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Abstract. In this paper, a novel symplectic conservative perturbation series expansion
method is proposed to investigate the dynamic response of linear Hamiltonian systems
accounting for perturbations, which mainly originate from parameters dispersions and
measurement errors. Taking the perturbations into account, the perturbed system is re-
garded as a modification of the nominal system. By combining the perturbation series
expansion method with the deterministic linear Hamiltonian system, the solution to
the perturbed system is expressed in the form of asymptotic series by introducing a
small parameter and a series of Hamiltonian canonical equations to predict the dy-
namic response are derived. Eventually, the response of the perturbed system can
be obtained successfully by solving these Hamiltonian canonical equations using the
symplectic difference schemes. The symplectic conservation of the proposed method
is demonstrated mathematically indicating that the proposed method can preserve the
characteristic property of the system. The performance of the proposed method is
evaluated by three examples compared with the Runge-Kutta algorithm. Numerical
examples illustrate the superiority of the proposed method in accuracy and stability,
especially symplectic conservation for solving linear Hamiltonian systems with per-
turbations and the applicability in structural dynamic response estimation.
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1 Introduction

With the dramatically rapid development of science and technology, numerical calcula-
tion has aroused more and more attention, thus there is an urgent need for more efficient
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and more stable numerical algorithms with more powerful long-term simulation capa-
bilities.

From the perspective of mechanical systems, the conservative Newton’s equation can
be represented to two equivalent mathematical forms: a Lagrangian variation form and
a Hamiltonian form. Compared to other forms, the Hamiltonian formulation have a
symmetric form, and any physical process with negligible dissipations can be expressed
in the form of a Hamiltonian system [1]. The equivalent representations describe the
same physics law but provide different techniques in solving the same problem, thus
may produce different numerical results [2]. Therefore, making reasonable and sensible
choices from various equivalent representations are crucial.

Numerical algorithms should preserve the intrinsic properties of the original prob-
lems as much as possible [3–5]. It is worth noting that apart from some very rare ex-
ceptions, almost all the conventional algorithms are non-symplectic [6], which may lead
to serious distortions of numerical results. They can be used in short-term simulation,
but may result in wrong conclusions for long-term tracking research [7]. On the contrary,
the symplectic algorithms of Hamiltonian systems can avoid all non-symplectic pollution
and conserve the symplectic structure of the system, which is the characteristic property
of the Hamiltonian system [8]. Therefore, the symplectic algorithms have significant ad-
vantages in long-term numerical simulation [9, 10].

Pioneering work on symplectic algorithms is due to Feng [11], who first proposed in
1984 at the international conference on differential geometry and equations. His work
represented a milestone in the development of numerical calculation [12] and attracted
extensive attention from scholars at home and abroad. Subsequently, lots of researchers
obtained many major results on symplectic algorithms. The judging conditions of sym-
plectic Runge-Kutta methods was found in 1988 by Sanz-Serna [13], Lasagni [14] and
Suris [15] independently. Then, Sun [16] studied symplectic partitioned Runge-Kutta
methods deeply. Around 2000, Bridges [17] and Reich [18] first put forward the multi-
symplectic algorithms. In recent years, the meshless symplectic algorithms [19, 20], the
symplectic continuous-stage Runge-Kutta methods [21, 22], the Fourier spectral/ pseu-
dospectral methods [23, 24], and other symplectic algorithms have been developed in
succession. A large number of numerical simulations indicate that the symplectic algo-
rithms have superiority in conservation and long-term tracking ability.

In terms of the symplectic algorithms applied in structural dynamic response anal-
ysis, Zhang [25] proposed a symplectic algorithm for the dynamic response of the Tim-
oshenko beam. Hu [26] utilized a multi-symplectic method to analyze the dynamic re-
sponse of the multi-span continuous beam. Li [27] put forward a symplectic method for
the dynamic response of the harmonic oscillator and simply supported beam. Yang [28]
performed the numerical simulations of the super slender Kirchhoff rod by the sym-
plectic algorithm. Xing [29] developed two highly precise symplectic schemes for linear
structural dynamic analysis. Zhang [30] applied the symplectic Runge-Kutta method in
the dynamics of spacecraft relative motion. Peng [31, 32] proposed the symplectic nons-
mooth dynamic method for multibody system analysis. The numerical results all illus-
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trated high accuracy and stability as well as good conservation properties of the sym-
plectic algorithms above.

In reality, no one can deny the fact that errors, or what we call perturbations, exist
inevitably in practical engineering applications, where materials dispersions and mea-
surement deviations are the main roots [33–37]. Even small perturbations may result
in a significant reduction of structural performance, even structural failure [38–41]. The
perturbation theory [42, 43] provides a workable approach for performing perturbation
analysis to ensure the safety of structures. It involves the use of an artificial small param-
eter for numerical analysis [44], from which a set of recursive equations can be derived
and then the approximate solution to the response can be obtained. The perturbation
series solution is considered as a modification of the nominal solution obtained by the
deterministic method. Due to its conspicuous features of high computational efficiency
and good approximation accuracy [45], the perturbation method has been proven to be
a valid and efficient approach in various fields, including structural dynamic response
calculation [46], structural eigenvalue problems [47], fatigue crack growth evolution pre-
dicting [48, 49] and so on. Recently, Qiu [50, 51] has applied the perturbation theory to
analyze the dynamic response of linear Hamiltonian systems and Birkhoffian systems
with stochastic and interval uncertainties, respectively. Despite above valuable contribu-
tions, to the authors’ best knowledge, there has been very little research taking advantage
of the perturbation method to investigate the effects of deterministic perturbations on the
dynamic response of Hamiltonian systems in the literature.

Motivated by the previous work, the main contribution of this paper is to put for-
ward a symplectic conservative perturbation series expansion method for linear Hamil-
tonian systems with consideration of perturbations. In this respect, the linear Hamil-
tonian system with perturbations is transformed into a series of Hamiltonian canonical
equations by introducing a small parameter, which can be solved by the symplectic dif-
ference schemes. Thereby the time response of the Hamiltonian system can be obtained
successfully. The proposed method can give highly accurate results in dynamic response
evaluation. Most importantly, it can conserve the characteristics of the system showing
its unique superiority in symplectic conservation.

The remainder of this paper is structured as follows. The linear Hamiltonian system
and its symplectic structure are introduced in Section 2. In Section 3, the perturbation
series expansion method is proposed for the linear Hamiltonian system with perturba-
tions and its symplecticity is demonstrated. Then, the symplectic difference schemes
for Hamiltonian systems are presented to solve the Hamiltonian canonical equations in
Section 4. Three examples are accomplished to illustrate the validity, symplectic conser-
vation and engineering applicability of the proposed method in Section 5, and Section 6
presents a brief conclusion at last.

2 Linear Hamiltonian system and its symplectic structure
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2.1 Linear Hamiltonian system

Consider the Hamiltonian canonical equation in a compact form

dz
dt

= J−1Hz (2.1)

where

z=(z1,··· ,zn,zn+1,··· ,z2n)
T, Hz =

(
∂H
∂z1

,··· , ∂H
∂z2n

)T

, J=
(

0 In
−In 0

)
, (2.2)

in which In is the n×n identity matrix; J is called the standard symplectic matrix, which
has the property J−1= JT =−J; H is called the Hamiltonian function of the system.

A Hamiltonian system (2.1) is called linear, if the Hamiltonian function H(z) is a
quadratic form of z

H(z)=
1
2

zTCz, (2.3)

where C is a symmetric matrix, namely, CT =C.
Thus, the Hamiltonian canonical equation (2.1) can be expressed as

dz
dt

=Bz, (2.4)

where B=J−1C is infinitesimal symplectic, which is also called the Hamiltonian operator
matrix in the symplectic space.

2.2 Symplectic structure of the linear Hamiltonian system

Symplecticity is the essential characteristic of a Hamiltonian system. The phase space of
the Hamiltonian system is equipped with a standard symplectic structure written as a
closed differential 2-form [2]

ω=
n

∑
i=1

dzi∧dzn+i, (2.5)

where the notation ∧ denotes the exterior product.
Based on the property of the exterior product, Eq. (2.5) can be transformed into the

following expression

ω=
1
2
×
(

2
n

∑
i=1

dzi∧dzn+i

)
=

1
2
×
[

n

∑
i=1

dzi∧dzn+i+
n

∑
i=1

dzn+i∧(−dzi)

]

=
1
2
×(dz1,··· ,dzn,dzn+1,··· ,dz2n)

T∧(dzn+1,··· ,dz2n,−dz1,··· ,−dzn)
T

=
1
2

dz∧Jdz. (2.6)
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Let

zt =
dz
dt

. (2.7)

The differential form of the symplectic structure ω is

dω

dt
=

d
dt

(
1
2

dz∧Jdz
)
=

1
2
(dzt∧Jdz+dz∧Jdzt)=dz∧Jdzt. (2.8)

The variational equation of the Hamiltonian canonical equation (2.1) is

Jdzt =Hzz (z)dz, (2.9)

where Hzz (z) is the Hessian matrix of the function H(z).
Taking the exterior product of Eq. (2.9) with dz leads to

dz∧Jdzt =dz∧Hzz (z)dz. (2.10)

It is worth noting that since Hzz is symmetric, the right term of Eq. (2.10) become

dz∧Hzz (z)dz=−Hzz (z)dz∧dz=Hzz (z)dz∧dz=0. (2.11)

Therefore, along the phase flow, it holds the symplecticity, i.e., [52]

dω

dt
=dz∧Jdzt =0. (2.12)

3 Perturbation series expansion method of the linear
Hamiltonian system with perturbations and its symplectic
structure

3.1 Perturbation series expansion method of the linear Hamiltonian system
with perturbations

Traditionally, the dynamic response of the linear Hamiltonian system can be obtained
by solving Eq. (2.4) directly. However, as we discussed above, the system is generally
affected by some disturbances and perturbations. When there are perturbations in the
linear Hamiltonian system, the perturbation theory, which studies the behavior changes
of a system subjected to small changes in its variables [43], can be applied to obtain the
approximate solution. By introducing a small parameter, the infinitesimal symplectic
matrix B can be expressed as a sum of the nominal value and the perturbation, that is

B=B0+εBr, (3.1)
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where the small parameter ε is a scalar quantity much less than unity; B0 denotes the
nominal part of B, εBr denotes the perturbation of B0, B0 and Br are both infinitesimal
symplectic.

On this account, there exist consequent perturbations in z. Based on the perturbation
theory, z can be expanded as the form of power series with ε

z=z0+εz1+ε2z2+···+εmzm+··· , (3.2)

where z0 is the nominal part of z, m denotes a positive integer and zi, (i=1,··· ,m) is the
ith-order perturbation of z.

Substituting Eqs. (3.1) and (3.2) into Eq. (2.4) yields

d
(
z0+εz1+ε2z2+···+εmzm+···

)
dt

=(B0+εBr)
(
z0+εz1+ε2z2+···+εmzm+···

)
. (3.3)

Expanding Eq. (3.3), then comparing the coefficients of the same power terms of ε on each
side of the equation, we can obtain a series of Hamiltonian canonical equations

ε0 :
dz0

dt
=B0z0,

ε1 :
dz1

dt
=B0z1+Brz0,

ε2 :
dz2

dt
=B0z2+Brz1,··· ,

εm :
dzm

dt
=B0zm+Brzm−1. (3.4)

In this way, the Hamiltonian functions Hi, (i= 0,1,··· ,m) and their derivatives Hzi , (i=
0,1,··· ,m) of the Hamiltonian canonical equations in Eq. (3.4) are presented respectively
as

H0(z0)=
1
2

z0
TC0z0, Hz0 =C0z0,

H1(z1)=
1
2

z1
TC0z1+z1

TCrz0, Hz1 =C0z1+Crz0,

H2(z2)=
1
2

z2
TC0z2+z2

TCrz1, Hz2 =C0z2+Crz1,··· ,

Hm (zm)=
1
2

zm
TC0zm+zm

TCrzm−1, Hzm =C0zm+Crzm−1, (3.5)

where C0= JB0, Cr = JBr.
Solving the first equation of Eq. (3.4) yields the nominal part of z, namely, z0. Sub-

stituting the value of z0 into the second equation of Eq. (3.4) and solving it gives the
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first-order perturbation of z, namely, z1. Then the value of zi, (i= 2,3,··· ,m) can be de-
rived in turn. Thus, z can be obtained by Eq. (3.2) and the perturbation of z is expressed
as

zr = εz1+ε2z2+···+εmzm+··· . (3.6)

The following key lies in how to solve the Hamiltonian canonical equations in Eq. (3.4),
which will be introduced in Section 4.

3.2 Symplectic structure of the linear Hamiltonian system with perturbations
by the perturbation series expansion method

For the algorithms of Hamiltonian systems, symplectic conservation is a significant crite-
rion to judge whether they are good or not [4]. Therefore, symplectic conservation of the
perturbation series expansion method for the linear Hamiltonian system with perturba-
tions is proved mathematically.

As for the symplectic structure of the linear Hamiltonian system with perturbations
(3.3), it is also expanded as power series

ω=ω0+εω1+ε2ω2+···+εmωm+··· , (3.7)

where ωi, (i=0,1,··· ,m) are the symplectic structures of the Hamiltonian canonical equa-
tions in Eq. (3.4), respectively.

The symplectic structure of the linear Hamiltonian system with perturbations is also
expressed as Eq. (2.6). Substituting Eqs. (3.2) and (3.7) into Eq. (2.6) leads to

ω0+εω1+ε2ω2+···+εmωm+···

=
1
2

d
(

z0+εz1+ε2z2+···+εkzk+···
)
∧Jd

(
z0+εz1+ε2z2+···+εkzk+···

)
, (3.8)

where k is a positive integer.
Comparing the coefficients of the same power terms of ε on each side of Eq. (3.8), we

can obtain the symplectic structures of the Hamiltonian canonical equations in Eq. (3.4)

ε0 : ω0=
1
2

dz0∧Jdz0,

ε1 : ω1=
1
2
(dz0∧Jdz1+dz1∧Jdz0),

ε2 : ω2=
1
2
(dz0∧Jdz2+dz1∧Jdz1+dz2∧Jdz0),··· ,

εm : ωm =
1
2

m

∑
i=0

dzi∧Jdzm−i. (3.9)
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The differential forms of the symplectic structures ω0,ω1,ω2,··· ,ωm are presented as

ε0 :
dω0

dt
=

d
dt

(
1
2

dz0∧Jdz0

)
,

ε1 :
dω1

dt
=

d
dt

[
1
2
(dz0∧Jdz1+dz1∧Jdz0)

]
,

ε2 :
dω2

dt
=

d
dt

[
1
2
(dz0∧Jdz2+dz1∧Jdz1+dz2∧Jdz0)

]
,··· ,

εm :
dωm

dt
=

d
dt

[
1
2

(
m

∑
i=0

dzi∧Jdzm−i

)]
. (3.10)

From the first equation of Eq. (3.10), similar to that in Section 2.2, we can prove easily that
the symplectic structure ω0 holds the symplecticity along the phase flow

dω0

dt
=0. (3.11)

Let

zi
t =

dzi

dt
, i=0,1,··· ,m. (3.12)

Then, the second equation of Eq. (3.10) can be expressed as

dω1

dt
=

1
2

(
dz0

t ∧Jdz1+dz1∧Jdz0
t+dz0∧Jdz1

t +dz1
t ∧Jdz0

)
=

1
2

(
dz1∧Jdz0

t +dz1∧Jdz0
t+dz0∧Jdz1

t +dz0∧Jdz1
t

)
=dz1∧Jdz0

t+dz0∧Jdz1
t . (3.13)

The variational equations of the first two equations of Eq. (3.4) are

Jdz0
t =Hz0z0 (z0)dz0, Jdz1

t =Hz1z1 (z1)dz1. (3.14)

Taking the exterior product of the former equation of Eq. (3.14) with dz1 and of the latter
equation of Eq. (3.14) with dz0 yield

dz1∧Jdz0
t =dz1∧Hz0z0 (z0)dz0=0, dz0∧Jdz1

t =dz0∧Hz1z1 (z1)dz1=0. (3.15)

Thus, we have

dω1

dt
=dz1∧Jdz0

t+dz0∧Jdz1
t =0. (3.16)

In the similar manner, from the other equations of Eq. (3.10) we can obtain

dω2

dt
=0,··· , dωm

dt
=0. (3.17)

Eqs. (3.11), (3.16) and (3.17) indicate that the symplectic structures of the Hamiltonian
canonical equations in Eq. (3.4) hold the symplecticity, respectively.
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4 Symplectic difference schemes for Hamiltonian systems

The symplectic difference schemes for Hamiltonian systems can be adopted to solve the
Hamiltonian canonical equations [2].

For the Hamiltonian canonical equations in Eq. (3.4), the Euler centered scheme is
presented as

zk+1
i −zk

i
τ

= J−1Hzi

(
zk+1

i +zk
i

2

)
, i=0,1,··· ,m, (4.1)

where τ is the time step.
For the first equation of Eq. (3.4), which is a linear homogeneous Hamiltonian canon-

ical equation, the transition zk
0 7→zk+1

0 is given by

zk+1
0 =Fτ0 zk

0, (4.2)

where

Fτ0 =
(

I− τ

2
B0

)−1(
I+

τ

2
B0

)
. (4.3)

Proposition 4.1 ([2]). If A is infinitesimal symplectic, and |I+A| 6=0, then F=(I+A)−1(I−A)
is a symplectic matrix, which is called the Cayley transformation of A.

Since B0 is infinitesimal symplectic, − τ
2 B0 is also infinitesimal symplectic, and Fτ0 is

the Cayley transformation of the infinitesimal symplectic − τ
2 B0. According to Propo-

sition 4.1, Fτ0 is symplectic and the scheme is symplectic as well. By using the Euler
centered scheme for the linear Hamiltonian system to solve the first equation of Eq. (3.4),
we can obtain z0.

For the other equations of Eq. (3.4), the mappings Fτi : zk
i 7→ zk+1

i , (i = 1,··· ,m) are
nonlinear. By differentiation,

∂zk+1
i

∂zk
i

= I+τJ−1Hzizi

(
zk+1

i +zk
i

2

)(
1
2

∂zk+1
i

∂zk
i

+
1
2

I

)
, (4.4)

where Hzizi(
zk+1

i +zk
i

2 ) is the Hessian matrix of the function Hi(zi) at point zi =
zk+1

i +zk
i

2 and
∂zk+1

i
∂zk

i
is the Jacobian matrix of Fτi . We have

Fτi =

[
I− τ

2
J−1Hzizi

(
zk+1

i +zk
i

2

)]−1[
I+

τ

2
J−1Hzizi

(
zk+1

i +zk
i

2

)]
. (4.5)

When zi remains bounded and by taking τ to be sufficiently small, we can keep the

infinitesimally symplectic matrix − τ
2 J−1Hzzi(

zk+1
i +zk

i
2 ) non-exceptional. Then, Fτi as a
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Cayley transformation is symplectic. Accordingly, we can solve the other equations of
Eq. (3.4) successively by employing the Euler centered scheme for the nonlinear Hamil-
tonian system to obtain the ith-order perturbation of z, i.e., zi, (i=1,··· ,m).

To the end, z and the perturbation of z, namely, zr can be obtained.

5 Numerical examples

In order to demonstrate the validity of the proposed method (abbreviated as PSEM),
three numerical examples are provided in this section, including a second-order linear
Hamiltonian system, a Bernoulli-Euler cantilever beam and a fully clamped composite
laminate. For the sake of comparison, the results obtained by the proposed method are
compared with those obtained by the exact method, the second-order and the fourth-
order Runge-Kutta algorithms (EM, RK2 and RK4, respectively).

5.1 Second-order linear Hamiltonian system

Firstly, consider a mathematical example, a second-order linear Hamiltonian system ex-
pressed as

d
dt

(
p
q

)
=B

(
p
q

)
(5.1)

with the initial condition (p(0),q(0))T =(1,1)T, where B is infinitesimal symplectic.
The nominal Hamiltonian function H0 and the corresponding infinitesimal symplectic

matrix B0 are presented as

H0=−
1
2

p2− 5
2

q2−pq, B0=

(
1 5
−1 −1

)
. (5.2)

The analytic solution to the nominal system is represented as(
p(t)
q(t)

)
=

(
cos(2t)+3sin(2t)
−sin(2t)+cos(2t)

)
. (5.3)

Suppose there is a small perturbation in the infinitesimal symplectic matrix B given as

Br =

(
0 0.2

0.1 0

)
. (5.4)

Hence the Hamiltonian function H in the perturbed system can be expressed as

H=−0.9
2

p2− 5.2
2

q2−pq. (5.5)
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(a) p (b) q

Figure 1: ASNS p0, q0 and the perturbed system p, q obtained by EM, PSEM and RK of the second-order
linear Hamiltonian system.

(a) pr (b) qr

Figure 2: Perturbations pr, qr obtained by EM, PSEM and RK of the second-order linear Hamiltonian system.

Here the first two order methods of PSEM (1-PSEM and 2-PSEM, respectively) are taken
into consideration and the time step is set to be ∆t= 0.05. The analytic solutions to the
nominal system (ASNS) p0, q0 and the numerical results of the perturbed system p, q
obtained by EM, PSEM and RK are exhibited in Fig. 1. In order to investigate the effects
of the small perturbation on the response clearly, the perturbations pr, qr, which represent
the deviations of the perturbed system p, q from the nominal system p0, q0, are plotted in
Fig. 2. The numerical results at t=4 and t=8 are listed in Table 1.

The figures and table show that although the perturbation in B is very small, both
amplitude and phase of the system increase compared to the nominal system. The devi-
ations between the nominal system and the perturbed system indicate that the perturba-
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Table 1: ASNS p0, q0, the perturbed system p, q and the perturbations pr, qr obtained by EM, PSEM and RK
at t=4 and t=8 of the second-order linear Hamiltonian system.

t=4 t=8 t=4 t=8
p0 ASNS 2.8320 -1.7868 q0 ASNS −1.1292 −0.6863

p

EM 3.3614 0.2467

q

EM -0.7878 -1.2922
1-PSEM 3.4279 -0.2321 1-PSEM -0.8507 -1.4077
2-PSEM 3.3569 0.2791 2-PSEM -0.7794 -1.2839

RK2 3.3258 0.1280 RK2 -0.8089 -1.2561
RK4 3.3590 0.2071 RK4 -0.7947 -1.2856

pr

EM 0.5294 2.0335

qr

EM 0.3414 -0.6059
1-PSEM 0.5959 1.5547 1-PSEM 0.2785 -0.7214
2-PSEM 0.5249 2.0659 2-PSEM 0.3498 -0.5976

RK2 0.4938 1.9148 RK2 0.3203 -0.5698
RK4 0.5270 1.9939 RK4 0.3345 -0.5993

tion has a distinct effect on the response. Hence, we cannot ignore the existence of the
perturbation. As the order of PSEM increases, the numerical results obtained by PSEM
are gradually closer to those obtained by EM, indicating that the accuracy of PSEM is
continuously improved. Besides, 2-PSEM can give better accuracy than RK4 with high
precision.

Moreover, the Hamiltonian function H in the perturbed system obtained by PSEM,
RK2 and RK4 are exhibited in Fig. 3. We can see obviously that the Hamiltonian function
remains H =−4.15 unchanged during the process of numerical calculation via PSEM.
Nevertheless, although RK4 has high precision, its Hamiltonian function H keeps de-
creasing. Meanwhile, the Hamiltonian function H of RK2 decreases at a faster rate.

Fig. 4 plots the phase diagrams of (p,q) of the perturbed system obtained by PSEM,
RK2 and RK4. The phase diagram of (p,q) obtained by PSEM keeps the shape and area

Figure 3: Hamiltonian function H obtained by PSEM, RK2 and RK4 of the second-order linear Hamiltonian
system.
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(a) PSEM (b) RK2

(c) RK4

Figure 4: Phase diagrams of (p,q) obtained by PSEM, RK2 and RK4 of the second-order linear Hamiltonian
system.

of the ellipse unchanged while there exist apparent drifts in the phase diagrams of (p,q)
obtained by RK2 and RK4 respectively, which are caused by their dissipative nature. The
above phenomena illustrate the symplectic conservation of PSEM.

Thus, the mathematical example verifies the feasibility, accuracy and symplectic con-
servation of PSEM.

5.2 Bernoulli-Euler cantilever beam

Next, we demonstrate the applicability of PSEM in a structural dynamic system. Con-
sider a Bernoulli-Euler cantilever beam with 11 nodes and 10 elements as shown in Fig. 5
to certify the effectiveness of the proposed method applied in structural dynamic re-
sponse estimation. The beam is characterized by the following geometrical properties:
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Figure 5: Bernoulli-Euler cantilever beam.

the length L= 5m, the rectangular cross-sectional area with the width b= 0.1m and the
height h=0.2m.

Due to the inevitable dispersions and measurement errors in materials, there exist
perturbations in the material properties. The nominal and perturbed parts of the Young’s
modulus and the mass density are, respectively

E0=210GPa, Er =5%×E0, ρ0=7800kg/m3, ρr =5%×ρ0. (5.6)

The response caused by the force F=200N acting on the vertical direction of the node 11
is taken as the initial condition of the free vibration of the cantilever beam.

The differential equation of motion of the system is expressed as

Mẍ+Kx=0, (5.7)

where M denotes the global mass matrix, which is related to the mass density, and K is
the global stiffness matrix related to the Young’s modulus.

Let y=Mẋ, then the differential equation of motion can be written in the matrix form
as (

ẋ
ẏ

)
=

(
0 M−1

−K 0

)(
x
y

)
. (5.8)

Since

B=

(
0 M−1

−K 0

)
satisfies

JB+BTJ=0,

B is infinitesimal symplectic. Eq. (5.8) is the Hamiltonian canonical equation of the sys-
tem.

PSEM and RK are applied for evaluating the deflection responses of the node 6 and
11 in the vertical direction of the perturbed cantilever beam. The time step is set to be
∆t = 0.002s, and the numerical results of the deflection responses of the node 6 and 11
obtained by EM and PSEM are plotted in Figs. 6(a)-(b), respectively. The results of the
node 6 and 11 at t=1.6s and t=2.8s are tabulated in Table 2.

In terms of the accuracy of PSEM, Fig. 6 and Table 2 display that the results obtained
by PSEM are in better agreement with those obtained by EM with the increase of the
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(a) node 6 (b) node 11

Figure 6: Deflection responses of the node 6 and 11 obtained by EM and PSEM of the perturbed Bernoulli-Euler
cantilever beam.

(a) node 6 (b) node 11

Figure 7: Deflection responses of the node 6 and 11 obtained by RK of the perturbed Bernoulli-Euler cantilever
beam.

order. That is to say, the results calculated by PSEM are becoming more accurate as the
order increases and 2-PSEM is of very high accuracy for the requirements.

However, it is worth noting that the numerical results calculated by RK2 and RK4 are
exponentially divergent under the condition of the set time step in a short time interval
t∈[0,0.020]s as shown in Fig. 7. Only when the time step is extremely small like ∆t=10−6s,
satisfactory results can be achieved. As is known, RK4 is common used due to its high
accuracy and stability, but is not applicable for this example. On the contrary, PSEM
shows an outstanding advantage in terms of stability. This phenomenon highlights the
superiority of PSEM.
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Figure 8: Hamiltonian function H obtained by PSEM of the perturbed Bernoulli-Euler cantilever beam.

Table 2: Deflection responses of the node 6 and 11 obtained by EM and PSEM at t=1.6s and t=2.8s of the
perturbed Bernoulli-Euler cantilever beam (10−4m).

t=1.6s t=2.8s
EM 1.8543 1.5059

Node 6 1-PSEM 1.8215 1.5947
2-PSEM 1.8512 1.5046

EM 5.0644 3.9633
Node 11 1-PSEM 4.9855 4.1786

2-PSEM 5.0603 3.9655

Furthermore, the Hamiltonian function H obtained by PSEM is exhibited in Fig. 8. As
can be seen, the Hamiltonian function H remains constant, which indicates the symplec-
tic conservation of PSEM.

5.3 Composite laminate with fully clamped

The last example concerns a fully clamped composite laminate with the side length L=
100mm and the mass density ρ=1500kg/m3 as shown in Fig. 9, which is made of five lay-
ers of orthotropic materials with the laying angle of (0◦,90◦,0◦,90◦,0◦) and the thickness
of each layer of t=0.4mm.

The dispersions in the material properties introduced by the material production and
measurement process are unavoidable. The nominal and perturbed parts of the material
properties are

E1=38.6GPa, E1r =5%×E1, E2=8.27GPa, E2r =5%×E2, (5.9a)
ν21=0.26, ν21r =10%×ν21, G12=4.14GPa, G12r =7%×G12. (5.9b)

The response caused by the force F =−50N acting on the centre of the laminate in z-
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Figure 9: Composite laminate with fully clamped.

Figure 10: Response of the centre of the laminate obtained by EM and PSEM of the composite laminate.

direction is taken as the initial condition of the free vibration of the laminate. The 4-
node rectangular thin plate element is utilized and the laminate is divided into 16 equal
elements.

The Hamiltonian canonical equation of the laminate is similar to that of the cantilever
beam. The response of the centre of the laminate in z-direction is considered. The first
two order methods of PSEM are also adopted and the time step is ∆t = 1×10−4s. The
numerical results of the response of the centre of the laminate in the perturbed system
obtained by EM and PSEM are plotted in Fig. 10. ASNS are also exhibited in Fig. 10. The
numerical results of the response and perturbations at t=0.010s and t=0.018s are listed
in Table 3. The Hamiltonian function H in the perturbed system obtained by PSEM is
shown in Fig. 11.

From the figures and table, it can be seen obviously that due to the presence of the
perturbed parts in the material properties, there are deviations between the perturbed
system and the nominal system, even quite different in some time. Thus, we must con-
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Figure 11: Hamiltonian function H obtained by PSEM of the composite laminate.

Figure 12: Response of the centre of the laminate obtained by RK of the composite laminate.

sider the effects of perturbations. In addition, as for the numerical results of the perturbed
system, the results obtained by 2-PSEM are in excellent accordance with those obtained
by EM. What’s more, the Hamiltonian function H obtained by PSEM remains unchanged.
Therefore, it is illustrated again that PSEM is of high accuracy and symplectic conserva-
tion.

By virtue of RK, the numerical results calculated by RK2 and RK4 are divergent in a
very short time interval t∈ [0,0.001]s as plotted in Fig. 12. Only under the condition that
the time step is extremely small, namely, ∆t=1×10−5s for RK2 and ∆t=4×10−5s for RK4,
we can obtain the reasonable results in t∈ [0,0.020]s. Since the calculation time of each
step of PSEM and RK may be different, the comparison of the calculation time of PSEM
and RK at different time steps is given in Table 4, where the maximum error denotes the
maximum relative error compared to the results via EM. The computation is performed
in MATLAB R2014a on a 2.50GHz Intel Core i5-7200U CPU computer. Compared with
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Table 3: ASNS, the perturbed value and the perturbations of the response of the centre of the laminate obtained
by EM and PSEM at t=0.010s and t=0.018s of the composite laminate (10−2m).

t=0.010s t=0.018s

Response

ASNS -0.5652 -0.8049
EM -0.1908 -0.4215

1-PSEM -0.0499 -0.2400
2-PSEM -0.2008 -0.4117

Perturbations
EM 0.3744 0.3834

1-PSEM 0.5153 0.5649
2-PSEM 0.3644 0.3932

Table 4: Comparison of the calculation time of PSEM and RK at different time steps of the composite laminate.

Method Time step (s) Calculation time (s) Maximum error (10−4m)
2-PSEM 1×10−4 8.23 0.62

RK2 1×10−5 10.81 1.04
RK4 4×10−5 9.48 2.25

RK, PSEM can provide the results with a higher precision under a larger time step, which
can shorten the calculation time. In summary, PSEM enjoys a clear advantage in high
precision, high efficiency and strong stability.

6 Conclusions

This paper proposes a novel and effective symplectic conservative numerical method for
linear Hamiltonian systems with perturbations. Due to the existence of perturbations,
even small ones may have a significant impact on the response. Under the circumstances,
the effects of perturbations of linear Hamiltonian systems are taken into consideration
and a perturbation series expansion method (PSEM) is presented to predict the dynamic
response. By expanding the solution of the linear Hamiltonian system with perturba-
tions in an asymptotic series with a small parameter, a series of Hamiltonian canonical
equations are derived and then the symplectic conservation is demonstrated based on the
property of the exterior product. The solution can be obtained ultimately by adopting the
symplectic difference schemes to solve a series of the Hamiltonian canonical equations.

Three numerical examples are carried out to investigate the validity, symplectic con-
servation and engineering applicability of PSEM. Compared with RK, the highly precise
results can be obtained by PSEM at a larger time step, especially under the case that RK
fails. However, satisfactory results can be obtained by RK only when the time step is
extremely small. Thus, PSEM can improve the computing efficiency greatly. In addition,
the accuracy of PSEM increases with the increase of the order and 2-PSEM can give a
satisfactory accuracy. Furthermore, both the mathematical and engineering examples in-
dicate that the numerical results obtained by PSEM can keep the Hamiltonian function as
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well as the shape and area of the phase diagram unchanged, which indicates that PSEM
is symplectic conservative.

Overall, PSEM shows the superior performance in accuracy, efficiency and stability,
especially symplectic conservation for solving linear Hamiltonian systems with pertur-
bations. Therefore, PSEM can play a significant role in dynamic response estimation of
linear Hamiltonian systems. PSEM serves as a modified numerical model which aims to
realize a more reliable and precise prediction of dynamic response evolution by properly
accounting for perturbations. Thus, PSEM can become a powerful tool to analyze the
effects of a small perturbation of parameters on dynamic response of structures.
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