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Abstract. The study adopts the variational method for analyzing the cantilever ta-
pered beams under a tip load as well as a definite end displacement, and further de-
termining the optimized shapes and materials that can minimize the weights. Two
types of beams are taken into account, i.e., the Euler-Bernoulli beam without consid-
ering shear deformation and the Timoshenko beam with shear deformation. By using
the energy theorem and the reference of isoperimetric problem, the width variation
curves and the corresponding minimum masses are derived for both beam types. The
optimized curve of beam width for the Euler-Bernoulli beam is found to be a linear
function, but nonlinear for the Timoshenko beam. It is also found that the optimized
curve in the Timoshenko beam case starts from non-zero at the tip end, but its ten-
dency gradually approaches the one of the Euler-Bernoulli beam. The results indicate
that with the increase of the Poisson’s ratio, the required minimum mass of the beam
will increase no matter how the material changes, suggesting that the optimized mass
for the case of Euler-Bernoulli beam is the lower boundary limit which the Timoshenko
case cannot go beyond. Furthermore, the ratio ρ/E (density against Elastic Modulus)
of the material should be as small as possible, while the ratio h2/L4 of the beam should
be as large as possible in order to minimize the mass for the case of Euler-Bernoulli
beam, of which the conclusion is extended to be applicable for the case of Timoshenko
beam. In addition, the optimized curves for Euler-Bernoulli beam types are all found
to be power functions of length for both tip point load cases and uniform load cases.
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1 Introduction

Tapered beams, also called non-prismatic beams, are beams with variable cross sections
along the longitudinal directions in order to reduce their weights and adapt various stress
distribution. Tapered beams are commonly used in many fields, such as airplanes, ma-
chinery, bridges and buildings. In a tapered beam, the bending stresses vary along the
longitudinal axis and is no longer proportion to the bending moment since the section
modulus also varies along the axis [11,14]. Applications of tapered beams under dynamic
situations can be found in the literature [4,13]. A recent case is found in the literature for
the tapered cantilever beam used in piezoelectric energy harvesters, which indicates the
significance of tapered shape to provide the maximum efficiency [5].

Recent rapid developments of optimization technology and algorithms allows re-
searchers to optimize tapered beams to a favorable level. Imam [7] explained the basic
concept of shape optimization design and described the boundary effects. Dietl and Gar-
cia [2] optimized the beam shapes for harvesting power using a heuristic optimization
code, as well as experimental validation. Yoo [18] divided a tapered beam into multiple
segments and assumed the width and the thickness as cubic spline functions to optimize.
Ohsaki et al. [12], Katsikadelis et al. [8] and Kim et al. [9] optimized Euler-Bernoulli beams
considering different load cases including torsional problems with the help of finite ele-
ment method. Vinot et al. [16] presented a detailed procedure in shape optimization of
thin-walled beam-like structures with correction coefficients. However, little literature
can be found using variational method and considering shear effects in optimization,
which is one of the objectives in this paper

The concept and application of variational methods are widely involved in many
fields. The isoperimetric method, as a typical variational problem, has the elementary
propositions to find the loop curve with a constant length covering the maximum area,
or further determine the shape of a suspension cable. Such problems are normally turned
into unconditional extremum problems using the Lagrange multiplier method and then
solved using Euler-Lagrange Equation (transferring a variational problem to a calculus
problem), see [1, 3, 6, 10].

This study attempts to apply a variational method to optimize the tapering curve of a
cantilever tapered beam under a tip load. Two different beam types are taken into consid-
erations, i.e., the Euler-Bernoulli beam without shear deformation and the Timoshenko
beam with shear deformation considered. The investigation will focus on the cantilever
beam only tapered for the width of its cross section while keeping the same height of its
cross section along the longitudinal axis, but the overall cross section is still kept as a rect-
angular shape (see Fig. 1). The results of this investigation could be utilized to optimize
the tapering curve in order to minimize the mass with fixed tip displacements, e.g., for
light-weight tapered beam designs in bridges and airplanes.



M. Zhu, G. Gong and J. Xia / Adv. Appl. Math. Mech., 13 (2021), pp. 1485-1500 1487

Figure 1: Cantilever beam only tapered for the width.

2 Theoretical background

2.1 The isoperimetric problem in calculus of variations

The isoperimetric problem refers to the one to determine the extreme value of the general
functional v:

v=
∫ x1

x0

F
(
x,y1,y2,··· ,yn,y′1,y′2,··· ,y′n

)
dx, (2.1)

which satisfies the isoperimetric conditions, i.e., the general functions:∫ x1

x0

ϕi
(
x,y1,y2,··· ,yn,y′1,y′2,··· ,y′n

)
dx= li, (i=1,··· ,m), (2.2)

where li are all constants. y1,y2,··· ,yn are functions of x and y′1,y′2,··· ,y′n are first deriva-
tives of x. For illustration and for the purpose of this paper, the cases with the second
derivatives or even higher order derivatives are not shown, but they could be added in
without affecting this discussion. The ordinal number m can be larger, equal or smaller
than the ordinal number n. Normally, it is difficult to directly solve these systems of
equations as described in Eq. (2.2) since the general functions can be in a very compli-
cated form. By using the Lagrange multiplier method, this type of problem can be trans-
ferred to an unconditional extremum problem. In order to ensure this proposition, there
should be constant factors λi (i=1,··· ,m) that make the functions y1,y2,··· ,yn become the
unconditional extremum solutions to the general functional v∗:

v∗=
∫ x1

x0

(
F+

m|

∑
i=1

λi ϕi

)
dx=

∫ x1

x0

F∗dx. (2.3)

The function yj (j=1,2,··· ,n) can be determined by the Euler-Lagrange equation:

∂F∗

∂yj
− d

dx
∂F∗

∂y′j
=0 (2.4)

or
∂F
∂yj

+
m

∑
i=1

λi
∂ϕi

∂yj
− d

dx

(
∂F
∂y′j

+
m

∑
i=1

λi
∂ϕi

∂y′j

)
=0, (j=1,2,··· ,n), (2.5)
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The arbitrary constants in general solutions and the values of constant λi,λ2,··· ,λm can
be determined by Eq. (2.5) together with the boundary conditions:

yj (x0)=yj0 , yj (x1)=yj1 (j=1,2,··· ,n), (2.6)

and the isoperimetric conditions equation (2.2) [1, 10].

2.2 Formulation of analytical equations

The Euler-Bernoulli beam theory is based on the three assumptions that the cross-section
is fully rigid for shear deformation on its plane, the cross-section remains plane, and the
cross-section remains perpendicular to the longitudinal axis after bending, as depicted
in Fig. 2. This assumption results in zero transverse shear strain. The Euler-Bernoulli
beam (or simply Euler beam) is also called engineering beam or thin beam in engineer-
ing practices. If the plane cross sections still remain plane but not necessarily normal to
the longitudinal axis after bending, the shear strain will not be zero essentially. A spe-
cific angle ϕz as an additional variable will be needed, which is different from the Euler
beam (with ϕz = 0 always). This specific beam is called Timoshenko beam, as shown in
Fig. 2. The Timoshenko beam is also called shear deformation beam or thick beam in
engineering practices.

It should be mentioned that the analytical equations can be obtained to determine
the free end deflection of the cantilever beam by solving the governing differential equa-
tions with the boundary conditions (called strong form in the Finite Element context).
The double integral form together with additional terms consisting of initially unknown
constants makes the problem complicated for sections with varying second moment of
area especially when the target is to obtain an analytical solution. However, the energy
theorem is more convenient for these types of problems since only scalars are treated and
different loading conditions are dealt with in a unified manner.

To formulate the analytical solutions to the deflection of the free end loadings of a ta-
pered cantilever beam, the energy theorem is adopted with the assumption of small dis-
placements in this paper. Specifically, Castigliano’s second theorem is very useful for this
purpose and it is valid only for linear elastic materials, which is the assumed case for this
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Fig. 2. Schematic view of deflection by Euler beam and Timoshenko beam 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑄𝑄𝑖𝑖

= 𝑞𝑞𝑖𝑖 (6) 

where the strain energy 𝑈𝑈 over the volume 𝑉𝑉 can be expressed by equation (7) with Einstein’s 
summation convention used. 

 𝑈𝑈 = � (� 𝜎𝜎𝑖𝑖𝑖𝑖
𝜖𝜖𝑖𝑖𝑖𝑖

0𝑉𝑉
𝑑𝑑𝜖𝜖𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑 (7) 

where 𝜎𝜎𝑖𝑖𝑖𝑖  and 𝜖𝜖𝑖𝑖𝑖𝑖  are the Cauchy stress tensor components and small strain components 
respectively, both with respect to a Cartesian coordinate system. Castigliano’s second theorem 
can be derived from the well-established energy principle called principle of minimum 
complementary energy, which is valid for both linear and nonlinear elastic materials and which 
takes a similar form to equation (6) by replacing the strain energy 𝑈𝑈 by the complementary 
energy 𝑈𝑈∗, expressed by equation (8). 

Figure 2: Schematic view of deflection by Euler beam and Timoshenko beam.
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paper. This theorem states that, for a linear elastic structure, the first partial derivative of
the strain energy U with respect to any one of generalized forces Qi (Force/Moment) is
equal to the corresponding displacement qi, as expressed mathematically in Eq. (2.7)

∂U
∂Qi

=qi, (2.7)

where the strain energy U over the volume V can be expressed by Eq. (2.8) with Einstein’s
summation convention used

U=
∫ i

V

(∫ εij

0
σijdεij

)
dV, (2.8)

where σij and ε ij are the Cauchy stress tensor components and small strain components
respectively, both with respect to a Cartesian coordinate system. Castigliano’s second
theorem can be derived from the well-established energy principle called principle of
minimum complementary energy, which is valid for both linear and nonlinear elastic
materials and which takes a similar form to Eq. (2.7) by replacing the strain energy U by
the complementary energy U∗, expressed by Eq. (2.9)

U∗=
∫ H

V

(∫ σij

0
εijdσij

)
dV. (2.9)

The total strain energy of a linear elastic material due to bending effect and shear effect
can be derived as in Eqs. (2.10a) and (2.10b), respectively

Um =
∫ L

0

M2

2EI
dx, (2.10a)

Us =
∫ L

0

kS2

2GA
dx, (2.10b)

where M is the bending moment, E is the elastic modulus, I is the second moment of
area, S is the shear force, G is the shear modulus, A is the cross-sectional area and k is the
shape factor.

For linear elastic materials, total stored strain energy due to bending is given by
Eq. (2.10a). According to the fundamental concept of Castigliano’s second theorem, the
partial derivative of strain energy with respect to the force applied at the free end of the
beam will give the deflection at the free end. For a concentrated load P applied at the free
end, Eq. (2.10a) is simplified to Eq. (2.11), which gives the free end deflection δe

δs =
∂Us

∂P
=

6
5G

∫ L

0

S
A

∂S
∂P

dx=
6

5G

∫ L

0

P
A

∂P
∂P

dx=
6P
5G

∫ L

0

1
A

dx. (2.11)

On the other hand, total stored strain energy due to shear is given by Eq. (2.10b). The
shape correction factor, k, is taken as 1.2 which is the exact value for a rectangular or
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square shape cross section and independent of other properties of the material or dimen-
sions. In a similar approach to the bending and the fundamental concept of Castigliano’s
theorem, the partial derivative of strain energy with respect to the force applied at the
free end of the beam will give the free end deflection due to the shear. For a concentrated
load of P applied at the free end, Eq. (2.10b) is simplified to Eq. (2.12) which gives the
free end deflection by shear δs

δs =
∂Us

∂P
=

6
5G

∫ L

0

S
A

∂S
∂P

dx=
6

5G

∫ L

0

P
A

∂P
∂P

dx=
6P
5G

∫ L

0

1
A

dx. (2.12)

This concept can be expanded to determine free end deflections under any given load-
ing condition. More details of energy theorems can be found in Tauchert [15] and
Washizu [17] among many others.

3 Variational derivation

3.1 Problem statement

For a cantilever beam with a definite tip point load and end displacement, how to select
the tapering curve and the material that can minimize its mass is of practical importance,
assuming that the cross section remains rectangular. In this section, the width variational
curve of the cantilever tapered beam that can minimize the mass is derived based on
the theory mentioned in Section 2. Although the width is changing, the height remains
constant and the cross section of the beam remains rectangular, as shown in Fig. 1 and
Fig. 3.

Figure 3: Schematic diagram of a cantilever beam only tapered for the width.
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A concentrated load of P is applied at the tip end. The tip deflection is set as a fixed
value (the value is usually specified by design requirement in terms of the Serviceabil-
ity Limit State). Two different beam types are taken into account, i.e., the Euler-Bernoulli
beam without shear deformation and the Timoshenko beam with shear deformation. Fur-
thermore, the final derived curve is the combination of two boundaries of beam width.
The final shape of beam depends on how the variation curve is allocated to the two
boundaries of beam width. The minimum mass for each case is calculated with rec-
ommendations of material selections. The material properties of the beam are assumed
to be homogeneous and isotropic.

3.2 Deviation for Euler-Bernoulli beam type

The mass of the beam m can be calculated by Eq. (3.1)

m=ρ
∫ L

0
A(x)dx. (3.1)

Since the rectangular cross-section has constant height h and variable width b, the section
area and second moment of area is given by Eqs. (3.2a) and (3.2b)

A(x)=b(x)h, (3.2a)

I(x)=
1
12

b(x)h3. (3.2b)

Substitute them into Eqs. (2.11) and (3.1) and simplify:∫ L

0

x2

b(x)
dx=

Eh3δe

12P
, (3.3a)

m=ρh
∫ L

0
b(x)dx. (3.3b)

Then, the problem becomes an isoperimetric problem with the target that the mass
(Eq. (3.3b)) could take the minimum value under the isoperimetric condition equation
(3.3a), where b(x) is the extremal function to be solved. Introduce an auxiliary functional:

F∗=b+λ
x2

b
, i.e., m∗=ρh

∫ L

0
F∗dx. (3.4)

Use the Euler-Lagrange equation:

∂F∗

∂b
=1−λ

x2

b2 =0, b=
√

λx. (3.5)

Substitute this equation into the isoperimetric condition equation (3.3a) and simplify:

√
λ=

6l2P
Eh3δe

, i.e., b(x)=
6l2P
Eh3δe

x. (3.6)
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Meanwhile, the minimum mass can be calculated as:

m=ρh
∫ L

0
b(x)dx=ρh

∫ L

0

6l2P
Eh3δe

xdx=
3l4P
h2δe
· ρ
E

. (3.7)

3.3 Deviation for Timoshenko beam type

The total deflection for the Timoshenko beam is given by Eq. (3.8)

δtot =δe+δs =
P
E

∫ L

0

x2

I
dx+

6P
5G

∫ L

0

1
A

dx. (3.8)

The mass of the beam m can be calculated similar to Eq. (3.3b). The section area and
second moment of area can also refer to Eqs. (3.2a) and (3.2b), respectively. Substitute
them into Eq. (3.8) and simplify:

∫ L

0

(
α· x2

b(x)
+β· 1

b(x)

)
dx=δtot , where α=

12P
Eh3 β=

6P
5Gh

. (3.9)

Then, the problem becomes an isoperimetric problem with the target that the mass
(Eq. (3.3b)) could take the minimum value under the isoperimetric condition equation
(3.9), where b(x) is the extremal function to be solved. Introduce an auxiliary functional:

F∗=b+λ

(
αx2

b
+

β

b

)
, m∗=ρh

∫ L

0
F∗dx. (3.10)

Use the Euler-Lagrange equation:

∂F∗

∂b
=1−λ

(
αx2+β

)
b2 =0, b=

√
λ
√

αx2+β. (3.11)

Substitute this equation into the isoperimetric condition equation (3.9) and simplify:

√
λ=

1
2δtot

(
L
√

αL2+β+
β√
α

ln
(√

α

β
L2+1+

√
α

β
L
))

, (3.12a)

i.e., b(x)=
1

2δtot

(
L
√

αL2+β+
β√
α

ln
(√

α

β
L2+1+

√
α

β
L
))√

αx2+β. (3.12b)

Meanwhile, the minimum mass can be calculated as:

m=ρhδtot

(
L
√

αL2+β+
β√
α

ln
(√

α

β
L2+1+

√
α

β
L
))2

, (3.13a)

where α=
12P
Eh3 β=

6P
5Gh

. (3.13b)
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4 Discussion

4.1 Optimization in terms of materials

According to Eq. (3.6), the optimized width variation curve for the Euler-Bernoulli beam
is shown to be a linear function of x. The final result of the mass in Eq. (3.7) indicates that
the ratio ρ/E should be as small as possible when selecting the materials to minimize
the mass, if the tip deflection is kept at a given value. For the Timoshenko beam, the
optimized width variation curve is shown to be a nonlinear function of x in Eq. (3.12).
However, the coefficients in the equation are relatively complicated and not easy to ob-
tain. It is therefore also difficult to determine how to select the materials to minimize the
mass in Eq. (3.13) directly. To circumvent this, a comparative study is conducted between
the Euler-Bernoulli beam and the Timoshenko beam by using the aluminum alloy as an
example. The beam parameters are assumed as shown in Table 1. The height against
length ratio is assumed to be larger than 1/4 to model the Timoshenko beam. Three al-
ternative values are set for the Poisson’ ratio in order to investigate how the degree of
shear deformation affects the optimization of tapered cantilever beams.

Fig. 4 is created based on Eqs. (3.6) and (3.12) by use of the beam parameters in Table
2. The curves in Fig. 4 show the optimized beam width as functions of the longitudi-
nal location given the specified conditions. The projected area of these curves to ab-
scissa multiplied by the constant height reflects the volume of the beam, and further
reflects the minimum mass and material consumption for each case. Comparing the
Euler-Bernoulli beam to the Timoshenko beams, it can be found that with the increase
of Poisson’s ratio, the required minimum mass increases, noting also that Euler-Bernoulli
beam can be treated as a special degenerated case of Timoshenko beam with a Poisson’s
ratio ν=−0.999··· (with the shear modulus approaching infinity). In this sense, the op-
timized mass for the case of Euler-Bernoulli beam is the lower boundary limit which the
Timoshenko case cannot go beyond. Meanwhile, for each Timoshenko beam case, the ini-
tial beam width starts from non-zero due to the shear effect, against the Euler-Bernoulli
beam case (with starting beam width of zero), which can be seen from Eq. (3.12), in which
the starting beam width (x= 0) and the non-zero value of β lead to a non-zero value of

Table 1: Assumed beam parameters.

Parameter Value Unit
Beam length 1 m
Beam height 0.3 m

Elastic modulus 66 GPa
Poisson’s ratio 0.0/0.25/0.5 –
End deflection 0.02 m

Density 2700 kg/m3

End Point load 1000 kN
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Figure 4: Width variation curves for the Euler-Bernoulli beam and Timoshenko beams with different Poisson’s
ratios (Aluminum alloy).

Figure 5: Width variation curves for the Euler-Bernoulli beam and Timoshenko beams with different Poisson’s
ratios (Magnesium alloy).

b(0) for the Timoshenko beam case. However, the latter variation tendency of them is
somewhat similar to that of the Euler-Bernoulli beam. This phenomenon can also be
found for other materials, for instance, the magnesium alloy (Elastic modulus 40GPa &
Density 1800kg/m3), as shown in Fig. 5.

Furthermore, the minimum masses for each case are calculated in Table 2. It is in-
dicated that the projection for each beam made of magnesium alloy is apparently larger
than that made of aluminum alloy. Combining the beams using different materials in
Fig. 4 and Fig. 5, it can be seen that the tendency of Euler-Bernoulli beam and the Timo-
shenko beam is similar except for the initial difference and their similarity is independent
of the material used. This indicates that the conclusion ”to minimize the mass, the ratio
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ρ/E should be as small as possible” is also applicable for the Timoshenko beam for the
assumed scenario.

4.2 Optimization in terms of height-to-length ratio

To investigate the effect of height-to-length ratio on the optimization of the tapered can-
tilever beam, the ratio (square) is defined as ζ. Specific power should be added for the
ratio in order to make use of Eq. (3.7)

ζ=h2/L4. (4.1)

Three different values of the ratios are assumed, i.e., 0.1, 0.2 and 0.3. To control the vari-
able, the lengths of all the beams are all set to be 1m and the Poisson’s ratio is a constant
0.2. The other parameters are chosen from Table 2 except the height (variable). The
optimized curves for Euler-Bernoulli beam and Timoshenko beam with different height-
to-length ratios are shown in Fig. 6. It is indicated from Fig. 6 that with the increase of the
height-to-length ratio, the slopes of the curves decrease for both Euler-Bernoulli beam
and Timoshenko beam. The decreasing rate gradually reduces. For the same ratio but
with different beam types, the variation rule is very similar to that discussed in section
4.1 for optimization in terms of materials. Additionally, the minimum masses for each
case are calculated in Table 3. The required minimum mass is larger with the smaller
value of ζ.

Finally, it should be mentioned that the width variation curves shown above only
govern the overall variation. Since one beam has two boundaries for its width, the de-
rived curves are the combination of the two boundaries. In other words, the final shape
of beam depends on how the variation curve is allocated to the two boundaries of beam
width too. The scenarios set in Figs. 4-6 equivalently assumes one width boundary keep-
ing horizontal and another one varies along the optimized curve.

Table 2: The minimum mass of tapered beams with different beam theory and materials.

Material
Minimum mass (kg)

Euler-Bernoulli beam Timoshenko beam with Poisson’s ratio
ν=0 ν=0.25 ν=0.5

Aluminum alloy 68.18 76.27 78.00 79.68
Magnesium alloy 75.00 83.90 85.80 87.65

Table 3: The minimum mass of tapered beams with different theory and ratios.

Beam theory Euler-Bernoulli beam Timoshenko beam
Ratio (ζ) 0.1 0.2 0.3 0.1 0.2 0.3

Minimum mass (kg) 61.36 30.68 20.45 70.71 39.2 28.54
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Figure 6: Width variation curves for the Euler-Bernoulli beam and Timoshenko beams with different height-to-
length ratios (aluminum alloy).

4.3 Extension of the study

In the previous sections, the optimization scheme only solves the situation where a can-
tilever beam with variable width is subjected to a tip point load. Actually, the procedure
of applying the variational method to beam optimization is applicable for many other
cases. For example, the variable can be extended to width, height and even the cross-
section shape and the load types may include the tip point load (TPL) and the uniformly
distributed load (UDL, force/length), or even an arbitrary load condition. Some of these
cases as well as the solutions are shown in Table 4.

It can be seen from Table 4 that for the Euler-Bernoulli beam type, the optimized
curves are all power functions of length x for all cases. The analytical solutions for the
Timoshenko beam type are complicated when determining the constant λ set up in the
Euler-Lagrange equation and the exact expression of λ is not provided here. One of the
derivation processes for Case 6a is presented in Appendix.

5 Conclusions

In summary, this study focuses on using the variational method to determine the mini-
mum mass and corresponding optimized shape of a cantilever tapered beam under a tip
load and with a fixed end displacement. Both the Euler-Bernoulli beam and Timoshenko
beam types are considered and compared in the investigation. Based on the derivation
and discussion, the following conclusions can be made:

• The optimized curve of beam width for the Euler-Bernoulli beam is a linear func-
tion of longitudinal location (with the starting width of zero), but nonlinear for the
Timoshenko beam. The curve of the Timoshenko beam starts from non-zero at the
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Table 4: Summary of the solutions.

No. Variable Constant Beam type Load type Optimized Curve

Case 1a Width Height Euler- TPL b(x)= 6l2P
Eh3δe

xBernoulli

Case 1b Width Height Timoshenko TPL b(x)=
√

λ
√

αx2+β, where
α= 12P

Eh3 , β= 6P
5Gh , λ related to α, β, l, δtot

Case 2a Width Height Euler- UDL b(x)= 12l5/2q
5Eh3δe

x3/2
Bernoulli

Case 2b Width Height Timoshenko UDL b(x)=
√

λ
√

αx3+βx, where
α=

6q
Eh3 , β=

6q
5Gh , λ related to α, β, l, δtot

Case 3a Height Width Euler- TPL h(x)= 2l1/2P1/3

E1/3b1/3δ1/3
e

x1/2
Bernoulli

Case 3b Height Width Timoshenko TPL h(x)=

√
λβ
2 + λ

2

√
β2+ 12αx2

λ , where

α= 12P
Eb , β= 6P

5Gb , λ related to α, β, l, δtot

Case 4a Height Width Euler- UDL h(x)= 241/3 l7/12q1/3

71/3E1/3b1/3δ1/3
e

x3/4

Bernoulli

Case 4b Height Width Timoshenko UDL h(x)=
√

λβx
2 + λx

2

√
β2+ 12αx

λ , where

α=
6q
Eb , β=

6q
5Gb , λ related to α, β, l, δtot

Case 5a Section h/b= Euler- TPL A(x)= 6l5/6P1/2

51/2E1/2k1/2δ1/2
e

x2/3
size constant k Bernoulli

Case 6a Section h/b= Euler- UDL A(x)= 31/2 lq1/2

E1/2k1/2δ1/2
e

xsize constant k Bernoulli
(Note: A(x) is the area of cross-section. P and q are the magnitude of TPL and UDL, respectively. Section

remains rectangular.)

tip end, but its tendency gradually approaches the one of the Euler-Bernoulli beam.
The starting non-zero value for the Timoshenko beam increases with the ratio ζ
decreasing.

• With the increase in the Poisson’s ratio, the required minimum mass of the beam
will increase however the material changes. The optimized mass for the case of
Euler-Bernoulli beam is the lower boundary limit which the Timoshenko case can-
not go beyond.

• The ratio ρ/E of the material should be as small as possible, while the ratio ζ of
the beam should be as large as possible in order to minimize the mass for Euler-
Bernoulli beam. This conclusion is also applicable for the Timoshenko beam.

• The optimized curves for Euler-Bernoulli beam types are all found to be power
functions of length for TPL cases and for UDL cases.
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Appendix

For Case 6a in Table 4, the derivation is provided below.
For a cantilever beam with a uniformly distributed load, a definite end displacement

and similar cross-section (h/b = constant), how to select the tapering curve of cross-
sectional area and the material that can minimize its mass is of interest, assuming that
the cross section remains rectangular and the Euler-Bernoulli beam type is considered.

For a uniformly distributed load (q) applied, the free end displacement due to bend-
ing derived from the total strain energy is given by Eq. (A.1)

δe =
q

2E

∫ L

0

x3

I(x)
dx. (A.1)

The mass of the beam m can be calculated by Eq. (A.2)

m=ρ
∫ L

0
A(x)dx. (A.2)

Since the cantilever tapered beam has similar cross-section, i.e., h/b is constant k, the
second moment of area can be rewritten in terms of cross-sectional area A(x) in Eq. (A.3)

I(x)=
k

12
A2(x). (A.3)

Substitute it into Eq. (A.1) and simplify:

∫ L

0

x3

A2(x)
dx=

kEδe

6q
. (A.4)

Then, the problem becomes an isoperimetric problem with the target that the mass
(Eq. (A.2)) could take the minimum value under the isoperimetric condition equation
(A.4), where A(x) is the extremal function to be solved. Introduce an auxiliary func-
tional:

F∗=A+λ
x3

A2 , i.e., m∗=ρ
∫ L

0
F∗dx. (A.5)

Use the Euler-Lagrange equation:

∂F∗

∂A
=1−2λ

x3

A3 =0, A=(2λ)1/3x. (A.6)

Substitute this equation into the isoperimetric condition equation (A.4) and simplify:

(2λ)1/3=
31/2q1/2l

k1/2E1/2δ1/2
e

, i.e., A(x)=
31/2q1/2l

k1/2E1/2δ1/2
e

x. (A.7)
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Meanwhile, the minimum mass can be calculated as:

m=ρ
∫ L

0
A(x)dx=ρ

∫ L

0

31/2q1/2l
k1/2E1/2δ1/2

e
xdx=

31/2q1/2l3

2k1/2δ1/2
e
· ρ

E1/2 . (A.8)

It can be seen from Eq. (A.8) that in this particular case, the ratio ρ/E(1/2) should be as
small as possible when selecting the materials to minimize the mass.

Acknowledgements

The funding supports from Xi’an Jiaotong–Liverpool University (RDF 14-02-44, RDF 15-
01-38, RDF 18-01-23 and PGRS1906002) and the Key Program Special Fund at XJTLU
(Grant No. KSF-E-19) are gratefully acknowledged.

References

[1] W. G. CHEN, Variational Principle of Mechanics, Shanghai: Tongji University Press, (1989).
[2] J. M. DIETL, AND E. GARCIA, Beam shape optimization for power harvesting, J. Intell. Mater

Syst. Struct., 21(6) (2010), pp. 633–646.
[3] G. GONG, AND J. XIA, A revisit to higher variations of a functional, J. Adv. Res. Math. Stat.,

6(2) (2019), pp. 1–15.
[4] R. O. GROSSI, AND B. D. ARENAS, A variational approach to the vibration of tapered beams with

elastically restrained ends, J. Sound Vib., 195(3) (1996), pp. 507–511.
[5] P. HAJHEIDARI, I. STIHARU, AND R. BHAT, Performance of tapered cantilever piezoelectric

energy harvester based on Euler–Bernoulli and Timoshenko Beam theories, J. Intell. Mater Syst.
Struct., 31(4) (2019), pp. 487–502.

[6] L. H. HARPER, Global Methods for Combinatorial Isoperimetric Problems, Cambridge:
Cambridge University Press, (2004).

[7] M. H. IMAM, Three-dimensional shape optimization, Int. J. Numer. Methods Eng., 18 (1982),
pp. 661–673.

[8] J. KATSIKADELIS, AND G. TSIATAS, Buckling load optimization of beams, Arch. Appl. Mech.,
74(11-12) (2005), pp. 790–799.

[9] Y. Y. KIM, AND T. S. KIM, Topology optimization of beam cross sections, Int. J. Solids Struct.,
37(3) (2000), pp. 477–493.

[10] L. KOMZSIK, Applied Calculus of Variations for Engineers, Boca Raton: CRC Press, (2009).
[11] G. Q. LI, AND J. J. LI, A tapered Timoshenko–Euler beam element for analysis of steel portal

frames, J. Constr. Steel Res., 58 (2002), pp. 1531–1544.
[12] M. OHSAKI, H. TAGAWA, AND P. PAN, Shape optimization of reduced beam section under cyclic

loads, J. Constr. Steel Res., 65(7) (2009), pp. 1511–1519.
[13] M. A. ROSA, AND N. M. AUCIELLO, Free vibrations of tapered beams with flexible ends, Com-

put. Struct., 60(2) (1996), pp. 197–202.
[14] P. K. ROY, AND N. GANESAN, Some studies on the response of a tapered beam, Comput. Struct.,

45(I) (1992), pp. 18–195.
[15] T. TAUCHERT, Energy Principles in Structural Mechanics, New York: McGraw-Hill, Inc,

(1974).



1500 M. Zhu, G. Gong and J. Xia / Adv. Appl. Math. Mech., 13 (2021), pp. 1485-1500

[16] P. VINOT, S. COGAN, AND J. PIRANDA, Shape optimization of thin-walled beam-like structures,
Thin-Walled Struct., 39(7) (2001), pp. 611–630.

[17] K. WASHIZU, Variational Methods in Elasticity and Plasticity, Oxford: Pergamon Press,
(1968).

[18] H. H. Yoo, J. E. Cho, and J. Chung, Modal analysis and shape optimization of rotating cantilever
beams, J. Sound Vib., 290(1-2) (2006), pp. 223–241.


