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Abstract. We establish Littlewood-Paley charaterizations of Triebel-Lizorkin spaces
and Besov spaces in Euclidean spaces using several square functions defined via the
spherical average, the ball average, the Bochner-Riesz means and some other well-
known operators. We provide a simple proof so that we are able to extend and improve
many results published in recent papers.
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1 Introduction

As is well known, Littlewood-Paley functions and their various applications are impor-
tant parts of harmonic analysis, dating back as far as the early 1930’s; see [10, 19, 20, 22]
for more details about the historical development. Recently Alabern et al. in [1] ob-
tained a new characterization of Sobolev spaces with arbitrary smoothness order on Eu-
clidean spaces, which can be seen as characterizations of Sobolev spaces via Littlewood-
Paley g-functions involving ball averages. These characterizations depend only on the
metric of Rn and hence provide several possible approaches to introduce high order
Sobolev spaces on general metric measure spaces. Motivated by the work in [1], some
characterizations of high order Besov and Triebel-Lizorkin spaces on Rn in terms of
Littlewood-Paley functions and pointwise inequalities involving ball averages were fur-
ther established, which also serve as new approaches to introduce these spaces with high
order smoothness on metric measure spaces. Yang et al. in [26] established the corre-
sponding characterizations for Besov and Triebel-Lizorkin spaces. Inspired by [1, 26],
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Dai et al. further characterized Sobolev spaces with any positive even integer order via
some pointwise inequalities involving ball averages in [6], as well as Besov and Triebel-
Lizorkin spaces with any positive smoothness order via some Littlewood-Paley g func-
tions involving ball averages in [7]. Based on [7], Chang et al. in [3] considered the re-
lated characterizations of Triebel-Lizorkin spaces via the corresponding Lusin area func-
tion and the Littlewood-Paley g∗λ -function. Some further characterizations of Sobolev,
Besov and Triebel-Lizorkin spaces via ball averages were then presented in a series of
works [4, 8, 13, 15, 25, 28–30].

One the other hand, Chen et al. in [5] gave a simple method to characterize inho-
mogeneous Sobolev spaces Wα,p(Rn) by using several different square functions defined
via the spherical average, the ball average and the Bochner-Riesz means. Based on the
aforementioned works, the main purpose of this article is to characterize Triebel-Lizorkin
and Besov spaces via some generalized Littlewood-Paley functions which are much more
general than those Littlewood-Paley functions of ball averages. We extend their results,
using an alternate, less complicated method of proof.

To this end, we firstly give some necessary notations. Let n ≥ 2 and Rn be n-
dimensional Euclidean space. Fix an L1(Rn) function Φ. Denote, for (x, t) ∈ Rn ×R,

Φ2t(x) = 2−tnΦ
(
x/2t) .

The Fourier transform of Φ2t is given by Φ̂2t(ξ) = Φ̂
(
2tξ
)

, ξ ∈ Rn. For any 1 < q < ∞,
associated with Φ, the Littlewood-Paley function SΦ,q ( f ) is defined by

SΦ,q ( f ) (x) =
(∫

R
|Φ2t ∗ f (x)|q dt

)1/q

,

and the discrete version is given by

DΦ,q( f )(x) =

(
∑

k∈Z

|(Φ2k ∗ f )(x)|q
)1/q

. (1.1)

Sometimes we write SΦ,q ( f ) (x) in an equivalent form

SΦ,q ( f ) (x) =
(∫ ∞

0
|Φt ∗ f (x)|q dt

t

)1/q

,

and skip the ratio (ln 2)−1/q between two forms. Also, for simplicity, we initially define
SΦ,q ( f ) on all functions f in the Schwartz space S (Rn) . Let

∆ =
n

∑
j=1

∂2

∂x2
j
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be the Laplace operator. Taking the Fourier transform, we have

−∆̂( f ) (ξ) = 4π2
n

∑
j=1

ξ2
j f̂ (ξ) = 4π2 |ξ|2 f̂ (ξ).

For a complex exponent z, the fractional Laplacian (−∆)z/2 is defined, via the Fourier
transform, by

(−∆)z/2 ( f ) (x) =
(
(2π|ξ|)z f̂ (ξ)

)∨
(x).

The inhomogeneous Sobolev space Wα,p(Rn) of smoothness order α ∈ R, for a fixed
p ∈ [1, ∞), is the set of all functions f satisfying

‖ f ‖Wα,p(Rn) = ‖ f ‖Lp(Rn) +
∥∥∥(−∆)α/2 f

∥∥∥
Lp(Rn)

< ∞.

The Sobolev space plays a significant role not only in the theory of partial differential
equations, but also in many other fields, such as functional analysis and harmonic anal-
ysis. Let B(x, t) be the ball centered at x with radius t > 0. For any locally integrable
function f , define the average of f over the ball B(x, t) by

Bt ( f ) (x) =
1

|B(x, t)|

∫
B(x,t)

f (y) dy,

where |B(x, t)| denotes the volume of B(x, t). In [1], Alabern, Mateu and Verdera studied
two square functions

Tα,2( f )(x) =

(∫ ∞

0

∣∣∣∣Bt( f )(x)− f (x)
tα

∣∣∣∣2 dt
t

)1/2

,

Gα,2( f , g)(x) =

(∫ ∞

0

∣∣∣∣Bt( f )(x)− f (x)
tα

− Bt(g)(x)
tα−2

∣∣∣∣2 dt
t

)1/2

,

where α is a positive real number.

Theorem 1.1 ([1]). Let p ∈ (1, ∞) and α ∈ (0, 2]. Then

(i) for α ∈ (0, 2), f ∈Wα,p(Rn) if and only if f ∈ Lp(Rn) and Tα,2( f ) ∈ Lp(Rn);

(ii) f ∈ W2,p(Rn) if and only if f ∈ Lp(Rn) and there exists a g ∈ Lp(Rn) such that
G2,2( f , g) ∈ Lp(Rn).

As has already been pointed out in [5], Theorem 1.1 is actually a simple consequence
of the following theorem.
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Theorem 1.2 ([9]). Let Φ be a nonzero integrable function. Suppose that for some p0 ∈ (1, ∞),

(i)
∥∥∥∥sup

t>0
|Φt| ∗ f

∥∥∥∥
Lq(Rn)

� ‖ f ‖Lq(Rn) for q > p0,

and there exist a, b > 0 such that for all ξ 6= 0;

(ii) |Φ̂(ξ)| � min{|ξ|a, |ξ|−b}.

Then
‖SΦ,2( f )‖Lp(Rn) � ‖ f ‖Lp(Rn)

for all 2p0
p0+1 < p < 2p0

p0−1 .

Additionally, if Φ is a radial function. Then we have for 2p0
p0+1 < p < 2p0

p0−1 ,

‖SΦ,2( f )‖Lp(Rn) ≈ ‖ f ‖Lp(Rn).

The main new idea of this work is to establish the sufficient condition for the bound-
edness of Littlewood-Paley functions SΦ,q from homogeneous Triebel-Lizorkin spaces
Ḟ0

p,q(R
n) (or homogeneous Besov spaces Ḃ0

p,q(R
n)) to Lp(Rn) with 1 < p, q < ∞. These

two theorems make the problem much simpler and also provide easier proofs of various
previously known results. The rest of this paper is organized as follows. In Section 2,
we will state the above two results and prove them. In the next three sections, we give
some applications. In Section 3, we will characterize inhomogeneous Triebel-Lizorkin
spaces Fα

p,q(R
n) and inhomogeneous Besov spaces Bα

p,q(R
n) for 0 < α < 2 by using sev-

eral different square functions defined via the spherical average, the ball average and
the Bochner-Riesz means. We also characterize homogeneous Triebel-Lizorkin spaces
Ḟα

p,q(R
n) and homogeneous Besov spaces Ḃα

p,q(R
n) for α < 0 via the generalized Bochner-

Riesz means. In Section 4 we will characterize inhomogeneous Triebel-Lizorkin spaces
Fmα

p,q (R
n) and inhomogeneous Besov spaces Bmα

p,q(R
n) for 0 < α < 2 and all m ∈ Z+ via

continuous and discrete versions of Littlewood-Paley functions. In the last section, we
will use the Littlewood-Paley type function SE,α,q to characterize inhomogeneous Triebel-
Lizorkin spaces Fα

p,q(R
n) and inhomogeneous Besov spaces Bα

p,q(R
n). In fact, if q = 2, the

operator SE,α,q is introduced by Sato et al. in [18] to characterize Sobolev spaces Wα,p(Rn).
Throughout this article, the symbol A � B means that there exists a constant C > 0

independent of all essential variables such that A ≤ CB. We use the notation A ≈ B if
A � B and B � A. For 1 < p < ∞, let p′ be the conjugate index of p, that is, 1/p+ 1/p′ =
1. If p = 1, we define its conjugate index to be p′ = ∞.

2 Characterize Ḟ0
p,q(R

n) and Ḃ0
p,q(R

n) using SΦ,q

We recall some notation and notions. Denote by C∞(Rn) the set of infinitely differential
functions on Rn and C∞

c (Rn) the set of C∞(Rn) functions with compact support. Let
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S∞(Rn) be the set of functions φ ∈ S(Rn) satisfying∫
Rn

φ(x)xσdx = 0

for all multi-indices σ ∈ (Z+)n. Let S ′(Rn) and S ′∞(Rn) be the dual spaces of S(Rn) and
S∞(Rn), respectively, and endow them with the weak-∗ topology. We use A to denote
the class of all Schwartz functions φ on Rn such that supp φ̂ ⊂ {1/2 ≤ |ξ| ≤ 2} and
|φ̂(ξ)| ≥ C > 0 for 3/5 ≤ |ξ| ≤ 5/3, where the Fourier transform φ̂ is defined as

φ̂(ξ) =
∫

Rn
φ(x)e−2πiξ·xdx, ξ ∈ Rn.

We set φ2−j(x) = 2jnφ(2jx) for x ∈ Rn and j ∈ Z. Recall definitions of Triebel-Lizorkin
and Besov spaces; see [12, 23, 24, 27].

Definition 2.1. Assume that φ ∈ A. For α ∈ R, p, q ∈ (0, ∞].

(i) The homogeneous Triebel-Lizorkin space Ḟα
p,q(R

n) is the collection of all f ∈ S ′∞(Rn) such
that ‖ f ‖Ḟα

p,q(R
n) < ∞, where, when p ∈ (0, ∞),

‖ f ‖Ḟα
p,q(R

n) :=

∥∥∥∥∥∥
(

∑
j∈Z

2jαq|φ2−j ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

≈
∥∥∥∥∥
(∫

R
(2−tα|φ2t ∗ f |)qdt

)1/q
∥∥∥∥∥

Lp(Rn)

with the usual modification made when q = ∞, and

‖ f ‖Ḟα
∞,q(R

n) := sup
x∈Rn

sup
m∈Z

{
1

|B(x, 2−m)|

∫
B(x,2−m)

∞

∑
j=m

2jαq|φ2−j ∗ f (y)|qdy

}1/q

the usual modification made when q = ∞.

(ii) The homogeneous Besov space Ḃα
p,q(R

n) is the collection of all f ∈ S ′∞(Rn) such that
‖ f ‖Ḃα

p,q(R
n) < ∞, where

‖ f ‖Ḃα
p,q(R

n) :=

(
∑
j∈Z

2jαq‖φ2−j ∗ f ‖q
Lp(Rn)

)1/q

≈
(∫

R

(
2−tα‖φ2t ∗ f ‖Lp(Rn)

)q
dt
)1/q

with the usual modification made when p = ∞ or q = ∞.

Note that Ḟ0
p,2 (R

n) = Hp (Rn) for 0 < p < ∞, Ḟ0
∞,2 (R

n) = BMO, and the monotone
imbedding property Ḟα

p,q1
(Rn) ↪→ Ḟα

p,q2
(Rn) for 0 < q1 ≤ q2 ≤ ∞ (see [11] or [14, Exe.

6.5.1, p. 76]). We also recall the known fact Hp (Rn) = Lp (Rn) if 1 < p < ∞.
The corresponding inhomogeneous spaces are given as follows.
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Definition 2.2. Let α ∈ R, p, q ∈ (1, ∞]. Assume that φ ∈ A and let Φ ∈ S(Rn) satisfy that

supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ C > 0 if |ξ| ≤ 5/3.

(i) The inhomogeneous Triebel-Lizorkin space Fα
p,q(R

n) is the collection of all f ∈ S ′(Rn) such
that such that ‖ f ‖Fα

p,q(R
n) < ∞, where, when p ∈ (0, ∞),

‖ f ‖Fα
p,q(R

n) :=

∥∥∥∥∥∥
(

∑
j∈Z+

2jαq|φ2−j ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

with the usual modification made when q = ∞, and

‖ f ‖Fα
∞,q(R

n) := sup
x∈Rn

sup
m∈Z+

{
1

|B(x, 2−m)|

∫
B(x,2−m)

∞

∑
j=m

2jαq|φ2−j ∗ f (y)|qdy

}1/q

with the usual modification made when q = ∞, where, when j = 0, φ2−j is replaced by Φ.

(ii) The inhomogeneous Besov space Bα
p,q(R

n) is the collection of all f ∈ S ′∞(Rn) such that
‖ f ‖Bα

p,q(R
n) < ∞, where

‖ f ‖Bα
p,q(R

n) :=

(
∑

j∈Z+

2jαq‖φ2−j ∗ f ‖q
Lp(Rn)

)1/q

with the usual modification made when p = ∞ or q = ∞, where, when j = 0, φ2−j is
replaced by Φ.

From [17, Theorem 3.3.1] and [16, Chapter 2.2.4, Corollary 2], it is easy to see that

Definition 2.3. Let α > 0, p, q ∈ (1, ∞]. Assume that φ ∈ A and let Φ ∈ S(Rn) satisfy that

supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ C > 0 if |ξ| ≤ 5/3.

(i) The inhomogeneous Triebel-Lizorkin space Fα
p,q(R

n) is the collection of all f ∈ S ′(Rn) such
that such that ‖ f ‖Fα

p,q(R
n) < ∞, where

‖ f ‖Fα
p,q(R

n) ≈ ‖ f ‖Lp(Rn) + ‖ f̃ ‖Fα
p,q(R

n),

where ‖ f̃ ‖Fα
p,q(R

n) is defined as ‖ f ‖Fα
p,q(R

n) in (i) of Definition 2.2 with j ∈ Z+ and m ∈ Z+

therein replaced, respectively, by j ∈ Z and m ∈ Z.

(ii) The inhomogeneous Besov space Bα
p,q(R

n) is the collection of all f ∈ S ′∞(Rn) such that
‖ f ‖Bα

p,q(R
n) < ∞, where

‖ f ‖Bα
p,q(R

n) ≈ ‖ f ‖Lp(Rn) + ‖ f̃ ‖Bα
p,q(R

n),

where ‖ f̃ ‖Bα
p,q(R

n) is defined as ‖ f ‖Bα
p,q(R

n) in (ii) of Definition 2.2 with j ∈ Z+ and m ∈
Z+ therein replaced, respectively, by j ∈ Z and m ∈ Z.
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We firstly establish the following two theorems, which respectively are Triebel-Lizorkin
analogy and Besov analogy of Theorem 1.2.

Theorem 2.1. Let 1 < p, q < ∞ and let Φ be a nonzero integrable function. Suppose that for
some p0 ∈ (1, ∞),

(i)
∥∥∥∥sup

t>0
|Φt| ∗ f

∥∥∥∥
Lq(Rn)

� ‖ f ‖Lq(Rn) for q > p0,

and there exist a, b > 0 such that for all ξ 6= 0;

(ii) |Φ̂(ξ)| � min{|ξ|a, |ξ|−b}.

Then
‖SΦ,q( f )‖Lp(Rn) � ‖ f ‖Ḟ0

p,q(R
n)

for all 2p0
p0+1 < p < 2p0

p0−1 .

Additionally, if Φ is a radial function. Then we have for 2p0
p0+1 < p < 2p0

p0−1 ,

‖SΦ,q( f )‖Lp(Rn) ≈ ‖ f ‖Ḟ0
p,q(R

n).

Proof. Without loss of generality, assume a ≥ b. Take a radial function Ψ ∈ S(Rn) satis-
fying the following conditions: (i) 0 ≤ Ψ̂(ξ) ≤ 1, (ii) supp Ψ̂(ξ) ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤
2}, and (iii)

∫
R

Ψ̂(2s)2ds = 1. Then by the Calderón representation formula

f = C
∫

R
(Ψ2s ∗Ψ2s ∗ f ) ds (2.1)

for any f , where C is a constant. Using the Minkowski inequality, we obtain that

SΦ,q( f )(x) =
(∫

R
|Φ2t ∗ f (x)|q dt

)1/q

=C
(∫

R

∣∣∣∣∫
R

Ψ2s+t ∗Ψ2s+t ∗Φ2t ∗ f (x)ds
∣∣∣∣q dt

)1/q

�
∫

R
Ts( f )(x)ds,

where

Ts( f )(x) =
(∫

R
|Ψ2s+t ∗Ψ2s+t ∗Φ2t ∗ f (x)|q dt

)1/q

.

By the Minkowski inequality again, we have∥∥SΦ,q( f )
∥∥

Lp(Rn)
�
∫

R
‖Ts( f )‖Lp(Rn)ds.
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We will prove that there exists a constant σ = σ(a, b, p, q) > 0 such that

‖Ts( f )‖Lp(Rn) � 2−σ|s|‖SΨ,q( f )‖Lp(Rn), (2.2)

where

SΨ,q( f )(x) =
(∫

R
|Ψ2t ∗ f (x)|q dt

)1/q

.

With this estimate, we have∥∥SΦ,q( f )
∥∥

Lp(Rn)
�
∥∥SΨ,q

∥∥
Lp(Rn)

≈ ‖ f ‖Ḟ0
p,q(R

n).

Let F (y, t) = Ψ2s+t ∗ f (y). Define a linear operator T on functions F (y, t) by

T(F )(x, t) = Ψ2s+t ∗Φ2t ∗ F (x, t) =
∫

Rn
(Ψ2s+t ∗Φ2t) (x− y)F (y, t)dy.

By Fubini’s theorem and the Young inequality, it is easy to check that for any 1 ≤ r ≤ ∞,
we have ∥∥∥‖T(F )‖Lr(R)

∥∥∥r

Lr(Rn)
=
∫

Rn

(∫
R
|Ψ2s+t ∗Φ2t ∗ F (x, t)|r dt

)
dx

≤‖Φ‖L1‖Ψ‖L1

∫
R

(∫
Rn
|F (x, t)|r dx

)
dt

�
∥∥∥‖F‖Lr(R)

∥∥∥r

Lr(Rn)
. (2.3)

It follows from the Young inequality and the condition (i) of Theorem 2.1, for any r,
1 < r < ∞,∥∥∥‖T(F )‖L∞(R)

∥∥∥
Lr(Rn)

�
∥∥∥∥∥sup

t∈R

|Φ2t | ∗ |F (·, t)|
∥∥∥∥∥

Lr(Rn)

�
∥∥∥‖F‖L∞(R)

∥∥∥
Lr(Rn)

. (2.4)

Next we will estimate∥∥∥‖T(F )‖L2(R)

∥∥∥
L2(Rn)

� 2−2 min{a,b}|s|
∥∥∥‖F‖L2(R)

∥∥∥
L2(Rn)

. (2.5)

We now divide s into two cases: s > 0 and s ≤ 0.
If s > 0, by the Fubini thorem and the Plancherel theorem, we have∥∥∥‖T(F )‖L2(R)

∥∥∥
L2(Rn)

=
∫

R

∫
Rn

∣∣(T(F ))∧(ξ, t)
∣∣2 dξdt

=
∫

R

∫
Rn

∣∣∣Ψ̂(2t+sξ)Φ̂(2tξ)F̂(·, t)(ξ)
∣∣∣2 dξdt

≤
∫

R

∫
Et+s

∣∣∣Φ̂(2tξ)F̂(·, t)(ξ)
∣∣∣2 dξdt,
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where
Es+t = {ξ ∈ Rn : 2−t−s−1 ≤ |ξ| ≤ 2−t−s+1}.

It follows from the condition (ii) of the theorem and the Plancherel theorem that∥∥∥‖T(F )‖L2(R)

∥∥∥
L2(Rn)

�
∫

R

∫
Et+s

|2tξ|2a
∣∣∣F̂(·, t)(ξ)

∣∣∣2 dξdt

�2−2sa
∫

R

∫
Et+s

∣∣∣F̂(·, t)(ξ)
∣∣∣2 dξdt

≤2−2sa
∥∥∥‖F‖L2(R)

∥∥∥
L2(Rn)

.

If s ≤ 0, then we use the same argument as above to obtain∥∥∥‖T(F )‖L2(R)

∥∥∥
L2(Rn)

�
∫

R

∫
Et+s

|2tξ|−2b
∣∣∣F̂(·, t)(ξ)

∣∣∣2 dξdt

�22sb
∫

R

∫
Et+s

∣∣∣F̂(·, t)(ξ)
∣∣∣2 dξdt

≤22sb
∥∥∥‖F‖L2(R)

∥∥∥
L2(Rn)

.

Thus we prove the estimate in (2.5).
Using an interpolation in [16, (i) of Proposition, p. 56] between L2(L2)(R, Rn) and

L1(L1)(R, Rn) (or L∞(L∞)(R, Rn)) for the operator T(F ), one has∥∥∥‖T(F )‖Lp(R)

∥∥∥
Lp(Rn)

� 2−2|s|σ(a,b,p)
∥∥∥‖F‖Lp(R)

∥∥∥
Lp(Rn)

for any p ∈ (1, ∞), where σ(p) is a positive constant depending on a, b and p. Another
interpolation between (2.4) and (2.5) yields that for all 1 < p ≤ q < ∞, there is a positive
constant δ(a, b, p, q) such that∥∥∥‖T(F )‖Lq(R)

∥∥∥
Lp(Rn)

� 2−2|s|σ(a,b,p,q)
∥∥∥‖F‖Lq(R)

∥∥∥
Lp(Rn)

.

Finally a duality argument yields that the above inequality holds for all p, q ∈ (1, ∞). In
fact, for 1 < q ≤ p < ∞, there exists a function g(x, t) satisfying∥∥∥‖g‖Lq′ (R)

∥∥∥
Lp′ (Rn)

= 1,

such that ∥∥∥‖T(F )‖Lq(R)

∥∥∥
Lp(Rn)

=

∣∣∣∣∫
Rn

∫
R

T(F )(x, t)g(x, t)dtdx
∣∣∣∣ .

Set
T∗(g)(x, t) =

∫
Rn
(Ψ2s+t ∗Φ2t)(y− x)g(y, t)dy.



276 D. Fan and F. Zhao / Anal. Theory Appl., 37 (2021), pp. 267-288

It follows from Fubini’s theorem that

‖Ts( f )‖Lp(Rn) =
∥∥∥‖T(F )‖Lq(R)

∥∥∥
Lp(Rn)

=

∣∣∣∣∫
Rn

∫
R

∫
Rn
(Ψ2s+t ∗Φ2t)(x− y)g(x, t)dxF (y, t)dtdy

∣∣∣∣
=

∣∣∣∣∫
Rn

∫
R

T∗(g)(y, t)F (y, t)dtdy
∣∣∣∣

≤
∥∥∥‖T∗(g)‖Lq′ (R)

∥∥∥
Lp′ (Rn)

∥∥∥‖F‖Lq(R)

∥∥∥
Lp(Rn)

�2−2|s|σ(a,b,p,q)
∥∥∥‖F‖Lq(R)

∥∥∥
Lp(Rn)

.

For 1 < q < ∞, let Ψ̃(x) = Ψ(−x) and define

SΨ̃,q ( f ) (x) =
(∫ ∞

0

∣∣∣Ψ̃t ∗ f (x)
∣∣∣q dt

t

)1/q

,

and define SΦ̃,q in the same way. Obviously,

SΦ̃,q( f ) = SΦ,q( f ),

whenever Φ is a radial function. A similar argument as above shows that the following
estimate

‖SΦ̃,q( f )‖Lp(Rn) � ‖SΨ̃,q( f )‖Lp(Rn) ≈ ‖ f ‖Ḟ0
p,q(R

n)

holds.
To show the reversed inequality

‖ f ‖Ḟ0
p,q(R

n) � ‖SΦ,q( f )‖Lp(Rn),

we will invoke the Calderón representation formula (2.1). We now claim that for any
function ft(x), ∥∥∥∥∫ ∞

0
(Φt ∗ ft)(·)

dt
t

∥∥∥∥
Ḟ0

p,q(R
n)

�
∥∥∥∥∥
(∫ ∞

0
| ft|q(·)

dt
t

)1/q
∥∥∥∥∥

Lp(Rn)

. (2.6)

In fact, there is a g ∈ Ḟ0
p′,q′ with ‖g‖Ḟ0

p′ ,q′
= 1 such that∥∥∥∥∫ ∞

0
(Φt ∗ ft)(·)

dt
t

∥∥∥∥
Ḟ0

p,q(R
n)

=

∣∣∣∣〈∫ ∞

0
(Φt ∗ ft)

dt
t

, g
〉∣∣∣∣ = ∣∣∣∣∫ ∞

0
〈Φt ∗ ft, g〉 dt

t

∣∣∣∣ = ∣∣∣∣∫ ∞

0

〈
ft, Φ̃t ∗ g

〉 dt
t

∣∣∣∣ ,
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where
Φ̃t ∗ g(x) =

∫
Rn

Φt(y− x)g(y)dy.

By the Hölder inequality we now obtain that∣∣∣∣∫ ∞

0

〈
ft, Φ̃t ∗ g

〉 dt
t

∣∣∣∣ �
∥∥∥∥∥
(∫ ∞

0
| ft|q(·)

dt
t

)1/q
∥∥∥∥∥

Lp(Rn)

‖SΦ̃,q′(g)‖Lp′ (Rn)

�
∥∥∥∥∥
(∫ ∞

0
| ft|q(·)

dt
t

)1/q
∥∥∥∥∥

Lp(Rn)

‖g‖Ḟ0
p′ ,q′ (R

n).

Applying ft = Φt ∗ f to the above inequality in (2.6), we obtain that

‖ f ‖Ḟ0
p,q
≈
∥∥∥∥∫ ∞

0
(Φt ∗Φt ∗ f )(·)dt

t

∥∥∥∥
Ḟ0

p,q(R
n)

�
∥∥∥∥∥
(∫ ∞

0
|Φt ∗ f |q(·)dt

t

)1/q
∥∥∥∥∥

Lp(Rn)

=
∥∥SΦ,q( f )

∥∥
Lp(Rn)

,

which completes the proof of the theorem.

Theorem 2.2. Let 1 < p, q < ∞ and let Φ be a nonzero integrable function. Suppose that there
exist a, b > 0 such that for all ξ 6= 0,

|Φ̂(ξ)| � min{|ξ|a, |ξ|−b}.

Then we have (∫
R
‖Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

� ‖ f ‖Ḃ0
p,q(R

n).

Additionally, if Φ is a radial function. Then for 1 < p, q < ∞, we have(∫
R
‖Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

≈ ‖ f ‖Ḃ0
p,q(R

n).

Proof. Without loss of generality, assume a ≥ b. Take a radial function Ψ ∈ S(Rn) as
in the proof of Theorem 2.1. As before, by the Calderón representation formula and the
Minkowski inequality, we obtain that for 1 < p, q < ∞,(∫

R
‖Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

=C

(∫
R

∥∥∥∥∫
R

Ψ2s+t ∗Ψ2s+t ∗Φ2t ∗ f (x)ds
∥∥∥∥q

Lp(Rn)

dt

)1/q

�
∫

R
T ( f )(s)ds,
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where

T ( f )(s) =
(∫

R
‖Ψ2s+t ∗Ψ2s+t ∗Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

.

We will prove that there exists a constant σ = σ(a, b, p, q) > 0 such that for 1 < p, q < ∞

T ( f )(s) � 2−σ|s|‖ f ‖Ḃ0
p,q(R

n). (2.7)

If it is so, then we have

(∫
R
‖Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

� ‖ f ‖Ḃ0
p,q(R

n)

∫
R

2−σ|s|ds � ‖ f ‖Ḃ0
p,q(R

n).

We now prove (2.7). Define a linear operator T on functions F (y, t) by

T(F )(x, t) = Ψ2s+t ∗Φ2t ∗ F (x, t) =
∫

Rn
(Ψ2s+t ∗Φ2t) (x− y)F (y, t)dy,

where F (y, t) = Ψ2s+t ∗ f (y). As in the proof of Theorem 2.1, we can obtain that for all
1 < p ≤ q < ∞, there is a positive constant δ(a, b, p, q) such that

∥∥∥‖T(F )‖Lp(Rn)

∥∥∥
Lq(R)

� 2−2|s|σ(a,b,p,q)
∥∥∥‖F‖Lp(Rn)

∥∥∥
Lq(R)

. (2.8)

Thus the inequality (2.7) holds by taking F (y, t) = Ψ2s+t ∗ f (y) in (2.8).
Finally a duality argument yields that the above inequality in (2.8) holds for all p, q ∈

(1, ∞). In fact, for 1 < q ≤ p < ∞, there exists a functionH(x, t) satisfying

∥∥∥‖H‖Lp′ (Rn)

∥∥∥
Lq′ (R)

= 1,

such that ∥∥∥‖T(F )‖Lp(Rn)

∥∥∥
Lq(R)

=

∣∣∣∣∫
Rn

∫
R

T(F )(x, t)H(x, t)dtdx
∣∣∣∣ .

Let

T∗(H)(x, t) =
∫

Rn
(Ψ2s+t ∗Φ2t)(y− x)H(y, t)dy.

Since Ψ is radial, we see that T∗(H)(x, t) = T(H)(x, t) for all (x, t) ∈ Rn ×R. It follows
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from Fubini’s theorem and (2.8) that

T ( f )(s) =
∥∥∥‖T(F )‖Lp(Rn)

∥∥∥
Lq(R)

=

∣∣∣∣∫
Rn

∫
R

∫
Rn
(Ψ2s+t ∗Φ2t)(x− y)H(x, t)dxF (y, t)dtdy

∣∣∣∣
=

∣∣∣∣∫
R

∫
Rn

T∗(H)(y, t)F (y, t)dydt
∣∣∣∣

≤
∥∥∥‖T∗(H)‖Lp′ (Rn)

∥∥∥
Lq′ (R)

∥∥∥‖F‖Lp(Rn)

∥∥∥
Lq(R)

�2−2|s|σ(a,b,p,q)
∥∥∥‖F‖Lp(Rn)

∥∥∥
Lq(R)

≈C2−2|s|σ(a,b,p,q) ‖ f ‖Ḃ0
p,q(R

n) .

Assume that Φ is a radial function. We will show that for 1 < p, q < ∞,

‖ f ‖Ḃ0
p,q(R

n) �
(∫

R
‖Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

.

By the Calderón representation formula, we claim that for any function ft(x),∥∥∥∥∫ ∞

0
(Φt ∗ ft)(·)

dt
t

∥∥∥∥
Ḃ0

p,q(R
n)

�
(∫ ∞

0
‖| ft|(·)‖q

Lp(Rn)

dt
t

)1/q

. (2.9)

In fact, there is a g ∈ Ḃ0
p′,q′(Rn) with ‖g‖Ḃ0

p′ ,q′ (R
n) = 1 such that

∥∥∥∥∫ ∞

0
(Φt ∗ ft)(·)

dt
t

∥∥∥∥
Ḃ0

p,q(R
n)

=

∣∣∣∣〈∫ ∞

0
(Φt ∗ ft)

dt
t

, g
〉∣∣∣∣

=

∣∣∣∣∫ ∞

0
〈Φt ∗ ft, g〉 dt

t

∣∣∣∣ = ∣∣∣∣∫ ∞

0

〈
ft, Φ̃t ∗ g

〉 dt
t

∣∣∣∣ ,

where
Φ̃t ∗ g(x) =

∫
Rn

Φt(y− x)g(y)dy.

By the Hölder inequality, we now obtain that∣∣∣∣∫ ∞

0

〈
ft, Φ̃t ∗ g

〉 dt
t

∣∣∣∣ � ∣∣∣∣∫ ∞

0
‖ ft‖Lp(Rn)‖Φt ∗ g‖Lp′ (Rn)

dt
t

∣∣∣∣
�
(∫ ∞

0
‖| ft|(·)‖q

Lp(Rn)

dt
t

)1/q

‖g‖Ḃ0
p′ ,q′ (R

n).
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Applying ft = Φt ∗ f to the above inequality in (2.9), we obtain that

‖ f ‖Ḃ0
p,q(R

n) ≈
∥∥∥∥∫ ∞

0
(Φt ∗Φt ∗ f )(·)dt

t

∥∥∥∥
Ḃ0

p,q(R
n)

�
(∫ ∞

0
‖Φt ∗ f ‖q

Lp(Rn)

dt
t

)1/q

,

which finishes the proof of the theorem.

3 Characterizations of Fα
p,q and Bα

p,q for 0 < α < 2, and Ḟα
p,q and

Ḃα
p,q for α < 0

In this section, as applications of Theorems 2.1 and 2.2, we will consider two classes
of Littlewood-Paley functions to characterize Triebel-Lizorkin and Besov spaces, respec-
tively.

For α > 0 and 1 < q < ∞, the Littlewood-Paley function SΦ,α,q( f ) is defined by

SΦ,α,q ( f ) (x) =
(∫ ∞

0
|Φt ∗ f (x)− f (x)|q dt

t1+αq

)1/q

,

where Φ are integrable functions. By the Fourier transform, we may write

SΦ,α,q ( f ) (x) ≈ SΨ,q

(
(−∆)α/2 ( f )

)
(x) ,

where

Ψ̂ (ξ) =
Φ̂ (ξ)− 1
(2π |ξ|)α .

We introduce the following simple form of Theorems 2.1 and 2.2, which is suitable for
these Littlewood-Paley type functions.

Proposition 3.1. Let α > 0 and 1 < q < ∞. Suppose that for some p0 ∈ (1, ∞). Assume that
Φ is a radial function and let

Ψ̂ (ξ) =
Φ̂ (ξ)− 1
(2π |ξ|)α .

If Ψ is a nonzero integrable function and∣∣∣Ψ̂ (ξ)
∣∣∣ � min{|ξ|a , |ξ|−b}

for some positive numbers a and b. Then we have the following results:

(i)
∥∥SΦ,α,q ( f )

∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Bα
p,q(R

n)
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provided 2p0
p0+1 < p < 2p0

p0−1 ;
(ii) If Ψ also satisfies that for p0 < p < ∞,∥∥∥∥sup

t>0
|Ψt| ∗ f

∥∥∥∥
Lp(Rn)

� ‖ f ‖Lp(Rn) ,

then we have that ∥∥SΦ,α,q ( f )
∥∥

Lp(Rn)
+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Fα

p,q(R
n)

provided 2p0
p0+1 < p < 2p0

p0−1 .

As an application of Proposition 3.1, we will study the following Littlewood-Paley
function

SV,α,q ( f ) (x) =
(∫ ∞

0
|Vt ∗ f (x)− f (x)|q dt

t1+αq

)1/q

for 1 < q < ∞ and α > 0. Here, Vt is the spherical average (see [21]) given by

Vt( f )(x) =
∫

Sn−1
f (x− ty)dσ(y),

and Sn−1 is the unit sphere in Rn with the induced Lebesgue measure dσ(y). Its corre-
sponding maximal function is defined by

V( f )(x) = sup
t>0
|Vt( f )(x)|. (3.1)

The following result was obtained by Stein [21, Theorem 1, p. 2174], in dimensions n ≥ 3,
and Bourgain [2, Theorem 1, p. 69] in the delicate case of n = 2.

Lemma 3.1. Suppose n ≥ 2. Then for f ∈ Lp(Rn), the inequality

‖V( f )‖Lp(Rn) ≤ C‖ f ‖Lp(Rn)

holds whenever n/(n− 1) < p ≤ ∞. If p ≤ n/(n− 1), then the inequality is not valid.

This lemma together with Corollaries 2.1-2.3 in [5] leads to the following results.

Corollary 3.1. Let n ≥ 2 and 1 < q < ∞. For the spherical average SV,α,q ( f ) , if 0 < α ≤ 1,
then we have that ∥∥SV,α,q ( f )

∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Fα
p,q(R

n)

provided 2n
2n−1 < p < 2n. If 1 < α < 2 then we have that for all p ∈ (1, ∞),∥∥SV,α,q ( f )

∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Fα
p,q(R

n) .
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Corollary 3.2. Let n ≥ 2 and 1 < q < ∞. For the spherical average SV,α,q ( f ) , if 0 < α ≤ 1,
then we have that ∥∥SV,α,q ( f )

∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Bα
p,q(R

n)

provided 2n
2n−1 < p < 2n. If 1 < α < 2, then we have that for all p ∈ (1, ∞),∥∥SV,α,q ( f )

∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Bα
p,q(R

n) .

Corollary 3.3. Let 0 < α < 2 and 1 < q < ∞, and let Φt ∗ f = Bt ( f ) be the ball average and

SB,α,q ( f ) (x) =
(∫ ∞

0
|Bt f (x)− f (x)|q dt

t1+αq

)1/q

.

Then ∥∥SB,α,q ( f )
∥∥

Lp(Rn)
+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Fα

p,q(R
n) ,∥∥SB,α,q ( f )

∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Bα
p,q(R

n) ,

for all 1 < p < ∞.

Let t > 0. The generalized Bochner-Riesz means Bδ,γ
t on Rn are defined via the Fourier

transform by

(Bδ,γ
t ( f ))

∧
(ξ) =

(
1− |ξ|

γ

tγ

)δ

+

f̂ (ξ),

where δ and γ are two real numbers satisfying δ > −1 and γ > 0. Again, we initially
assume that f are functions in S(Rn). Use Proposition 3.1 to obtain the following result.

Corollary 3.4. Let α > 0, γ > 0, 1 < q < ∞, and let SBδ,γ,α,q be the operator

SBδ,γ,α,q ( f ) (x) =
(∫ ∞

0

∣∣∣Bδ,γ
t ( f ) (x)− f (x)

∣∣∣q dt
t1+αq

)1/q

≈SΨ,q

(
(−∆)α/2 ( f )

)
(x) ,

where

Ψ̂ (ξ) =
(1− |ξ|γ)δ

+ − 1
(2π|ξ|)α

.

Then for δ > n−1
2 and 0 < α < γ,∥∥∥SBδ,γ,α,q ( f )

∥∥∥
Lp(Rn)

+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Fα
p,q(R

n) ,∥∥∥SBδ,γ,α,q ( f )
∥∥∥

Lp(Rn)
+ ‖ f ‖Lp(Rn) ≈ ‖ f ‖Bα

p,q(R
n) ,

for all 1 < p < ∞.
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Next, we turn to characterize the homogeneous Triebel-Lizorkin space Ḟ−α
p,q and the

homogeneous Besov space Ḃ−α
p,q for α > 0. To this end, we consider square functions of

the form

SΦ,−α,q ( f ) (x) =
(∫ ∞

0
|Φt ∗ f (x)|q tαq dt

t

)1/q

.

Again, we introduce the following simple form of Theorems 2.1 and 2.2 which is suitable
for the above square function.

Proposition 3.2. Let α > 0 and 1 < p, q < ∞. Assume that Φ is a radial function and let

K̂ (ξ) = Φ̂ (ξ) (2π |ξ|)α .

If K is a nonzero integrable function, and suppose that a and b are two positive numbers such that∣∣∣K̂ (ξ)
∣∣∣ � min{|ξ|a , |ξ|−b}, (3.2)

then we have

(i)
∥∥SΦ,−α,q ( f )

∥∥
Lp(Rn)

≈ ‖ f ‖Ḃ−α
p,q (Rn) .

(ii) if K also satisfies that ∥∥∥∥sup
t>0
|Kt| ∗ f

∥∥∥∥
Lp(Rn)

� ‖ f ‖Lp(Rn) , (3.3)

then
‖SΦ,−α ( f )‖Lp(Rn) ≈ ‖ f ‖Ḟ−α

p,q (Rn) .

In order to use Proposition 3.2, we study a family of operators Ωγ
t (see [21]) that takes

the spherical mean Vt and ball average Bt as special cases. For γ > 0, define

Ωγ
t ( f )(x) = Cn,γt−n

∫
|y|<t

(
1−

∣∣∣y
t

∣∣∣2)γ−1

f (x− y)dy,

where

Cn,γ =
Γ(γ + n/2)
πn/2Γ(γ)

.

When γ = 1, Ω1
t ( f ) is the ball average

Ω1
t ( f )(x) = Bt( f )(x) =

1
|B(x, t)|

∫
B(x,t)

f (y)dy.

Also, by taking the Fourier transform, one can embed these operators in an analytic fam-
ily of operators with complex parameter γ so that we obtain the spherical average

Ω0
t ( f )(x) = Vt( f )(x).

With the help of Corollary 2.4 in [5, p. 284], we have



284 D. Fan and F. Zhao / Anal. Theory Appl., 37 (2021), pp. 267-288

Corollary 3.5. For two positive numbers γ and α, let

Φt ∗ f (x) = Ωγ
t ( f ) (x)

and for 1 < q < ∞

SΩγ,−α,q ( f ) (x) =
(∫ ∞

0

∣∣Ωγ
t ( f ) (x)

∣∣q tαqdt
t

)1/q

.

Then for γ > α + 1 and 1 < p < ∞∥∥SΩγ,−α,q ( f )
∥∥

Lp(Rn)
≈ ‖ f ‖Ḟ−α

p,q (Rn) ,∥∥SΩγ,−α,q ( f )
∥∥

Lp(Rn)
≈ ‖ f ‖Ḃ−α

p,q (Rn) .

4 Characterizations of Fmα
p,q and Bmα

p,q for 0 < α < 4 and m ∈ Z+

In this section, we assume that 1 < q < ∞ and m ∈ Z+. We will firstly study Littlewood-
Paley functions as follows

Tα,m,q( f )(x) =
(∫ ∞

0

∣∣∣∣ (Bt − I)m( f )(x)
tmα

∣∣∣∣q dt
t

)1/q

,

and

Gα,m,c,q( f )(x) =

(∫ ∞

0

∣∣∣∣ ((Bt − I)− ctqBt ◦ (−∆))m ( f )(x)
tmα

∣∣∣∣q dt
t

)1/q

,

where I is the identity operator, and c is a constant. Note Tα,1,q = Tq,α and Gα,1,c,q( f ) =
Gq,α( f , g), if g = −c∆( f ).

With the help of results in [5, Theorems 3.1 and 3.2, p. 285], we have the following
statements.

Theorem 4.1. Let p, q ∈ (1, ∞) and α ∈ (0, 2). Then f ∈ Fmα
p,q (R

n) if and only if f ∈ Lp(Rn)
and Tα,m,q( f ) ∈ Lp(Rn).

Theorem 4.2. Let p, q ∈ (1, ∞) and α ∈ (0, 2). Then f ∈ Bmα
p,q(R

n) if and only if f ∈ Lp(Rn)
and Tα,m,q( f ) ∈ Lp(Rn).

Theorem 4.3. Let p, q ∈ (1, ∞) and α ∈ [2, 4). Then f ∈ Fmα
p,q (R

n) if and only if f ∈ Lp(Rn)

and Gα,m,c,q( f ) ∈ Lp(Rn), where c = − 2π2

(2π)α(n+2) .

Theorem 4.4. Let p, q ∈ (1, ∞) and α ∈ [2, 4). Then f ∈ Bmα
p,q(R

n) if and only if f ∈ Lp(Rn)

and Gα,m,c,q( f ) ∈ Lp(Rn), where c = − 2π2

(2π)α(n+2) .
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Next we will define the discrete versions of Tα,m,q and Gα,m,c,q( f ) by

Dα,m,q( f )(x) =

(
∑

k∈Z

∣∣∣2−mαk(B2k − I)m( f )(x)
∣∣∣q)1/q

,

Dα,m,c,q( f )(x) =

(
∑

k∈Z

∣∣∣2−mαk
(
(B2k − I)− c22k(B2k ◦ (−∆))

)m
( f )(x)

∣∣∣q)1/q

.

Similar as proofs of Theorems 2.1 and 2.2, we have

Proposition 4.1. Let 1 < p, q < ∞. Suppose that Φ ∈ L1 is a radial function. Assume that
there exist a, b > 0 such that

|Φ̂(ξ)| � min{|ξ|a, |ξ|−b}.

Then we have

(i)
(∫

R
‖Φ2t ∗ f ‖q

Lp(Rn)
dt
)1/q

≈ ‖ f ‖Ḃ0
p,q(R

n).

(ii) If Φ also satisfies that

‖ sup
k∈Z

|Φ2k | ∗ f ‖Lp(Rn) � ‖ f ‖Lp(Rn) for all p > 1,

then for the operator DΦ,q defined in (1.1), we have

‖DΦ,q( f )‖Lp(Rn) ≈ ‖ f ‖Ḟ0
p,q(R

n)

for all 1 < p < ∞.

By Proposition 4.1 and the results due to Chen et al. [5, Theorems 5.1 and 5.2, p. 293],
we have the following results.

Theorem 4.5. Let p, q ∈ (1, ∞) and α ∈ (0, 2). Then f ∈ Fmα
p,q (R

n) if and only if f ∈ Lp(Rn)
and Dα,m,q( f ) ∈ Lp(Rn).

Theorem 4.6. Let p, q ∈ (1, ∞) and α ∈ (0, 2). Then f ∈ Bmα
p,q(R

n) if and only if f ∈ Lp(Rn)
and Dα,m,q( f ) ∈ Lp(Rn).

Theorem 4.7. Let p, q ∈ (1, ∞) and α ∈ [2, 4). Then f ∈ Fmα
p,q (R

n) if and only if f ∈ Lp(Rn)

and Dα,m,c,q( f ) ∈ Lp(Rn), where c = − 2π2

(2π)α(n+2) .

Theorem 4.8. Let p, q ∈ (1, ∞) and α ∈ [2, 4). Then f ∈ Bmα
p,q(R

n) if and only if f ∈ Lp(Rn)

and Dα,m,c,q( f ) ∈ Lp(Rn), where c = − 2π2

(2π)α(n+2) .
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5 Characterizations Fα
p,q and Bα

p,q using SE,α,q

Throughout this section, E denotes a nonzero, bounded radial function on Rn with com-
pact support and it satisfies ∫

Rn
E(x)dx = 1.

Let 1 < q < ∞ and α > 0, the Littlewood-Paley type function SE,α,q is defined by

SE,α,q( f )(x) =
(∫ ∞

0

∣∣∣∣Et ∗ f (x)− f (x)
tα

∣∣∣∣q dt
t

)1/q

.

Noting that χB in Theorem 1.1 is a special function E satisfying the above assumptions,
Sato et al. in [18] (see also [29]) characterized Sobolev spaces Wα,p(Rn) with α ∈ (0, 2)
and p ∈ (1, ∞) by using the square function

SE,α,2( f )(x) =

(∫ ∞

0

∣∣∣∣Et ∗ f (x)− f (x)
tα

∣∣∣∣2 dt
t

)1/2

.

Theorem 5.1 ([18]). Let p ∈ (1, ∞) and α ∈ (0, 2). If E is nonnegative, then f ∈ Wα,p(Rn) if
and only if f ∈ Lp(Rn) and SE,α( f ) ∈ Lp(Rn).

Chen et al. in [5, Theorem 4.1, p. 291] further improved Theorem 5.1 by removing the
nonnegative assumption on the function E.

Theorem 5.2 ( [5]). Let E be a nonzero, bounded radial function on Rn with compact support
and satisfy ∫

Rn
E(y)dy = 1.

For p ∈ (1, ∞) and a ∈ (0, 2), we have f ∈Wα,p(Rn) if and only if f ∈ Lp(Rn) and SE,α,2( f ) ∈
Lp(Rn).

Additionally, if there exists an positive integer N such that∫
Rn

E(y)y2`
j dy = 0

for all j = 1, · · · , n and ` = 1, · · · , N. Then we have f ∈ Wα,p(Rn) if and only if f ∈ Lp(Rn)
and SE,α,2( f ) ∈ Lp(Rn) for a ∈ (0, 2N + 2) and p ∈ (1, ∞).

By checking the proof of Theorem 5.2, and using Theorems 2.1 and 2.2, we conclude
that

Theorem 5.3. Let 1 < q < ∞ and let E be as in Theorem 5.2. For p ∈ (1, ∞) and a ∈ (0, 2),
we have

(i) f ∈ Fα
p,q(R

n) if and only if f ∈ Lp(Rn) and SE,α,q( f ) ∈ Lp(Rn);
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(ii) f ∈ Bα
p,q(R

n) if and only if f ∈ Lp(Rn) and SE,α,q( f ) ∈ Lp(Rn).

Additionally, if there exists an positive integer N such that∫
Rn

E(y)y2`
j dy = 0

for all j = 1, · · · , n and ` = 1, · · · , N. Then we have

(i) f ∈ Fα
p,q(R

n) if and only if f ∈ Lp(Rn) and SE,α,q( f ) ∈ Lp(Rn) for a ∈ (0, 2N + 2) and
p ∈ (1, ∞);

(ii) f ∈ Bα
p,q(R

n) if and only if f ∈ Lp(Rn) and SE,α,q( f ) ∈ Lp(Rn) for a ∈ (0, 2N + 2) and
p ∈ (1, ∞).
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