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Abstract. Weighted `p (0 < p ≤ 1) minimization has been extensively studied as an ef-
fective way to reconstruct a sparse signal from compressively sampled measurements
when some prior support information of the signal is available. In this paper, we con-
sider the recovery guarantees of k-sparse signals via the weighted `p (0 < p ≤ 1)
minimization when arbitrarily many support priors are given. Our analysis enables
an extension to existing works that assume only a single support prior is used.
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1 Introduction

Compressed sensing [2, 5] is a new data acquisition paradigm, which reliably recovers
a high dimensional sparse signal x ∈ Rn (a signal is called k-sparse if the number of its
nonzero entries has at most k� n) from significantly fewer linear observations

y = Φx + e, (1.1)

where Φ ∈ Rm×n is a measurement matrix and e ∈ Rm denotes additive noise that sat-
isfies ‖e‖2 ≤ ε for some known ε ≥ 0. Compressed sensing is nonadaptive because
the measurement matrix Φ does not depend on the signal being measured. But, some
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prior information of the signal x may be included in the estimates of the support of x
or some estimates of largest coefficients of x in some settings. For example, video and
audio signals exhibit strong correlation over temporal frames, which can be used to esti-
mate a portion of the support based on previously decoded frames (see [6]). Therefore,
the recovery of the signal x incorporating prior support information has received much
attention including the weighted `1-minimization [3, 4, 6, 14, 16, 17, 19], the weighted `p
(0 < p < 1)-minimization [10, 11, 13, 18] and the greedy algorithm with partial support
information [7, 12, 15].

This paper considers the recovery of the signal x from (1.1) and is devoted to new RIP
bounds for the exact and stable recovery of sparse signals with arbitrary many support
priors via the weighted `p-minimization:

min
x∈Rn
‖x‖p

p, w subject to ‖Φx− y‖2 ≤ ε, (1.2)

where w ∈ [0, 1]n is a weight vector and

‖x‖p, w =
( n

∑
i=1

wi|xi|p
) 1

p
.

The main idea inherited in the weighted `p (0 < p ≤ 1)-minimization is to make the
entries of x, which are “expected” to be large, be penalized less in the weighted objective
function in (1.2) by the effect of the weight w.

As p = 1, the method (1.2) reduces to the weighted `1-minimization:

min
x∈Rn
‖x‖1, w subject to ‖Φx− y‖2 ≤ ε. (1.3)

The rest of the paper is organized as follows. In Section 2, we recall a recently estab-
lished RIP bound for signal recovery by virtue of the weighted `p-minimization with a
single weight. In Section 3, we respectively present sufficient conditions for the recov-
ery of sparse signals by weighted `p-minimization with non-uniform weights in both the
noiseless and `2 bounded noise. Section 4 is devoted to the proofs of the main results.

2 Weighted `p-minimization with a single weight

Let T̃ ⊆ [n] = {1, 2, · · · , n} be a known single support estimate of x. The weight vector
w in this case is taken by

wi =

{
ω, i ∈ T̃,

1, i ∈ T̃c,
(2.1)

for some fixed ω ∈ [0, 1] and i ∈ [n].
The restricted isometry property (RIP) is one of the main tools used to evaluate the

recovery performance via a variety of efficient algorithms. The RIP notion introduced by
Candès et al. in [2], is the most widely used framework in compressed sensing.
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Definition 2.1. For a matrix Φ ∈ Rm×n and an integer 1 ≤ k ≤ n, Φ is said to satisfy the RIP
of order k if there exists a constant δk ∈ [0, 1) such that

(1− δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δk)‖x‖2
2 (2.2)

holds for all k-sparse signals x ∈ Rn. The smallest constant δk is called the restricted isometry
constant (RIC) of order k for Φ.

When k is not an integer, δk is defined as δdke in [1], where dke denotes an integer
satisfying k ≤ dke < k + 1.

The main result of [9] generalizes the recovery condition from [21] to the weighted
`p-minimization (1.2) where the weight vector w is specified in (2.1).

Theorem 2.1 below states the main result of [9] which presents a sufficient condition
for the exact recovery of sparse signal x from y = Φx.

Theorem 2.1. Let x be an arbitrary k-sparse vector in Rn with T = supp(x) and y = Φx. Let
T̃ ⊆ [n] be an arbitrary set and ρ ≥ 0 and 0 ≤ α ≤ 1 with αρ ≤ 1 such that |T̃| = ρk and
|T̃ ∩ T| = αρk. Given the weight ω ∈ [0, 1] and 0 < p ≤ 1, define some important parameters
somehow depending on the weight ω, and the size and the overlap of the true signal support T
and the prior support estimate T̃, and p as follows

• The constant ζ:

ζ =
(

ω + (1−ω)(1 + ρ− 2αρ)
2−p

2

) 2
2−p

, (2.3)

• the constant d:

d =

{
1, ω = 1,
1 + (max{0, 1− 2α})ρ, 0 ≤ ω < 1,

(2.4)

• the parameter Θ is defined by

Θ =
ζ

t− d
, (2.5)

• for Θ > 0, the quantity δ(p, Θ) is defined by

δ(p, Θ) =


1√

p2 + (2− p)2Θ− (1− p)
, Θ ≥ Θ0 =

2 + p
2− p

,

z0

(2− p)Θ− z0
, Θ < Θ0,

(2.6)

where z0 ∈ ((1− p)Θ, min(1, 2−p
2 Θ) is the only positive solution of the equation

p
2

z
2
p + z− (2− p)Θ

2
= 0. (2.7)

Moreover, for Θ = ζ
t−d = 0, we define δ(p, Θ) = 1.
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If the measurement matrix Φ satisfies RIP with

δtk < δ(p, Θ) (2.8)

for d < t ≤ 2d, then the weighted `p-minimization (1.2) with the weight vector w defined in
(2.1) and 0 < p ≤ 1 recovers x exactly.

3 Weighted `p-minimization with non-uniform weights

In this section, we present our main results for generalizing the weighted `p-minimization
theory of [9], to allow for arbitrary weight assignments.

We consider the weighted `p-minimization with L distinct weights, where 1 ≤ L ≤ n.
Let T̃j ⊆ [n] be arbitrary L disjoint sets and denote ρj ≥ 0 and 0 ≤ αj ≤ 1 such that
|T̃j| = ρjk and |T̃j ∩ T| = αjρjk, j = 1, · · · , L, where ρj ≥ 0 and 0 ≤ αj ≤ 1 are called the
relative size and accurary for each j = 1, · · · , L. Define T̃ = ∪L

j=1T̃j. The weight vector w
in this general case is chosen in the following way

wi =

{
ωj, i ∈ T̃j,

1, i ∈ T̃c,
(3.1)

for i ∈ [n] and ωj ∈ [0, 1], j = 1, · · · , L are given weights.

We first provide a recovery guarantee for the weighted `p-minimization with L dis-
tinct weights in noiseless case.

Theorem 3.1. For 0 < p ≤ 1 and y = Φx, suppose that x be k-sparse with T = supp(x).
Let T̃i ⊆ [n] be arbitrary L disjoint sets and ρi ≥ 0 and 0 ≤ αi ≤ 1 such that |T̃i| = ρik and
|T̃i ∩ T| = αiρik, i = 1, · · · , L. Without loss of generality, assume that the weights in (3.1) are
ordered so that 0 ≤ ωL ≤ · · · ≤ ω1 ≤ 1. Let

βi = max
{ L

∑
j=i

αjρj,
L

∑
j=i

(1− αj)ρj

}
,

bi =

{
1, i = 1,
sgn(ωi−1 −ωi), i = 2, · · · , L,
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and

d =


1, ω1 = ω2 = · · · = ωL = 1,

max
i∈{1,2··· ,L}

{
bi

(
1−

L

∑
j=i

αjρj + βi

)}
, 0 ≤

L
∏
i=1

ωi < 1,
(3.2a)

γL = ωL + (1−ω1)
(

1 +
L

∑
i=1

ρi − 2
L

∑
i=1

αiρi

) 2−p
2

+
L

∑
i=2

(ωi−1 −ωi)
(

1 +
L

∑
j=i

ρj − 2
L

∑
j=i

αjρj

) 2−p
2

. (3.2b)

If the measurement matrix Φ satisfies RIP and

δtk < δ(t, p, Θ), (3.3)

where d < t ≤ 2d, and for

Θ =
γ

2/(2−p)
L
t− d

> 0, (3.4)

δ(t, p, Θ) is defined by

δ(t, p, Θ) =


1√

p2 + (2− p)2Θ− (1− p)
, Θ ≥ Θ0 =

2 + p
2− p

,

z0

(2− p)Θ− z0
, Θ < Θ0,

(3.5)

where z0 ∈
(
(1− p)Θ, min (1, 2−p

2 Θ)
)

is the only positive solution of the equation

p
2

z
2
p + z− 2− p

2
Θ = 0, (3.6)

and

δ(t, p, Θ) = 1 if Θ =
γ

2/(2−p)
L
t− d

= 0,

then the weighted `p-minimization (1.2) recovers x exactly.

As p = 1, Theorem 3.1 presents a sufficient condition of the weighted `1-minimization
(1.3) for the exact recovery of x, which improves the theory of [17]. See the following
Corollary 3.1.

Corollary 3.1. If p = 1 and Φ satisfies RIP with

δtk <
1√

1 + Θ
, (3.7)
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where d < t ≤ 2d and

Θ =(t− d)−1

(
ωL + (1−ω1)

√√√√1 +
L

∑
i=1

ρi − 2
L

∑
i=1

αiρi

+
L

∑
i=2

(ωi−1 −ωi)

√√√√1 +
L

∑
j=i

ρj − 2
L

∑
j=i

αjρj

)2

,

then the weighted `1-minimization (1.3) exactly recover x.

Remark 3.1. Note that the sufficient condition (3.7) is identical to the condition (3.1) in [8],
since

δtk <
1√

1 + Θ
=

√
t− d

t− d + γ2
L

,

where the equality is from Θ =
γ2

L
t−d and

γL =ωL + (1−ω1)

√√√√1 +
L

∑
i=1

ρi − 2
L

∑
i=1

αiρi

+
L

∑
i=2

(ωi−1 −ωi)

√√√√1 +
L

∑
j=i

ρj − 2
L

∑
j=i

αjρj. (3.8)

In noisy case, we have the following theorem.

Theorem 3.2. For 0 < p ≤ 1 and y = Φx + e, suppose that x̂ is a minimizer of the weighted
`p-minimization (1.2) with ‖e‖2 ≤ ε. If Φ satisfies RIP with

δtk < δ(t, p, Θ) (3.9)

for some d < t ≤ 2d, where δ(t, p, Θ) is defined in (3.5) for Θ > 0. Then

‖x− x̂‖2

≤
√

2 ·
[

4(2− p)η(1− η)
√

1 + δtk + 2η
√

2(2− p)(1− p)(2− p− η)(δ(t, p, Θ)− δtk)

(2− p)(2− p− η)(δ(t, p, Θ)− δtk)

]
ε,

where

η =


2− p√

p2 + (2− p)2Θ + p
, Θ ≥ Θ0 =

2 + p
2− p

,

z0

Θ
, Θ < Θ0,

(3.10)

and γL, z0 are defined as in Theorem 3.1.
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4 Proofs of the main results

4.1 Sparse representation and technical lemmas

The original work in [2] triggers an RIP analysis for signal recovery via l1 minimization.
The RIP analysis in [1] and [22] attains the summit for sparse signal recovery via l1 min-
imization. The results in [1] and [22] depend on a key tool established in [20] and [1]
independently, which represents points in a polytope

V = {v ∈ Rn, ‖v‖1 ≤ kα, ‖v‖∞ ≤ α for some α > 0}

by convex combinations of k−sparse vectors. Zhang and Li [21] developed the tool,
which extends the sparse representation of a polytope in [1] and [20] adapted to lp,
(0 < p ≤ 1) case.

Lemma 4.1 ( [21, Lemma 2.2]). For x ∈ Rn which satisfies |supp(x)| = K, ‖x‖p
p ≤ Lρp and

‖x‖∞ ≤ ρ with L ≤ K being a positive integer, ρ being a positive constant and 0 < p ≤ 1, then
x can be represented as the convex combination of L-sparse vectors, i.e.,

x = ∑
i

λiui,

where λi > 0, ∑i λi = 1 and ‖ui‖0 ≤ L. Furthermore,

∑
i

λi‖ui‖2
2 ≤ min

{n
L
‖x‖2

2, ρp‖x‖2−p
2−p

}
. (4.1)

For the weighted `p-minimization (1.2) with L distinct weights, the cone constraint
inequality can be stated as follows.

Lemma 4.2. If ‖x̂‖p
p,w ≤ ‖x‖

p
p,w and h = x̂− x, then for any index set Γ ⊆ [n],

‖hΓc‖p
p ≤ωL‖hΓ‖p

p + (1−ω1)‖h(Γ∪⋃L
i=1 T̃i)\(

⋃L
i=1 T̃i∩Γ)‖

p
p

+
L

∑
j=2

(ωj−1 −ωj)‖h(Γ∪⋃L
i=j T̃i)\(

⋃L
i=j T̃i∩Γ)‖

p
p

+ 2
(

ω‖xΓc‖p
p + (1−ω)‖xT̃c∩Γc‖p

p −
L

∑
i=1

(ω−ωi)‖xT̃i∩Γc‖p
p

)
, (4.2)

where

T̃ = ∪L
i=1T̃i and ω =

L

∑
i=1

ωi.

Proof. By x̂ = x + h and the choice of the weights in (3.1),

‖x̂‖p
p,w = ‖x + h‖p

p,w ≤ ‖x‖
p
p,w
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implies

L

∑
i=1

ωi‖xT̃i
+ hT̃i

‖p
p + ‖xT̃c + hT̃c‖p

p ≤
L

∑
i=1

ωi‖xT̃i
‖p

p + ‖xT̃c‖p
p.

Furthermore, we have

L

∑
i=1

(ωi‖xT̃i∩Γ + hT̃i∩Γ‖
p
p + ωi‖xT̃i∩Γc + hT̃i∩Γc‖p

p)

+ ‖xT̃c∩Γ + hT̃c∩Γ‖
p
p + ‖xT̃c∩Γc + hT̃c∩Γc‖p

p

≤
L

∑
i=1

(ωi‖xT̃i∩Γ‖
p
p + ωi‖xT̃i∩Γc‖p

p) + ‖xT̃c∩Γ‖
p
p + ‖xT̃c∩Γc‖p

p.

Next, we use the reverse triangle inequality to get

L

∑
i=1

ωi‖hT̃i∩Γc‖p
p + ‖hT̃c∩Γc‖p

p

≤
L

∑
i=1

ωi‖hT̃i∩Γ‖
p
p + ‖hT̃c∩Γ‖

p
p + 2

( L

∑
i=1

ωi‖xT̃i∩Γc‖p
p + ‖xT̃c∩Γc‖p

p

)
. (4.3)

Now, we can write

‖hΓc‖p
p =

L

∑
i=1
‖hT̃i∩Γc‖p

p + ‖hT̃c∩Γc‖p
p.

Let us add and subtract ωi‖hT̃j∩Γc‖p
p for all pairs of i and j such that i, j = 1, · · · , L and

i 6= j, and ωi‖hT̃c∩Γc‖p
p for i = 1, · · · , L to the left side of (4.3). Then the left side of (4.3)

becomes

L

∑
i=1

ωi‖hT̃i∩Γc‖p
p + ‖hT̃c∩Γc‖p

p + ∑
i,j,i 6=j

ωi‖hT̃j∩Γc‖p
p −∑

i 6=j
ωi‖hT̃j∩Γc‖p

p

+
L

∑
i=1

ωi‖hT̃c∩Γc‖p
p −

L

∑
i=1

ωi‖hT̃c∩Γc‖p
p

=
L

∑
i=1

ωi

(
‖hT̃i∩Γc‖p

p + ∑
j 6=i
‖hT̃j∩Γc‖p

p

)
−∑

i 6=j
ωi‖hT̃j∩Γc‖p

p + (1−ω)‖hT̃c∩Γc‖p
p +

L

∑
i=1

ωi‖hT̃c∩Γc‖p
p

=ω‖hΓc‖p
p + (1−ω)‖hT̃c∩Γc‖p

p −
L

∑
j=1

(
∑
i 6=j

ωi

)
‖hT̃j∩Γc‖p

p

=ω‖hΓc‖p
p + (1−ω)‖hT̃c∩Γc‖p

p −
L

∑
j=1

(ω−ωj)‖hT̃j∩Γc‖p
p.
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Similarly, we can write

‖hΓ‖p
p =

L

∑
i=1
‖hT̃i∩Γ‖

p
p + ‖hT̃c∩Γ‖

p
p.

Let us add and subtract ωi‖hT̃j∩Γ‖
p
p for all pairs of i and j such that i, j = 1, · · · , L and

i 6= j, and ωi‖hT̃c∩Γ‖
p
p for i = 1, · · · , L to the right side of (4.3), as well as ωi‖xT̃j∩Γc‖p

p

for i = 1, · · · , L and i 6= j, and ωi‖xT̃c∩Γc‖p
p for i = 1, · · · , L. Then the right side of (4.3)

becomes

ω‖hΓ‖p
p + (1−ω)‖hT̃c∩Γ‖

p
p −

L

∑
i=1

(ω−ωi)‖hT̃i∩Γ‖
p
p

+ 2
(

ω‖xΓc‖p
p + (1−ω)‖xT̃c∩Γc‖p

p −
L

∑
i=1

(ω−ωi)‖xT̃i∩Γc‖p
p

)
.

Let

D = ω‖xΓc‖p
p + (1−ω)‖xT̃c∩Γc‖p

p −
L

∑
i=1

(ω−ωi)‖xT̃i∩Γc‖p
p.

Putting these together, we have

ω‖hΓc‖p
p + (1−ω)‖hT̃c∩Γc‖p

p −
L

∑
i=1

(ω−ωi)‖hT̃i∩Γc‖p
p

≤ω‖hΓ‖p
p + (1−ω)‖hT̃c∩Γ‖

p
p −

L

∑
i=1

(ω−ωi)‖hT̃i∩Γ‖
p
p + 2D. (4.4)

But, we can also write ‖hΓc‖p
p as

‖hΓc‖p
p = ω‖hΓc‖p

p +
L

∑
i=1

(1−ω)‖hT̃i∩Γc‖p
p + (1−ω)‖hT̃c∩Γc‖p

p.

Solving for ω‖hΓc‖p
p and substituting into (4.4) gives

‖hΓc‖p
p −

L

∑
i=1

(1−ω)‖hT̃i∩Γc‖p
p − (1−ω)‖hT̃c∩Γc‖p

p

+ (1−ω)‖hT̃c∩Γc‖p
p −

L

∑
i=1

(ω−ωi)‖hT̃i∩Γc‖p
p

≤ω‖hΓ‖p
p + (1−ω)‖hT̃c∩Γ‖

p
p −

L

∑
i=1

(ω−ωi)‖hT̃i∩Γ‖
p
p + 2D.
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Simplifying, we get

‖hΓc‖p
p ≤

L

∑
i=1

(1−ω)‖hT̃i∩Γc‖p
p +

L

∑
i=1

(ω−ωi)‖hT̃i∩Γc‖p
p + ω‖hΓ‖p

p

+ (1−ω)‖hT̃c∩Γ‖
p
p −

L

∑
i=1

(ω−ωi)‖hT̃i∩Γ‖
p
p + 2D

=
L

∑
i=1

(1−ωi)‖hT̃i∩Γc‖p
p + ω‖hΓ‖p

p + ‖hT̃c∩Γ‖
p
p

−
L

∑
i=1

ωi

(
‖hT̃c∩Γ‖

p
p +

L

∑
j=1,j 6=i

‖hT̃j∩Γ‖
p
p

)
+ 2D

=
L

∑
i=1

(1−ωi)‖hT̃i∩Γc‖p
p + ω‖hΓ‖p

p + ‖hT̃c∩Γ‖
p
p −

L

∑
i=1

ωi‖hT̃c
i ∩Γ‖

p
p

+
L

∑
i=1
‖hT̃c

i ∩Γ‖
p
p −

L

∑
i=1
‖hT̃c

i ∩Γ‖
p
p + 2D (4.5)

=ω‖hΓ‖p
p + ‖hT̃c∩Γ‖

p
p −

L

∑
i=1
‖hT̃c

i ∩Γ‖
p
p +

L

∑
i=1

(1−ωi)
(
‖hT̃i∩Γc‖p

p + ‖hT̃c
i ∩Γ‖

p
p

)
+ 2D

=(ω− (L− 1))‖hΓ‖p
p +

L

∑
i=1

(1−ωi)
(
‖hT̃i∩Γc‖p

p + ‖hT̃i∩Γ‖
p
p

)
+ 2D, (4.6)

where in (4.5) we have added zero and observed that

‖hT̃c∩Γ‖
p
p +

L

∑
j=1,j 6=i

‖hT̃j∩Γ‖
p
p = ‖hT̃c

i ∩Γ‖
p
p

and in (4.6), we have observed that

L

∑
i=1
‖hT̃c

i ∩Γ‖
p
p = (L− 1)‖hΓ‖p

p + ‖hT̃c∩Γ‖
p
p.

Then assuming, without loss of generality, ω1 ≥ ω2 ≥ · · · ≥ ωL, and writing 1− ωi =
1−ω1 + ω1 −ωi for i > 1, we have

‖hΓc‖p
p ≤(ω− (L− 1))‖hΓ‖p

p + (1−ω1)
L

∑
i=1

(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+

L

∑
i=2

(ω1 −ωi)
(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+ 2D. (4.7)
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Next, write ω1 −ωi = ω1 −ω2 + ω2 −ωi for i > 2. Then we have

‖hΓc‖p
p ≤(ω− (L− 1))‖hΓ‖p

p + (1−ω1)
L

∑
i=1

(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+ (ω1 −ω2)

×
L

∑
i=2

(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+

L

∑
i=3

(ω2 −ωi)
(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+ 2D. (4.8)

Continuing in this way gives us

‖hΓc‖p
p ≤(ω− (L− 1))‖hΓ‖p

p + (1−ω1)
L

∑
i=1

(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+

L

∑
j=2

(ωj−1 −ωj)
L

∑
i=j

(
‖hT̃c

i ∩Γ‖
p
p + ‖hT̃i∩Γc‖p

p

)
+ 2D. (4.9)

Noting

‖hT̃c
i ∩Γ‖

p
p =

L

∑
j=1,j 6=i

‖hT̃j∩Γ‖
p
p + ‖hΓ∩⋂L

j=1 T̃c
j
‖p

p,

‖hΓ‖p
p =

L

∑
i=1
‖hT̃i∩Γ‖

p
p + ‖hΓ∩⋂L

j=1 T̃c
j
‖p

p,

L

∑
i=j
‖hT̃i∩Γc‖p

p + ‖hΓ∩⋂L
i=j T̃c

i
‖p

p = ‖hΓ∪⋃L
i=j T̃i\

⋃L
i=j(T̃i∩Γ)‖

p
p,

for any j = 1, 2, · · · , L, the above inequality can also be expressed as

‖hΓc‖p
p ≤(ω− (L− 1))‖hΓ‖p

p + (1−ω1)
(
(L− 1)‖hΓ‖p

p + ‖hΓ∪⋃L
i=1 T̃i\

⋃L
i=1(T̃i∩Γ)‖

p
p

)
+

L

∑
j=2

(ωj−1 −ωj)
(
(L− j)‖hΓ‖p

p + ‖hΓ∪⋃L
i=j T̃i\

⋃L
i=j(T̃i∩Γ)‖

p
p

)
+ 2D. (4.10)

Combining the coefficients of ‖hΓ‖p
p, we have

L

∑
i=1

ωi − (L− 1) + (1−ω1)(L− 1) +
L

∑
j=2

(ωj−1 −ωj)(L− j)

=
L

∑
i=1

ωi − (L− 1)ω1 + (L− 2)ω1 +
L−1

∑
j=2

(L− (j + 1))ωj −
L−1

∑
j=2

(L− j)ωj

=
L

∑
i=2

ωi −
L−1

∑
j=2

ωj = ωL.
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Finally, we obtain that

‖hΓc‖p
p ≤ωL‖hΓ‖p

p + (1−ω1)‖hΓ∪⋃L
i=1 T̃i\

⋃L
i=1(T̃i∩Γ)‖

p
p

+
L

∑
j=2

(ωj−1 −ωj)‖hΓ∪⋃L
i=j T̃i\

⋃L
i=j(T̃i∩Γ)‖

p
p + 2D.

Thus, we complete the proof.

The following two technical lemmas will be used to simplify the proof of our main
results.

Lemma 4.3 ([9, Lemma V.1]). Let p and q be two positive numbers. Then

(a) ‖x‖p ≤ ‖x‖2|supp(x)|
2−p
2p , if 0 < p < 2,

(b) ‖x‖p
p ≤ (‖x‖2

2)
1
q (‖x‖p1

p1)
1− 1

q , if pq > 2 and q > 1, where p1 = (p− 2
q )(

q
q−1 ).

Lemma 4.4 ([9, Lemma V.2]). For 0 < p ≤ 1 and Λ > 0, the function

g(z) =
p
2

z
2
p + z− 2− p

2
Λ

is monotone increasing in (0, ∞). In addition, the following statements hold:

(I) If 0 < Λ ≤ 2
2−p , there exists a unique point z0 ∈ ((1− p)Λ, (1− p

2 )Λ) ⊆ (0, 1) such
that g(z0) = 0.

(II) If 2
2−p < Λ < 2+p

2−p , there exists a unique point z0 ∈ ((1− p)Λ, 1) ⊆ (0, 1) such that
g(z0) = 0.

(III) If Λ ≥ 2+p
2−p , there does not exist a point z0 ∈ (0, 1) such that g(z0) = 0.

4.2 Proof of Theorem 3.1

Proof. We assume that tk is an integer. When tk is not an integer, it can be treated as in [1]
and [9]. Let h = x̂− x, where x̂ is a minimizer of the weighted `p-minimization problem
(1.2) with ε = 0. Then

Φh = 0. (4.11)

We prove h = 0 to show that x could be recovered exactly via the weighted `p-minimization
(1.2).

On the contrary, we suppose here that h 6= 0, then hmax(dk) 6= 0, where hmax(dk) is the
best dk-term approximation of h and we define

h−max(dk) = h− hmax(dk).
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Since T is the support set of the k-sparse vector x, we know that |T| ≤ k. Recall the
definition of d in (3.2a),

d =


1, ω1 = · · · = ωL = 1,

max
i∈{1,2··· ,L}

{
bi

(
1−

L

∑
j=i

αjρj + βi

)}
, 0 ≤

L
∏
i=1

ωi < 1,
(4.12)

where

βi = max
{ L

∑
j=i

αjρj,
L

∑
j=i

(1− αj)ρj

}
,

bi =

{
1, i = 1,
sgn(ωi−1 −ωi), i = 2, · · · , L.

It is clear that d ≥ 1 and dk is an integer. Thus,

‖h−max(dk)‖
p
p ≤ ‖hTc‖p

p

≤ωL‖hT‖p
p + (1−ω1)‖hT∪⋃L

i=1 T̃i\
⋃L

i=1(T̃i∩T)‖
p
p

+
L

∑
j=2

(ωj−1 −ωj)‖hT∪⋃L
i=j T̃i\

⋃L
i=j(T̃i∩T)‖

p
p (4.13)

≤


‖hT‖p

p, ω1 = · · · = ωL = 1,

ωL‖hT‖p
p + (1−ωL)‖hmax(dk)‖

p
p, 0 ≤

L
∏
i=1

ωi < 1,
(4.14)

where the first inequality is from d ≥ 1 and |T| ≤ k, the second inequality follows from
Lemma 4.2 with Γ = T and the last inequality is due to

∣∣∣(T ∪
L⋃

j=i

T̃j

)∖ L⋃
j=i

(
T ∩ T̃j

)∣∣∣ ≤ k +
L

∑
j=i

ρjk− 2
L

∑
j=i

αjρjk = k
(

1 +
L

∑
j=i

ρj − 2
L

∑
j=i

αjρj

)
≤ dk

with

βi = max
{ L

∑
j=i

αjρj,
L

∑
j=i

(1− αj)ρj

}
.

Let

ν =
(ωL‖hT‖

p
p + (1−ω1)‖hT∪⋃L

i=1 T̃i\
⋃L

i=1(T̃i∩T)‖
p
p + ∑L

j=2(ωj−1 −ωj)‖hT∪⋃L
i=1 T̃i\

⋃L
i=1(T̃i∩T

)‖p
p

k(t− d)

) 1
p
. (4.15)

Then ν ≥ 0. First, we suppose that ν = 0, then we have ‖hTc‖p
p = 0 by (4.13), which

implies h is k-sparse. Since the sensing matrix Φ satisfies the RIP of order tk with t > d ≥
1 and (4.11), we have h = 0. Therefore, x is exactly recovered by (1.2) with ε = 0.
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For ν > 0, we divide the vector h−max(dk) into two parts, i.e.,

h−max(dk) = h(1) + h(2), (4.16)

where

h(1) = h−max(dk) · χ{i||h−max(dk)(i)|>ν}, (4.17a)

h(2) = h−max(dk) · χ{i||h−max(dk)(i)|≤ν}. (4.17b)

Then
‖h(1)‖p

p ≤ ‖h−max(dk)‖
p
p ≤ k(t− d)νp

by (4.13) and (4.15). Denote |supp(h(1))| = ‖h(1)‖0 = m. Since all non-zero entries of h(1)

have absolute value larger than ν, we have

(t− d)kνp≥‖h−max(dk)‖
p
p≥‖h(1)‖p

p = ∑
i∈supp(h(1))

|h(1)(i)|p≥mνp. (4.18)

By (4.18) and ν 6= 0, one has

|supp(h(1))| = m ≤ (t− d)k

and

|supp(hmax(dk)) + supp(h(1))| ≤ dk + |supp(h(1))| ≤ dk + (t− d)k = tk. (4.19)

Moreover,

‖h(2)‖∞
(a)
≤ ν, ‖h(2)‖p

p
(b)
= ‖h−max(dk)‖

p
p − ‖h(1)‖p

p
(c)
≤ ((t− d)k−m)νp, (4.20)

where (a) is from (4.17b), (b) is due to (4.16) and (c) follows from (4.18). Applying Lemma
4.1 with L = k(t − d) − m and ρ = ν, we can express h(2) as a convex combination of
(k(t − d) − m)-sparse vectors, i.e., h(2) = ∑i λiui, where λi > 0, ∑i λi = 1, ui is (k(t −
d)−m)-sparse and supp(ui) ⊆ supp(h(2)). By (4.16), we have

〈hmax(dk) + h(1), ui〉 = 0. (4.21)

Furthermore, by (4.1),

Σiλi‖ui‖2
2 ≤min

{n
L
‖h(2)‖2

2, νp‖h(2)‖2−p
2−p

}
≤ νp‖h(2)‖2−p

2−p

≤νp(‖h(2)‖2
2)

2−2p
2−p (‖h(2)‖p

p)
p

2−p

≤νp(‖h(2)‖2
2)

2−2p
2−p
(
((t− d)k−m)νp

) p
2−p

≤(‖h(2)‖2
2)

2−2p
2−p
(

k(t− d)ν2
) p

2−p
, (4.22)
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where the third inequality is from Lemma 4.3(b), and the fourth inequality follows from
(4.20). By (4.15), we have

k(t− d)ν2

=(k(t− d))1− 2
p
(

ωL‖hT‖P
P + (1−ω1)‖hT∪⋃L

i=1 T̃i\
⋃L

i=1(T̃i∩T)‖
p
p

+
L

∑
j=2

(ωj−1 −ωj)‖hT∪⋃L
i=1 T̃i\

⋃L
i=1(T̃i∩T)‖

p
p

) 2
p

≤(k(t− d))1− 2
p
(

ωL|T|
2−P

2 ‖hT‖p
p

+ (1−ω1)|T ∪
L⋃

i=1

T̃i\
L⋃

i=1

(T̃i ∩ T)|
2−p

2 ‖hT‖p
p + (1−ω1)‖hT∪⋃L

i=1 T̃i\
⋃L

j=i(T̃i∩T)‖
p
2

+
L

∑
i=2

(ωi−1 −ωi)|
L⋃

j=i

T̃i\
L⋃

j=i

(T̃j ∩ T)|
2−p

2 ‖hT‖p
p + (1−ω1)‖hT∪⋃L

j=i T̃j\
⋃L

j=i(T̃j∩T)‖
p
2)
) 2

p

≤(k(t− d))1− 2
p k

2−p
p
(

ωL + (1−ω1)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2

+
L

∑
i=2

(ωi−1 −ωi)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2
) 2

p ‖hmax(dk) + h(1)‖2
2

=(t− d)1− 2
p
(

ωL + (1−ω1)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2

+
L

∑
i=2

(ωi−1 −ωi)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2
) 2

p ‖hmax(dk) + h(1)‖2
2, (4.23)

where the first inequality is due to 0 < p ≤ 1 and Lemma 4.3(a) and the second inequality
is from |T| ≤ k and∣∣∣∣∣T ∪ L⋃

j=i

T̃j

∖ L⋃
j=i

(T ∩ T̃j)

∣∣∣∣∣
=k +

L

∑
j=i

ρjk− 2
L

∑
j=i

αjρjk = k
(

1 +
L

∑
j=i

ρj − 2
L

∑
j=i

αjρj

)
≤ dk.

Then, by (4.22) and (4.23),

∑
i

λi‖ui‖2
2 ≤(‖h(2)‖2

2)
2−2p
2−p (t− d)−1

(
ωL + (1−ω1)

(
1 +

L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2

+
L

∑
i=2

(ωi−1 −ωi)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2
) 2

2−p
(‖hmax(dk) + h(1)‖2

2)
p

2−p
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= Θµ
2−2p
2−p ‖hmax(dk) + h(1)‖2

2, (4.24)

where the equality is due to (3.4) and

µ =
‖h(2)‖2

2

‖hmax(dk) + h(1)‖2
2

. (4.25)

We have 0 ≤ µ ≤ 1 since

‖h(2)‖2
2 ≤‖h(2)‖2−p

∞ ‖h(2)‖p
p

≤‖h(2)‖2−p
∞ ‖hmax(dk) + h(1)‖p

p

≤ min
i∈supp(hmax(dk)+h(1))

|hi|2−p‖hmax(dk) + h(1)‖p
p

≤‖hmax(dk) + h(1)‖2
2,

where the second inequality is from (4.14), |T| ≤ k ≤ dk with d ≥ 1.
For η ∈ R, let

θi = hmax(dk) + h(1) + ηui,

then

∑
j

λjθj −
p
2

θi =
(

1− p
2

)
(hmax(dk + h(1)) + η ∑

j
λjuj −

p
2

ηui

(a)
=
(

1− p
2

)
(hmax(dk) + h(1)) + ηh(2) − p

2
ηui

(b)
=
(

1− p
2
− η

)
(hmax(dk) + h(1)) + ηh− p

2
ηui, (4.26)

i.e.,

∑
j

λjθj −
p
2

θi − ηh =
(

1− p
2
− η

)(
hmax(dk) + h(1)

)
− p

2
ηui,

where (a) is due to h(2) = ∑i λiui, and (b) is from

h = hmax(dk) + hmax(dk)c and hmax(dk)c = h(1) + h(2).

Due to
‖ui‖0 ≤ k(t− d)− |supp(h(2))|

and the definition of hmax(dk), the vectors θi,

∑
j

λjθj −
p
2

θi − ηh and
(

1− p
2
− η

)
(hmax(dk) + h(1))− p

2
ηui
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are all tk-sparse. By (4.11) and (4.26), we have

∑
i

λi

∥∥∥Φ
(

∑
j

λjθj −
p
2

θi

)∥∥∥2

2

=∑
i

λi

∥∥∥Φ
((

1− p
2
− η

)
(hmax(dk) + h(1))− p

2
ηui

)∥∥∥2

2

≤(1 + δtk)∑
i

λi

∥∥∥(1− p
2
− η

)
(hmax(dk) + h(1))− p

2
ηui

∥∥∥2

2

=(1 + δtk)
[(

1− p
2
− η

)2
‖hmax(dk) + h(1)‖2

2 +
p2η2

4 ∑
i

λi‖ui‖2
2

]
, (4.27)

where the first inequality is from(
1− p

2
− η

)
(hmax(dk) + h(1))− p

2
ηui

is tk-sparse and the last equality is due to (4.21). Since θi is a tk-sparse vectors, we have

1− p
2 ∑

i,j
λiλj‖Φ(θi − θj)‖2

2

=η2 1− p
2 ∑

i,j
λiλj‖Φ(ui − uj)‖2

2

≤(1 + δtk)η
2 1− p

2 ∑
i,j

λiλj‖ui − uj‖2
2

=(1 + δtk)η
2(1− p)

(
∑

i
λi‖ui‖2

2 −
∥∥∥∑

i
λiui

∥∥∥2

2

)
=(1 + δtk)η

2(1− p)
(

∑
i

λi‖ui‖2
2 − ‖h(2)‖2

2

)
, (4.28)

where the inequality is from that ui is (k(t− d)− m)-sparse and d < t ≤ 2d. ui − uj is
tk-sparse as d < t ≤ 2d since

tk− 2(k(t− d)−m) = k(2d− t) + m ≥ 0.

Since θi is tk-sparse, it follows that(
1− p

2

)2
∑

i
λi‖Φθi‖2

2 ≥ (1− δtk)
(

1− p
2

)2
∑

i
λi‖θi‖2

2

=(1− δtk)
(

1− p
2

)2(
‖hmax(dk) + h(1)‖2

2 + η2 ∑
i

λi‖ui‖2
2

)
, (4.29)

where the equality is from the definition of θi and (4.21).
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By (4.27)-(4.29) and the following identity (see [21, (21)])

∑
i

λi

∥∥∥Φ
(

∑
j

λjθj −
p
2

θi

)∥∥∥2

2
+

1− p
2 ∑

i,j
λiλj‖Φ(γi − θj)‖2

2

−
(

1− p
2

)2
∑

i
λi‖Φθi‖2

2 = 0, (4.30)

we have

0 ≤(1 + δtk)
[(

1− p
2
− η

)2
‖hmax(dk) + h(1)‖2

2

+ η2
( p2

4
+ (1− p)

)
∑

i
λi‖ui‖2

2 − η2(1− p)‖h(2)‖2
2

]
− (1− δtk)

(
1− p

2

)2(
‖hmax(dk) + h(1)‖2

2 + η2 ∑
i

λi‖ui‖2
2

)
=(1 + δtk)

[(
1− p

2
− η

)2
‖hmax(dk) + h(1)‖2

2 − η2(1− p)‖h(2)‖2
2

]
− (1− δtk)

(
1− p

2

)2
‖hmax(dk) + h(1)‖2

2

+ 2δtk

(
1− p

2

)2
η2 ∑

i
λi‖ui‖2

2.

From (4.25), (4.24) and the above inequality, it follows that

0 ≤
(
(1 + δtk)

((
1− p

2
− η

)2
− η2(1− p)µ

)
− (1− δtk)

(
1− p

2

)2

+ 2δtk

(
1− p

2

)2
η2Θµ

2−2p
2−p
)
‖hmax(dk) + h(1)‖2

2

=
[
(η2 − (2− p)η − η2(1− p)µ) + δtk

((
1− p

2
− η

)2
+
(

1− p
2

)2

+ 2
(

1− p
2

)2
η2Θµ

2−2p
2−p − η2(1− p)µ

)]
‖hmax(dk) + h(1)‖2

2. (4.31)

Next, let the arbitrary vector η satisfies

η =
2− p√

(1− (1− p)µ)2 + (2− p)2Θµ
2−2p
2−p + 1− (1− p)µ

. (4.32)

By 0 < p ≤ 1 and 0 ≤ µ ≤ 1, it is clear that 0 < η < 2−p
1−(1−p)µ . Moreover, we have

η2 − (2− p)η − η2(1− p)µ =η2
(

1− (1− p)µ− (2− p)
1
η

)
(a)
= − η2

√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p
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and (
1− p

2
− η

)2
+
(

1− p
2

)2
+ 2
(

1− p
2

)2
η2Θµ

2−2p
2−p − η2(1− p)µ

=η2
(

1− (1− p)µ +
1
2
(2− p)2Θµ

2−2p
2−p +

(2− p)2

2η2 − (2− p)
1
η

)
(b)
=η2

(
1− (1− p)µ +

1
2
(2− p)2Θµ

2−2p
2−p +

1
2

(√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p

+ 1− (1− p)µ
)2

−
(√

(1− (1− p)µ)2 + (2− p)2Θµ
2−2p
2−p + 1− (1− p)µ

))

=η2

√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p

(√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p − (1− p)µ

)
,

where (a) and (b) are from (4.32). Therefore, from (4.31), it follows that

− η2
√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p
[
1− δtk

(√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p

− (1− p)µ
)]
‖hmax(dk) + h(1)‖2

2 ≥ 0. (4.33)

Define a function

f (µ) =
√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p − (1− p)µ,

where 0 ≤ µ ≤ 1. If Θ = 0, then f (µ) = 1− 2(1− p)µ ≤ 1. In this case, (4.33) is a
contradiction from δtk < 1. In the following, we assume that Θ > 0. By some elementary
calculation, we have

f ′(µ) =
−2(1− p)(2− p)Θµ

− 2p
2−p√

(1− (1− p)µ)2 + (2− p)2Θµ
2−2p
2−p

·
[ p

2 µ
p

2−p
2
p + µ

p
2−p − 2−p

2 Θ

(−1 + (1− p)µ) + (2− p)Θµ
−p

2−p +

√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p

]

=
−2(1− p)(2− p)Θµ

− 2p
2−p√

(1− (1− p)µ)2 + (2− p)2Θµ
2−2p
2−p

·
[

g(µ
p

2−p )

(−1 + (1− p)µ) + (2− p)Θµ
−p

2−p +

√
(1− (1− p)µ)2 + (2− p)2Θµ

2−2p
2−p

]
,

where
g(z) =

p
2

z
2
p + z− 2− p

2
Θ.

We will use Lemma 4.4 with z = µ
p

2−p to analyze the extreme value of g(z) according to
the value of Θ.
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(I) For 0 < Θ < 2+p
2−p , by Lemma 4.4 with z = µ

p
2−p , a unique point

z0 ∈
(
(1− p)Θ, min

((
1− p

2

)
Θ, 1

))
satisfies 

g(z) < 0, 0 ≤ z < z0,
g(z) = 0, z = z0,
g(z) > 0, z0 < z ≤ 1,

which implies that 
f ′(µ) > 0, 0 ≤ µ < z

2−p
p

0 ,

f ′(µ) = 0, µ = z
2−p

p
0 ,

f ′(µ) > 0, z
2−p

p
0 < µ ≤ 1.

Therefore, when µ = z
2−p

p
0 , the function f (µ) achieves its maximal value that

f (z
2−p

p
0 ) =

√√√√(1− (1− p)z
2−p

p
0

)2

+ (2− p)2Θ
(

z
2−p

p
0

) 2−2p
2−p

− (1− p)z
2−p

p
0

=
(2− p)Θ− z0

z0
. (4.34)

By (3.5), (4.34) and (4.33), there is a contradiction under the hypothesis

‖hmax(dk) + h(1)‖2 6= 0.

Then
hmax(dk) + h(1) = 0.

Due to the definition of hmax(dk) + h(1), we have

h = 0.

(II) For Θ ≥ 2+p
2−p , by Lemma 4.4 with z = µ

p
2−p , g(z) < 0 for 0 ≤ µ < 1, which means

that f ′(µ) > 0. Therefore, when µ = 1, f (µ) achieves its maximal value that

fmax(1) =
√

p2 + (2− p)2Θ− (1− p). (4.35)

By (3.5), (4.35) and (4.33), there is a contradiction under the hypothesis

‖hmax(dk) + h(1)‖ 6= 0.

Then
hmax(dk) + h(1) = 0.

Due to the definition of hmax(dk) + h(1), we have h = 0. In conclusion, we complete the
proof of Theorem 3.1.
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4.3 Proof of Corollary 3.1

Proof. By p = 1 and (3.4),

Θ =(t− d)−1
(

ωL + (1−ω1)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2

+
L

∑
i=2

(ωi−1 −ωi)
(

1 +
L

∑
j=1

ρj − 2
L

∑
j=1

αjρj

) 2−p
2
)2

.

On one hand, the only positive solution z0 of Eq. (3.6) with p = 1 is −1 +
√

1 + Θ.
From p = 1 and z0 = −1 +

√
1 + Θ, it follows that

z0

(2− p)Θ− z0
=

−1 +
√

1 + Θ
Θ− (−1 +

√
1 + Θ)

=
1√

1 + Θ
.

On the other hand, for p = 1,

1√
p2 + (2− p)2Θ− (1− p)

=
1√

1 + Θ
.

By Theorem 3.1, the condition (3.7) guarantees the exact recovery of x.

4.4 Proof of Theorem 3.2

Proof. Theorem 3.2 can be proved by following the routine proofs of Theorem III.10 in [9]
and Theorem 3.1 in this paper. We omit the details.
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