > 0 that

‖MΩ f ‖L2(I) ≤ C2k( 1
2−

a
4 )‖ f ‖L2 . (2.12)

Proof. Set λ = 2k and denote

T f (x, t, θ) = χ(x, t, θ)
∫

R
ei((x+tθ)ξ+t|ξ|a) f̂ (ξ)ψ

( ξ

λ

)
dξ, (2.13)
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whereχ ∈ C∞
0 (I × [−1, 1]×Ω). The result follows from

‖T f ‖L2
x L∞

t,θ
≤ λ

1
2−

a
4 ‖ f ‖L2 . (2.14)

By duality, it is need to show that

‖T∗F‖L2 ≤ Cλ
1
2−

a
4 ‖F‖L2

x L1
t L1

θ
, (2.15)

where

T∗F(ξ) = ψ
( ξ

λ

) ∫
R

ei((y+t′θ′)ξ+t|ξ|a)F(y, t, θ′)χ(x, t, θ′)dxdtdθ′.

It is sufficient to show

‖TT∗F‖L2L∞
t,θ
≤ Cλ( 1

2−
a
4 )‖F‖L2L1

t,θ
. (2.16)

We note that

TT∗F(x, t, θ) = χ(x, t, θ)
∫∫∫

Kλ(t, t′, x, y, θ, θ′)χ(y, t′, θ′)F(y, t′, θ′)dydt′dθ′, (2.17a)

Kλ(t, t′, x, y, θ, θ′) = χ(x, t, θ)χ(y, t′, θ′)λ
∫

ei(λa(t′−t)|ξ|a+λ(x−y+tθ−tθ′)ξ)ψ2(ξ)dξ. (2.17b)

We have the following estimates for the kernel Kλ.

(i) The case |x− y| ≥ 4|t− t′| and |x− y| ≥ 4λ−
a
2 . We have{

φ′(ξ) = λ(x− y + tθ − t′θ′) + aλa(t− t′)|ξ|a−1,
φ′′(ξ) = a(a− 1)λa(t− t′)|ξ|a−2.

(2.18)

Then,

|φ′(ξ)| ≥λ|(x− y + tθ − t′θ′)| − λa|(t− t′)||ξ|a−1

&λ|x− y| − λa|(t− t′)||ξ|a−1

&λ|x− y|. (2.19)

Since φ′′(ξ) is single-signed on (−∞,−1] and [1, ∞), so φ′(ξ) is monotonic on |ξ| ≥
1. By Lemma 2.1, we can obtain that

Kλ . λ(λ|x− y|)−1 . λ
a
2 |x− y|− 1

2 , (2.20)

when |x− y| ≥ 4λ−
a
2 .

(ii) The case |x− y| ≤ Cλ−
a
2 and |x− y| ≥ C|t− t′|. It’s obviously that Kλ . λ.
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(iii) The case |x− y| ≤ C|t− t′|. By Lemma 2.2, we have

|Kλ| . λ1− a
2 (|x− y|)− 1

2 . (2.21)

It follows from Hölder’s inequality and Young’s inequality that∫
(K ∗ |h|)(x)|h(x)|dx ≤ ‖K‖L1‖h‖2

L2 . (2.22)

By Fubini theorem and previous argument,

λ
a
2

∫ 1

−1

∫ 1

−1
‖F(x, ·)‖L1

t,θ
‖F(y, ·)‖L1

t,θ
||x− y|− 1

2 dxdy . λ
a
2 ‖F‖2

L2L1
t,θ

,

λ
∫ 1

−1

∫ 1

−1
‖F(x, ·)‖L1

t,θ
‖F(y, ·)‖L1

t,θ
|X

[−Cλ−
a
2 ,Cλ−

a
2 ]
(x− y)dxdy .1− a

2 ‖F‖2
L2L1

t,θ
,

λ1− a
2

∫ 1

−1

∫ 1

−1
‖F(x, ·)‖L1

t,θ
‖F(y, ·)‖L1

t,θ
|x− y|− 1

2 dxdy . λ1− a
2 ‖F‖2

L2L1
t,θ

.

(2.23)

We compare the exponent of λ, the proof of proposition is completed.

We finish the proof of Theorem 1.1.

2.3 Proof of Theorem 1.2

We denote the linearization of the maximal operator as

T f (x) =
∫

R
eiγ(x,t(x))ξ+it(x)|ξ|a f̂ (ξ)dξ. (2.24)

It is sufficient to set up

‖T f (x)‖L2(R) . ‖ f ‖Hs(R). (2.25)

We decompose it

T f (x) =
∫

R
eiγ(x,t)ξ+it|ξ|a f̂0(ξ)dξ +

∞

∑
k=1

∫
R

eiγ(x,t)ξ+it|ξ|a f̂k(ξ)dξ

= : T0 f (x) +
∞

∑
k=1

Tk f (x), (2.26)

where f0 and fk are the same as in the last subsection. By Minkowski’s inequality, we
have

‖T f ‖L2(R) ≤ ‖T0 f ‖L2(R) +
∞

∑
k=1
‖Tk f ‖L2(R). (2.27)
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We first estimate the ‖T0 f ‖L2(R). Let

L0g(x) =
∫

R
eiγ(x,t(x))ξ+it(x)|ξ|a ϕ0(ξ)g(ξ)dξ, g ∈ S(R). (2.28)

Taking function ρ ∈ C∞
0 , ρ = 1 if |x| ≤ 1, and ρ = 0 if |x| ≥ 2, we denote

L0,mg(x) = ρ
( x

m

) ∫
R

eiγ(x,t(x))ξ+it(x)|ξ|a ϕ0(ξ)g(ξ)dξ, g ∈ S(R). (2.29)

By duality, its adjoint operator

L′0,mh(ξ) = ϕ0(ξ)
∫

R
e−iγ(x,t(x))ξ−it(x)|ξ|a ρ

( x
m

)
h(x)dx, m ≥ 1. (2.30)

Thus, we have

‖L′0,mh‖2
L2(R) =

∫
R

(
ϕ0(ξ)

∫
R

e−iγ(x,t(x))ξ−it(x)|ξ|a ρ
( x

m

)
h(x)dx

)
×
(

ϕ0(ξ)
∫

R
eiγ(x,t(y))ξ+it(y)|ξ|a ρ

( y
m

)
h(y)dy

)
dξ

=
∫

R

∫
R

K0(x, y)h(x)h(y)dxdy, (2.31)

where

K0(x, y) = ρ
( x

m

)
ρ
( y

m

) ∫
R

ei(γ(y,t(y))−γ(x,t(x)))ξ+i(t(y)−t(x))|ξ|a ϕ2
0(ξ)dξ. (2.32)

Using the Hölder’s inequality and Young’s inequality we obtain

‖L′0,mh‖2
L2(R) ≤ C‖K0‖L1(R)‖h‖2

L2(R). (2.33)

We claim that ‖K0‖L1(R) < C and it is independent of m, which we will give the proof in
Proposition 2.2. Thus, we have

‖L0,mg‖2
L2(R) ≤ C‖g‖2

L2(R). (2.34)

By taking m→ ∞, we have

‖L0g‖2
L2(R) ≤ C‖g‖2

L2(R). (2.35)

We now set up the uniform boundedness of ‖k0‖L1(R). It is sufficient to set the following
proposition.

Proposition 2.2. Suppose γ satisfy the conditions in Theorem 1.2 and K0(x, y) as (2.30). Then K0(x, y) .
1

(1 + |x− y|)−1−a , |x− y| ≥ C(2T)τ,

K0(x, y) . 1, |x− y| ≤ C(2T)τ.
(2.36)
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Proof. We decompose K0(x, y) like that

K0(x, y) =
∫

R
ei(γ(y,t(y))−γ(x,t(x)))ξ

( M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)
ϕ2

0(ξ)dξ

+
∫

R
ei(γ(y,t(y))−γ(x,t(x)))ξ

(
ei(t(y)−t(x))|ξ|a

−
M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)
ϕ2

0(ξ)dξ

= : K0,1(x, y) + K0,2(x, y), (2.37)

where aM < 1 < a(M + 1). It’s obvious that

K0 . 1 for |x− y| ≤ C(2T)τ.

So we only consider the case |x− y| ≥ C(2T)τ.
The estimate of K0,1.

In the view of (2.37), it is need to show∫
ei(γ(y,t(y))−γ(x,t(x)))ξ |ξ|a ϕ2

0(ξ)dξ ≤ C|x− y|−1−a, (2.38)

where the constant C is independent of x, and x ≥ 1. Let ψ = 1− ϕ and ψm(ξ) = ψ(mξ).
Integrating by parts, we have∫

R
ei(γ(y,t(y))−γ(x,t(x)))ξ |ξ|a ϕ2

0(ξ)dξ

= lim
m→∞

∫
R

ei(γ(y,t(y))−γ(x,t(x)))ξ |ξ|aψm(ξ)ϕ0(ξ)dξ

=
−1

i(γ(y, t(y))− γ(x, t(x)))

( ∫
R

ei(γ(y,t(y))−γ(x,t(x)))ξ asgn(ξ)|ξ|a−1ϕ0(ξ)dξ

+
∫

R
ei(γ(y,t(y))−γ(x,t(x)))ξ |ξ|a ϕ′0(ξ)dξ

+ lim
m→∞

∫
R

ei(γ(y,t(y))−γ(x,t(x)))ξ |ξ|aψ′m(ξ)ϕ0(ξ)dξ

)

=
−1

i(γ(y, t(y))− γ(x, t(x)))
(I1(x− y) + I2(x− y) + lim

m→∞
I3,m(x− y)). (2.39)

We denote h : ξ → sgn(ξ)|ξ|a−1. Since h is odd and homogeneous of degree a − 1 its
inverse Fourier transform is odd and homogeneous of degree −a. Thus the convolution
ȟ ∗ ϕ̌0 = I1/C is bounded and continuous and that it veryfies the estimate. I2 decays
rapidly at infinity.

|I3,m(x− y)| ≤ lim
m→∞

2
∫ 2

m

1
m

|ξ|aψ′m(ξ)dξ ≤ Cm−a. (2.40)
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Thus, we have ∣∣∣ ∫
R

ei(γ(y,t(y))−γ(x,t(x)))ξ |ξ|a ϕ2
0(ξ)dξ

∣∣∣ ≤ |x− y|−1−a. (2.41)

The estimate of K0,2.
Set

K0,2,m(x, y) =
∫

ei(γ(y,t(y))−γ(x,t(x)))ξ
(

ei(t(y)−t(x))|ξ|a

−
M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)
ϕ2

0(ξ)ψm(ξ)dξ

=:
∫

eiP(ξ)Q(ξ)dξ, (2.42)

where

P(ξ) = (γ(y, t(y))− γ(x, t(x)))ξ, (2.43a)

Q(ξ) =
(

ei(t(y)−t(x))|ξ|a −
M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)
ϕ2

0(ξ)ψm(ξ). (2.43b)

By integrating by parts twice, we have

K0,2(x, y) = − 1
(γ(y, t(y))− γ(x, t(x)))2

∫
R

eiP(ξ)Q′′(ξ)dξ, (2.44)

where

Q′′(ξ)

= ∑
µ+β+η=2

(
ei(t(y)−t(x))|ξ|a −

M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)(µ)
(ϕ2

0(ξ))
(β)(ψm(ξ))

(η), (2.45)

when |x− y| ≥ C(2T)τ. We have the following that

K0,2,m(x, y) =
1

(|γ(y, t(y))− γ(x, t(x)))|2
∫

R
|eiP(ξ)||Q′′(ξ)|dξ

.
1

(1 + |x− y|)2 ∑
µ+β+η=2

Iµ,β,η , (2.46)

where

Iµ,β,η =
∫ ∣∣∣(ei(t(y)−t(x))|ξ|a −

M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)(µ)∣∣∣∣∣∣(ϕ2
0(ξ)

)(β)
∣∣∣∣∣∣(ψm(ξ)

)(η)dξ
∣∣∣.
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Thus, for 0 < |ξ| < 1, the following estimate holds∣∣∣(ei(t(y)−t(x))|ξ|a −
M

∑
k=0

(i(t(y)− t(x))|ξ|a)k

k!

)(µ)∣∣∣
=
∣∣∣( ∞

∑
M+1

(i(t(y)− t(x))|ξ|a)k

k!

)(µ)∣∣∣
≤C|ξ|a(M+1)−µ. (2.47)

We can obtain the estimate for 1 ≤ |ξ| ≤ 2 in a similar way. For µ = 0, 1, 2, by the
convergence of Taylor series.∣∣∣( ∞

∑
M+1

(i(t(y)− t(x))|ξ|a)k

k!

)(µ)∣∣∣ ≤ C, µ = 0, 1, 2. (2.48)

And by the definition of ψ and 1 ≤ |ξ| ≤ 2, we have

|(ψm(ξ))
(η)| ≤ C|ξ|−η , η = 1, 2. (2.49)

Thus, if η = 0,

Iµ,β,η ≤C
∫

1
m<|ξ|<1

|ξ|a(M+1)−µdξ +
∫

1<|ξ|<2
dξ

≤C
∫
|ξ|<1
|ξ|a(M+1)−2dξ + C ≤ C. (2.50)

If η = 1 or η = 2. We consider m−1 ≤ |ξ| ≤ 2m−1 for m sufficient large.

Iµ,β,η ≤ C
∫

1
m<|ξ|< 2

m

|ξ|a(M+1)−µ−ηdξ ≤ Cm−1m−a(M+1)+µ+η ≤ C. (2.51)

Thus let m→ ∞, so we complete the proof.

Next, we estimate ‖Tk f ‖L2(R). Defining the operator Rλ as

Rλg(x) = λ−s
∫

R
eiγ(x,t(x))ξeit(x)|ξ|a ψ

( ξ

λ

)
g(ξ)dξ, g ∈ S(R), λ ≥ 2. (2.52)

Taking ρ as above

Rλ,mg(x) = λ−sρ
( x

m

) ∫
R

eiγ(x,t(x))ξeit(x)|ξ|a ψ
( ξ

λ

)
g(ξ)dξ, g ∈ S(R), λ ≥ 2. (2.53)

Noticing that N is a dyadic number, we consider the adjoint operator of it

R′λ,mh(ξ) = λ−sψ
( ξ

N

) ∫
R

eiγ(x,t(x))ξeit(x)|ξ|a ρ
( x

m

)
h(x)dx, m > 1, λ ≥ 2. (2.54)
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We have

‖R′λ,mh(ξ)‖L2
(R)

=:
∫

R

∫
R

K0(x, y)h(x)h(y)dxdy, (2.55)

where

Kλ(x, y) = ρ
( x

m

)
ρ
( y

m

) ∫
R

ei(γ(y,t(y))−γ(x,t(x)))ξ+i(t(y)−t(x))|ξ|a ψ2
( ξ

λ

)
dξ. (2.56)

Let

Iλ(x, y) = λ−2s
∫

R
ei(γ(y,t(y))−γ(x,t(x)))ξ+i(t(y)−t(x))|ξ|a ψ2

( ξ

λ

)
dξ. (2.57)

Denote G(ξ) = ψ2(ξ), and by changing the variables, we obtain that

Iλ(x, y) = λ1−2s
∫

R
eiλ(γ(y,t(y))−γ(x,t(x)))ξ+iλa(t(y)−t(x))|ξ|a G(ξ)dξ. (2.58)

Proposition 2.3. Suppose that γ and Iλ(x− y) as above. For 1
4 ≤ τ ≤ 1, we have

Iλ(x, y) . λ1−2s, 0 < |x− y| ≤ Cλε−a,

Iλ(x, y) . λ−
a
2+

ε
2τ (|x− y|)− 1

2τ λ1−2s, λε−a < |x− y| ≤ Cλε,
Iλ(x, y) . (λ|x− y|)−2λ1−2s, |x− y| ≥ Cλε.

(2.59)

The constants C are independent of λ.

Proof. For the case |x− y| ≥ Cλε|t(y)− t(x)|τ. Let

F(ξ) = λ(γ(y, t(y))− γ(x, t(x)))ξ + λa(t(y)− t(x))|ξ|a.

It’s obviously that

Iλ(x, y) = λ1−2s
∫

eiF(ξ)G(ξ)dξ, (2.60)

and 
F′(ξ) = λ(γ(y, t(y))− γ(x, t(x))) + aλasgn(ξ)(t(y)− t(x))|ξ|a−1,
F′′(ξ) = a(a− 1)λa(t(y)− t(x))|ξ|a−2,

F(3)(ξ) = a(a− 1)(a− 2)λa(t(y)− t(x))sgn(ξ)|ξ|a−3.

(2.61)

From γ satisfying the condition (1.11a), (1.11b) and |F′(ξ)| ≥ Cλ|x − y|. Noticing that
1
2 ≤ |ξ| ≤ 2, |F(j)(ξ)| ≤ Cλa for j = 2, 3 and by Lemma 2.2, we can obtain∫

ei f (ξ)G(ξ)dξ .
∫

1
2≤|ξ|≤2

1
|F′(ξ)|2

(
1 +
|F′′(ξ)|
|F′(ξ)| +

( |F′′(ξ)|
|F′(ξ)|

)2
+
|F(3)(ξ)|
|F′(ξ)|

)
dξ

.(λ|x− y|)−2 ∑
( λa

λ|x− y|

)r

.(λ|x− y|)−2. (2.62)
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For the case |x− y| ≤ Cλε|t(y)− t(x)|τ.

|F′′(ξ)| ≥ Cλa|t(x)− t(y)| ≥ λa− ε
τ (|x− y|) 1

τ . (2.63)

Noticing that ‖G‖L∞ ≤ C and ‖G′‖L1 ≤ C, by Lemma 2.2, then

|Iλ(x, y)| ≤ Cλ−
a
2+

ε
2τ (|x− y|)− 1

2τ λ1−2s. (2.64)

Thus, we complete the proof.

Let Iλ be as above. By Hölder’s inequality and Young’s inequality, we have

‖R′λ,mh‖2
L2(R) ≤

∫
R
(Iλ ∗ |h(x)|)|h(x)|dx ≤ C‖Iλ‖‖h‖2

L2(R). (2.65)

From Proposition 2.3 it follows

‖Iλ‖L1
(R)
≤ λ−2δ, (2.66)

where δ > 0. So we have

‖Rλ,mg‖L2(R) ≤ λ−2δ‖g‖L2(R), (2.67)

the constant C is independent of m and λ. By taking m→ ∞ we have

‖Rλg‖L2(R) ≤ λ−2δ‖g‖L2(R).

For 0 < τ ≤ 1, we have the estimate{
Iλ(x, y) . λ1−2s, |x− y| ≤ Cλε,
Iλ(x, y) . (λ|x− y|)−2N1−2s, |x− y| ≥ Cλε.

(2.68)

We prove that for all 0 < τ ≤ 1

‖R′n,mh‖2
L2(R) ≤

∫
R

∫
R
|IN(x, y)||h(x)||h(y)|dxdy

≤C
∫
|x−y|≤CNε

N1−2s|h(x)||h(y)|dxdy

+ C
∫
|x−y|>CNε

N1−2s(N|x− y|−2)|h(x)||h(y)|dxdy

≤CN1−2s+ε‖h‖2
L2(R). (2.69)

We need to restriction the exponent of λ to negative,

1− 2s + ε < 0, (2.70)
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for any ε > 0, thus the convergence holds if s > 1
2 .

We consider the case for 1
2 < τ ≤ 1

‖R′n,mh‖2
L2 ≤C

∫
|x−y|≤Cλε

λ−
a
2+

ε
2τ (|x− y|)− 1

2τ λ1−2s|h(x)||h(y)|dxdy

+ C
∫
|x−y|>Cλε

λ1−2s(λ|x− y|)−2|h(x)||h(y)|dxdy

≤Cλ−
a
2+1−2s+ε‖h‖2

L2(R). (2.71)

Thus, we have

− a
2
+ 1− 2s + ε < 0. (2.72)

Then,

s >
1
2
− a

4
. (2.73)

The case for 1
4 ≤ τ < 1

2 , it is obviously that − 1
2τ ≥ −2. We obtain that∫

|x−y|<λε−a
λ1−2sh(x)h(y)dxdy ≤ Cλ1−2s+ε−a‖h‖2

L2(R), (2.74a)∫
λε−a<|x−y|≤Cλε

λ−
a
2+

ε
2τ |x− y|− 1

2τ λ1−2s|h(x)||h(y)|dxdy

≤ Cλ1−2s+ a
2 (

1
τ−3)+ε‖h‖2

L2(R). (2.74b)

Then,

s >
1
2
+

a
4

( 1
τ
− 3
)

. (2.75)

We consider the case for τ = 1
2 . Denote τ = 1

2 − θ, 0 < θ < 1
6 , as above, we have

s >
1
2
+

a
4

( 1
1
2 − θ

− 3
)

.

So that the convergence holds if s > 1
2 −

a
4 , when τ = 1

2 .
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