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Abstract. By using the Feynman-Kac formula and combining with Itô-Taylor expan-
sion and finite difference approximation, we first develop an explicit third order one-
step method for solving decoupled forward backward stochastic differential equations.
Then based on the third order one, an explicit fourth order method is further proposed.
Several numerical tests are also presented to illustrate the stability and high order ac-
curacy of the proposed methods.
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1 Introduction

Let T > 0 be a deterministic terminal time and (Ω,F ,F,P) denote a filtered complete
probability space with the natural filtration F=(Ft)0≤t≤T of an m-dimensional Brownian
motion W=(Wt)0≤t≤T. Consider the decoupled forward backward stochastic differential
equations (FBSDEs) on (Ω,F ,F,P)

Xt =X0+
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs,

Yt = ϕ(XT)+
∫ T

t
f (s,Xs,Ys,Zs)ds−

∫ T

t
ZsdWs,

(1.1)

where t∈ [0,T], X0∈F0 is an initial condition; b : [0,T]×Rd→Rd and σ : [0,T]×Rd→Rd×m

are, respectively, the drift and diffusion coefficients of stochastic differential equations
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(SDEs); ϕ : Rd→Rn is the terminal condition and f : [0,T]×Rd×Rn×Rn×m→Rn is the
generator of backward stochastic differential equations (BSDEs). A triple (Xt,Yt,Zt) is
called an L2-adapted solution of the FBSDE (1.1) if it is Ft-adapted, square integrable and
satisfies (1.1).

Pardoux and Peng [22] first proved the existence and uniqueness of the adapted so-
lution of the nonlinear BSDEs. Then by using the solutions of BSDEs, Peng [24] gave a
probabilistic interpretation for quasilinear parabolic partial differential equations (PDEs).
Since then, the study on FBSDEs has been extensively conducted due to its applications
in research on PDEs [6, 17, 24], mathematical finance [11, 15, 20], stochastic optimal con-
trol [14, 23], and mean-field BSDEs [2, 3, 26, 28], to name a few. However, the analytic
solutions of FBSDEs are seldom known. Hence, it is important and popular to solve
FBSDEs with some numerical methods.

Up to now, there have been a considerable number of numerical methods for solving
BSDEs [4,5,12,13,31–33,36,37] and decoupled FBSDEs [7–10,18,19,25,29,30,34,35,38,39]
in literatures. Nevertheless, except some of the multistep methods [30, 34, 37, 39], few of
one-step methods can achieve high order convergence exceeding two. In [31], the authors
constructed a class of third-order one-step methods for solving BSDEs whose driver f is
independent of Z. This is the first attempt to study the third order one-step method for
solving BSDEs. However, this one-step method can only solve BSDEs with f not taking
Z as input, which causes significant limitations in application.

In this paper, we aim to design two high order one-step methods for solving general
decoupled FBSDEs by extending the method given in [31]. Based on the Feynman-Kac
formula, by combining with the Itô-Taylor expansions and the high order finite difference
approximations, we first develop an explicit third order one-step method containing a
parameter θ for FBSDEs. Then by taking θ = 1

2 and utilizing the prediction-correction
method, we further propose a fourth order one-step method for FBSDEs. To attest the
stability and high order accuracy of the proposed methods, we carry out some numerical
experiments. All of the numerical results show that both methods are stable and high
order accurate, and the fourth order method can achieve a fourth order accuracy when
the weak order 4.0 Itô-Taylor scheme is used to solve SDEs.

The rest of the paper is organized as follows. In Section 2, some preliminaries on
the Feynman-Kac formula, Itô-Taylor expansion, and finite difference approximation are
presented, then based on which we propose an explicit third order one-step method and
an explicit fourth order one-step method for decoupled FBSDEs in Section 3. In Section 4,
some numerical tests are presented to show the stability and high order accuracy of the
proposed methods. Finally, we give some conclusions in Section 5.

2 Preliminaries

2.1 The Feynman-Kac formula
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Let (Xt,x
s ,Yt,x

s ,Zt,x
s ) denote the solution of the FBSDE (1.1) with the forward SDE starting

from the time-space point (t,x), i.e.,


Xt,x

s = x+
∫ s

t
b(r,Xt,x

r )dr+
∫ s

t
σ(r,Xt,x

r )dWr,

Yt,x
s = ϕ(Xt,x

T )+
∫ T

s
f (r,Xt,x

r ,Yt,x
r ,Zt,x

r )dr−
∫ T

s
Zt,x

r dWr,
(2.1)

where the superscript t,x shows that the forward SDE starts at point (t,x). If no confusion
is possible, this superscript is omitted.

Let Cl,k,k
b denote the set of functions φ(t,x,y), which have uniformly bounded par-

tial derivatives ∂l1
t φ and ∂k1

x ∂k2
y φ for l1≤ l and k1+k2≤ k. Now we recall the following

Feynman-Kac formula.

Lemma 2.1 (Feynman-Kac formula). Let f be continuous with respect to s and uniformly
Lipschitz continuous with respect to (x,y,z). Assume ϕ∈C2+α

b for some α∈ (0,1). Then the
solution (Yt,x

s ,Zt,x
s ) of the BSDE in (2.1) can be represented as:

Yt,x
s =u(s,Xt,x

s ), Zt,x
s =(u′xσ)(s,Xt,x

s ), (2.2)

where u(t,x) is the smooth solution of the following PDE

u′t(t,x)+(u′xb)(t,x)+
1
2

d

∑
i,j=1

m

∑
k=1

(u′′xixj
σikσjk)(t,x)+ f

(
t,x,u(t,x),(u′xσ)(t,x)

)
=0 (2.3)

with the terminal condition u(T,x)= ϕ(x), where

u′x(t,x)=



∂u1

∂x1

∂u1

∂x2
··· ∂u1

∂xd
∂u2

∂x1

∂u2

∂x2
··· ∂u2

∂xd
...

...
. . .

...
∂up

∂x1

∂up

∂x2
···

∂ϕp

∂xd


, u′t(t,x)=



∂u1

∂t
∂u2

∂t
...

∂up

∂t


, u′′xixj

(t,x)=



∂2u1

∂xi∂xj

∂2u2

∂xi∂xj

...
∂2up

∂xi∂xj


.

Remark 2.1. For the solution of the PDE (2.3), we also have the following conclusion [12]:
If b,σ∈C1+k,3+2k

b , f ∈C1+k,3+2k,3+2k,3+2k
b and ϕ∈C3+2k+α

b for some α∈ (0,1), then we have

u∈C1+k,2+2k
b , k=0,1,··· .
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2.2 The Itô-Taylor expansion

In this subsection, we recall the Itô-Taylor expansion which plays a fundamental role in
constructing our high order one-step schemes. For simplicity, we consider d=m=1. To
proceed, we introduce some definitions first.
i) Multi-index. Let α := (j1, j2,··· , jl) be a multi-index with ji ∈ {0,1,··· ,m}, i = 1,2,··· ,l.
Let l(α)= l be the length of α, and n(α) be the number of the components of α which are
equal to zero. Denote by v the multi-index of length zero, i.e., l(v)=0. LetM be the set
of all multi-indices, i.e.,

M={(j1, j2,··· , jl) : ji∈{0,1,··· ,m}, i∈{1,··· ,l}, l=1,2,3,···}∪{v}.

Given α∈Mwith l(α)≥1, −α and α− are two multi-indices obtained by deleting the
first and the last component of α, respectively. In particularly, we let α+ be the multiple
index after removing all the zero elements from α, and denote

α=(0,0,··· ,0︸ ︷︷ ︸
p

)

by α=(0)p.
ii) Multiple Itô integrals. The multiple Itô integral operator Iα on adapted right contin-
uous stochastic processes { f = f (t), t≥0} with left limits, is defined by

Iα[ f (·)]ρ,τ :=



f (τ), l=0,∫ τ

ρ
Iα−[ f (·)]ρ,sds, l≥1 and jl =0,∫ τ

ρ
Iα−[ f (·)]ρ,sdW jl

s , l≥1 and jl≥1,

where ρ and τ are two stopping times satisfying 0≤ ρ(w)≤ τ(w)≤T, a.s.. In particular,
Iα[1]0,τ will be written as Iα,τ, and Iα[1]ρ,τ as Iα,ρ,τ.

iii) Itô coefficient functions. For each index α=(j1,··· , jl) and a function f ∈Cr(R+×Rd)
with r= l(α)+n(α), the coefficient function fα is defined by

fα =

{
f , l=0,

Lj1 f−α, l≥1,

where the operators Lj, j=0,1,··· ,m are defined as

L0 f (t,x)=
∂ f
∂t

(t,x)+∑
i

bi(t,x)
∂ f
∂xi

(t,x)+
1
2 ∑

i,j
(σσ>)i,j(t,x)

∂2 f
∂xi∂xj

(t,x), (2.4a)

Lj f (t,x)=
d

∑
k=1

∂ f
∂xk (t,x)σkj(t,x), j=1,··· ,m. (2.4b)
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iv) Hierarchical and remainder sets. We call a subset A⊂M a hierarchical set if

A 6=∅, sup
α∈A

l(α)<∞ and −α∈A for each α∈A\{v},

and its remainder set B(A) is defined by

B(A)={α∈M\A :−α∈A}.

With the above notations, we now state the Itô-Taylor expansion in the following
lemma (see Chapter 5 in [16]).

Lemma 2.2 (Itô-Taylor expansion). Let ρ and τ be two stopping times with 0≤ρ(w)≤τ(w)≤
T, and A⊂M be a hierarchical set. For a function f : R+×Rd→R, the following Itô-Taylor
expansion holds:

f (τ,Xτ)= ∑
α∈A

fα(ρ,Xρ)Iα,ρ,τ+ ∑
β∈B(A)

Iβ[ fβ(·,X·)]ρ,τ, (2.5)

providing that all of the derivatives of b, σ and f and all of the multiple Itô integrals appearing in
(2.5) exist.

Moreover, for multiple stochastic integrals, the following lemma holds [16].

Lemma 2.3. If α∈M\{∅}, l(α) 6=n(α), and t0≤ρ≤τ≤T<∞, then

E
[
Iα[ f (·)]ρ,τ|Fρ

]
=0, w.p.1,

provided that the stochastic integral Iα[ f (·)]ρ,τ exists.

For multiple index α=(j1, j2,. . ., jl)∈M, let Lα =Lj1 ◦Lj2 ◦···◦Ljl , and define

gα :={u : [0,T]×R→R| Lαu exists and is continous},
gα

b :={u : [0,T]×R→R| u∈gα and Lαu is bounded}.

Denote u(t,Xt) and uα
t by, respectively, ut and Lαut. Let r be a given small positive num-

ber, then we can derive the following theorem [16, 31].

Theorem 2.1. If p≥0 and u∈g(0)p+1

b , then it holds that

E
[
u(t+r,Xt+r)|Ft

]
=ut+ru(0)

t +
r2

2!
u(0,0)

t +···+ rp

p!
u(0)p

t +O(rp+1). (2.6)

Proof. By using Lemma 2.3, it is easy to deduce (2.6). For more details, please refer to [31].
We omit it here.
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2.3 Finite difference approximations

In this subsection, we recall some high order finite difference approximations, which play
a key role in proposing our high order one-step schemes.

For a given function g= g(x), we define the following two difference quotient opera-
tors

D0
hg(x)=

−g(x+2h)+8g(x+h)−8g(x−h)+g(x−2h)
12h

, (2.7a)

D2
hg(x)=

−g(x+2h)+16g(x+h)−30g(x)+16g(x−h)−g(x−2h)
12h2 , (2.7b)

with a positive real number h. Using Taylor expansion, it is easy to deduce

D0
hg(x)−g′(x)=O(h4), g∈C5

b , (2.8a)

D2
hg(x)−g′′(x)=O(h4), g∈C6

b . (2.8b)

We take D0
h for instance. Let g∈C5

b , then by Taylor expansions

g(x+h)= g(x)+hg′(x)+
h2

2
g′′(x)+

h3

3!
g′′′(x)+

h4

4!
g(4)(x)+

h5

5!
g(5)(ξ1), (2.9a)

g(x−h)= g(x)−hg′(x)+
h2

2
g′′(x)− h3

3!
g′′′(x)+

h4

4!
g(4)(x)− h5

5!
g(5)(ξ2), (2.9b)

g(x+2h)= g(x)+2hg′(x)+2h2g′′(x)+
8h3

3!
g′′′(x)+

16h4

4!
g(4)(x)+

32h5

5!
g(5)(ξ3), (2.9c)

g(x−2h)= g(x)−2hg′(x)+2h2g′′(x)− 8h3

3!
g′′′(x)+

16h4

4!
g(4)(x)− 32h5

5!
g(5)(ξ4), (2.9d)

where ξ1∈ [x,x+h], ξ2∈ [x−h,x], ξ3∈ [x,x+2h] and ξ4∈ [x−2h,x]. Then by (2.7) and (2.9),
we get

D0
hg(x)−g′(x)=

h4

180
(

g(5)(ξ1)+g(5)(ξ2)−4g(5)(ξ3)−4g(5)(ξ4)
)
=O(h4). (2.10)

The equations in (2.8) imply that D0
hg(x) and D2

hg(x) approximate, respectively, the first-
order derivative g′(x) and the second-order derivative g′′(x) with error O(h4).

3 Explicit one-step schemes for FBSDEs

We introduce the following regular time partition over interval [0,T]

0= t0< t1< ···< tN =T.

Then for n=0,1,··· ,N−1, we define

∆tn = tn+1−tn, ∆Wn =Wtn+1−Wtn .
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3.1 Numerical schemes for SDEs

In this subsection, we introduce some Itô-Taylor type schemes for solving SDEs [16].
Let Xn denote the approximation of the solution Xt of SDE in (1.1) at time t= tn, and

define bn = b(tn,Xn) and σn = σ(tn,Xn). Then we present the following five Itô-Taylor
schemes for SDEs.

1. The Euler Scheme:
Xn+1=Xn+bn∆tn+σn∆Wn. (3.1)

2. The Milstein scheme:

Xn+1=Xn+bn∆tn+σn∆Wn+
1
2

σnσn
x
(
(∆Wn)

2−∆tn
)

. (3.2)

3. The weak order 2.0 Itô-Taylor scheme:

Xn+1=Xn+bn∆tn+σn∆Wn+
1
2

σnσn
x
(
(∆Wn)

2−∆tn
)

+
1
2

(
bn

t +bnbn
x+

1
2
(σn)2bn

xx

)
(∆tn)

2

+
1
2

(
σnbn

x+σn
t +bnσn

x +
1
2
(σn)2σn

xx

)
∆tn∆Wn. (3.3)

4. The weak order 3.0 Itô-Taylor scheme:

Xn+1=Xn+bn∆tn+σn∆Wn+
1
2

L1σn((∆Wn)
2−∆tn

)
+L1bnξn+

1
2

L0bn(∆tn)
2+L0σn (∆Wn∆tn−ξn)

+
1
6

(
L0L0σn+L0L1bn+L1L0bn

)
∆Wn(∆tn)

2

+
1
6

(
L1L1bn+L1L0σn+L0L1σn

)(
(∆Wn)

2−∆tn
)

∆tn

+
1
6

L0L0bn(∆tn)
3+

1
6

L1L1σn((∆Wn)
2−3∆tn

)
∆Wn. (3.4)

5. The weak order 4.0 Itô-Taylor scheme:

Xn+1=Xn+bn∆tn+σn∆Wn+
1
2

L0bn(∆tn)
2+L1bnξn+L0σn (∆Wn∆tn−ξn)

+L1L1bn(2∆Wnξn−
5
6
(∆Wn)

2∆tn−
1
6
(∆tn)

2)
+

1
6

(
L0L0σn+L0L1bn+L1L0bn

)
∆Wn(∆tn)

2

+
1
6

L0L0bn(∆tn)
3+

1
24

L0L0L0bn(∆tn)
4

+
1
24

L1L1L1bn∆Wn
(
(∆Wn)

2−3∆tn
)

∆tn
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+
1
24

(
L1L0L0bn+L0L1L0bn+L0L0L1bn+L0L0L0σn

)
∆Wn(∆tn)

3

+
1
24

(
L1L1L0bn+L0L1L1bn+L1L0L1bn

)(
(∆Wn)

2−∆tn
)
(∆tn)

2. (3.5)

Here ξn and ∆Wn are correlated normal random variables satisfying

ξn∼N
(

0,
1
3
(∆tn)

3
)

, E[∆Wnξn]=
1
2
(∆tn)

2.

3.2 Discretisation of FBSDEs

Let (Xt,Yt,Zt) be the unique solution of (1.1), then for n=0,1,··· ,N−1, we get

Ytn =Ytn+1+
∫ tn+1

tn

f (s,Xs,Ys,Zs)ds−
∫ tn+1

tn

ZsdWs. (3.6)

Taking the conditional expectation Ex
tn
[·]=E[·|Ftn ,Xtn=x] on both sides of (3.6), we obtain

Ytn =Ex
tn
[Ytn+1 ]+

∫ tn+1

tn

Ex
tn
[ f (s,Xs,Ys,Zs)]ds. (3.7)

By the Feynman-Kac formula (2.2), we have

Yt =u(t,Xt), Zt =(u′xσ)(t,Xt), (3.8)

where u is the smooth solution of (2.3). Then by (2.3), (2.4) and (3.8), we deduce

L0u(t,Xt)=− f
(
t,Xt,u(t,Xt),(u′xσ)(t,Xt)

)
=− f (t,Xt,Yt,Zt), (3.9)

i.e., u(0)(t,Xt)=− f (t,Xt,Yt,Zt). Assume that u∈ g(0)5
b , and then by Theorem 2.1 and the

fact Ex
tn
[·]=Ex

tn

[
E[·|Ftn ]

]
, we get

Ex
tn

[
f (s,Xs,Ys,Zs)

]
=−Ex

tn

[
u(0)(s,Xs)

]
=−Ex

tn

[
E
[
u(0)(s,Xs)|Ftn

]]
=−

(
u(0)

tn
+(s−tn)u

(0)2
tn

+
(s−tn)2

2!
u(0)3

tn
+
(s−tn)3

3!
u(0)4

tn
+O

(
(s−tn)

4)),

which leads to∫ tn+1

tn

Ex
tn

[
f (s,Xs,Ys,Zs)

]
ds

=−
(

∆tnu(0)
tn

+
(∆tn)2

2!
u(0)2

tn
+
(∆tn)3

3!
u(0)3

tn
+
(∆tn)4

4!
u(0)4

tn
+O

(
(∆tn

)5
)
)

. (3.10)

Let A denote the approximation of
∫ tn+1

tn
Ex

tn
[ f (s,Xs,Ys,Zs)]ds, and we write∫ tn+1

tn

Ex
tn

[
f (s,Xs,Ys,Zs)

]
ds=A+Rn

Y1, (3.11)
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where Rn
Y1 is the approximation error and

A=−
(

θ∆tnu(0)
tn

+(1−θ)∆tnEx
tn

[
u(0)

tn+1

]
+(∆tn)

2αu(0)2
tn

+(∆tn)
2βEx

tn

[
u(0)2

tn+1

])
, (3.12)

with θ∈ [0,1], α and β being parameters. Note that, by Theorem 2.1, we deduce

A=−
(

θ∆tnu(0)
tn

+(1−θ)∆tn

[
u(0)

tn
+∆tnu(0)2

tn
+
(∆tn)2

2!
u(0)3

tn
+
(∆tn)3

3!
u(0)4

tn

]
+(∆tn)

2αu(0)2
tn

+(∆tn)
2β
[
u(0)2

tn
+∆tnu(0)3

tn
+
(∆tn)2

2!
u(0)4

tn

]
+O

(
(∆tn)

5))
=−

(
∆tnu(0)

tn
+(1−θ+α+β)(∆tn)

2u(0)2
tn

+
(1−θ

2
+β
)
(∆tn)

3u(0)3
tn

+
(1−θ

6
+

β

2

)
(∆tn)

4u(0)4
tn

+O
(
(∆tn)

5)). (3.13)

Define the parameters α and β in A as

α=
3θ−1

6
, β=

3θ−2
6

, (3.14)

and we obtain

A=−
(

∆tnu(0)
tn

+
1
2!
(∆tn)

2u(0)2
tn

+
1
3!
(∆tn)

3u(0)3
tn

+
θ

12
(∆tn)

4u(0)4
tn

+O
(
(∆tn)

5)). (3.15)

Then by (3.10), (3.11) and (3.15), we deduce

Rn
Y1=

∫ tn+1

tn

Ex
tn
[ f (s,Xs,Ys,Zs)]ds−A

=
( θ

12
− 1

24

)
(∆tn)

4u(0)4
tn

+O
(
(∆tn)

5),

which implies that

Rn
Y1=

{
O((∆t)4), θ 6=0.5,
O((∆t)5), θ=0.5.

(3.16)

By using (3.7), (3.11), (3.12) and (3.14), we arrive at

Ytn =Ex
tn
[Ytn+1 ]−∆tn

(
θu(0)

tn
+(1−θ)Ex

tn
[u(0)

tn+1
]
)

−(∆tn)
2
(3θ−1

6
u(0)2

tn
+

3θ−2
6

Ex
tn
[u(0)2

tn+1
]
)
+Rn

Y1. (3.17)



1302 Q. Zhou and Y. Sun / Adv. Appl. Math. Mech., 13 (2021), pp. 1293-1317

To write u(0)2
tn

in (3.17) in an explicit form, we apply the operator L0 to (3.9) to get

−u(0)2
t =L0 f

(
t,Xt,ut,σt

∂ut

∂x

)
=
( ∂

∂t
+bt

∂

∂x
+

1
2

σ2
t

∂2

∂x2

)
f
(

t,Xt,ut,σt
∂ut

∂x

)
= f

′
t,1+ f

′
t,3

∂ut

∂t
+ f

′
t,4

(∂σt

∂t
∂ut

∂x
+σt

∂2ut

∂x∂t

)
+bt

(
f
′
t,2+ f

′
t,3

∂ut

∂x
+ f

′
t,4

(∂σt

∂x
∂ut

∂x
+σt

∂2ut

∂x2

))
+

1
2

σ2
t

∂

∂x

(
f
′
t,2+ f

′
t,3

∂ut

∂x
+ f

′
t,4

(∂σt

∂x
∂ut

∂x
+σt

∂2ut

∂x2

))
, (3.18)

where bt =b(t,Xt) and σt =σ(t,Xt). Here and in the sequel, we define

ft = f
(

t,Xt,ut,σt
∂ut

∂x

)
, f

′
t,1=

∂ f
∂t

(
t,Xt,ut,σt

∂ut

∂x

)
,

f
′
t,2=

∂ f
∂x

(
t,Xt,ut,σt

∂ut

∂x

)
, f

′
t,3=

∂ f
∂y

(
t,Xt,ut,σt

∂ut

∂x

)
,

f
′
t,4=

∂ f
∂z

(
t,Xt,ut,σt

∂ut

∂x

)
, f

′′
t,22=

∂2 f
∂x2

(
t,Xt,ut,σt

∂ut

∂x

)
,

and define b′t,i, σ′t,i, b
′′
t,ij, σ

′′
t,ij, (i, j=1,2), and f

′′
t,ij, (i, j=2,3,4) in a similar way. By (3.9) and

the definition of L0, it holds that

∂ut

∂t
=−

(
bt

∂ut

∂x
+

1
2

σ2
t

∂2ut

∂x2 + f
(

t,Xt,ut,σt
∂ut

∂x

))
, (3.19)

which leads to

∂2ut

∂x∂t
=− ∂

∂x

(
bt

∂ut

∂x
+

1
2

σ2
t

∂2ut

∂x2 + f
(

t,Xt,ut,σt
∂ut

∂x

))
=−

(
∂bt

∂x
∂ut

∂x
+bt

∂2ut

∂x2 +σt
∂σt

∂x
∂2ut

∂x2 +
1
2

σ2
t

∂3ut

∂x3

+ f
′
t,2+ f

′
t,3

∂ut

∂x
+ f

′
t,4

(∂σt

∂x
∂ut

∂x
+σt

∂2ut

∂x2

))
. (3.20)

Inserting (3.19) and (3.20) into (3.18), we deduce

−u(0)2
t = f

′
t,1+ f

′
t,2(bt−σt f

′
t,4)− f

′
t,3 ft+ f

′
t,4

(
σ
′
t,1+btσ

′
t,2+

1
2

σ2
t σ
′′
t,22

)∂ut

∂x

− f
′
t,4σt

((
b
′
t,2+ f

′
t,3+ f

′
t,4σ

′
t,2
)∂ut

∂x
+σt f

′
t,4

∂2ut

∂x2

)
+

1
2

σ2
t

(
f
′′
t,22+2 f

′′
t,23

∂ut

∂x
+2 f

′′
t,24

(
σ
′
t,2

∂ut

∂x
+σt

∂2ut

∂x2

)
+ f

′′
t,33

(∂ut

∂x

)2
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+2 f
′′
t,34

∂ut

∂x

(
σ
′
t,2

∂ut

∂x
+σt

∂2ut

∂x2

)
+ f

′′
t,44

(
σ
′
t,2

∂ut

∂x
+σt

∂2ut

∂x2

)2
)

=F
(

t,Xt,ut,
∂ut

∂x
,
∂2ut

∂x2

)
, (3.21)

where F(t,x,y,z,γ) : [0,T]×R×R×R×R→R. Let

Ft =F
(

t,Xt,ut,
∂ut

∂x
,
∂2ut

∂x2

)
,

then by (3.9), (3.17) and (3.21), we have

Ytn =Ex
tn
[Ytn+1 ]+θ∆tn ftn +(1−θ)∆tnEx

tn
[ ftn+1 ]

+
(3θ−1)(∆tn)2

6
Ftn +

(3θ−2)(∆tn)2

6
Ex

tn
[Ftn+1 ]+Rn

Y1. (3.22)

By (2.7) and (3.8), the solution Zt can be represented as

Zt =σt
∂ut

∂x
=σtD0

hut+O(h4), (3.23)

where D0
hut =D0

hYt(Xt). Then we define

ft,h = f
(
t,Xt,ut,σtD0

hut
)
, (3.24a)

f
′
t,h,i = f

′
t,i
(
t,Xt,ut,σtD0

hut
)
, (i=1,2,3,4), (3.24b)

f
′′
t,h,ij = f

′′
t,ij
(
t,Xt,ut,σtD0

hut
)
, (i, j=2,3,4), (3.24c)

and denote by

Ft,h = f
′
t,h,1+ f

′
t,h,2
(
bt−σt f

′
t,h,4
)
− f

′
t,h,3 ft,h+ f

′
t,h,4

(
σ
′
t,1+btσ

′
t,2+

1
2

σ2
t σ
′′
t,22

)
D0

hut

− f
′
t,h,4σt

((
b
′
t,2+ f

′
t,h,3+ f

′
t,h,4σ

′
t,2
)

D0
hut+σt f

′
t,h,4D2

hut

)
+

1
2

σ2
t

(
f
′′
t,h,22+2 f

′′
t,h,23D0

hut+2 f
′′
t,h,24

(
σ
′
t,2D0

hut+σtD2
hut
)
+ f

′′
t,h,33

(
D0

hut
)2

+2 f
′′
t,h,34D0

hut
(
σ
′
t,2D0

hut+σtD2
hut
)
+ f

′′
t,h,44

(
σ
′
t,2D0

hut+σtD2
hut
)2
)

, (3.25)

where D2
hut =D2

hYt(Xt). Then by (3.22), (3.24) and (3.25), we get

Ytn =Ex
tn
[Ytn+1 ]+θ∆tn ftn,h+(1−θ)∆tnEx

tn
[ ftn+1,h]

+
(3θ−1)(∆tn)2

6
Ftn,h+

(3θ−2)(∆tn)2

6
Ex

tn
[Ftn+1,h]+Rn

Y1+Rn
Y2, (3.26)
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where

Rn
Y2=θ∆tn

(
ftn− ftn,h

)
+(1−θ)∆tnEx

tn

[
ftn+1− ftn+1,h

]
+
(3θ−1)(∆tn)2

6
(

Ftn−Ftn,h
)
+
(3θ−2)(∆tn)2

6
Ex

tn

[
Ftn+1−Ftn+1,h

]
. (3.27)

To solve Ytn in an explicit way, we first use Euler scheme to approximate Ytn in ftn,h and
Ftn,h, which yields

Ytn =Ex
tn
[Ytn+1 ]+∆tnEx

tn
[ ftn+1,h]+Rn

y1= Ȳtn +Rn
y1, (3.28)

where Rn
y1 is the approximation error and

Ȳtn =Ex
tn
[Ytn+1 ]+∆tnEx

tn
[ ftn+1,h]. (3.29)

Moreover, we let

f̄tn,h = f
(
tn,x,Ȳtn(x),D0

hȲtn(x)σ(tn,x)
)
, (3.30)

and further approximate Ytn in ftn,h and Ftn,h by Crank-Nicolson scheme

Ytn =Ex
tn
[Ytn+1 ]+

1
2

∆tn f̄tn,h+
1
2

∆tnEx
tn

[
ftn+1,h

]
+Rn

y2=
¯̄Ytn +Rn

y2, (3.31)

where Rn
y2 is the approximation error and

¯̄Ytn =Ex
tn
[Ytn+1 ]+

1
2

∆tn f̄tn,h+
1
2

∆tnEx
tn

[
ftn+1,h

]
. (3.32)

Denote by

¯̄ftn,h = f
(
tn,x, ¯̄Ytn(x),D0

h
¯̄Ytn(x)σ(tn,x)

)
, (3.33a)

¯̄Ftn,h =Ftn,h
(
tn,x, ¯̄Ytn(x),D0

h
¯̄Ytn(x),D2

h
¯̄Ytn(x)

)
. (3.33b)

Then by (3.26) and (3.33), we get the first reference equation for solving Yt

Ytn =Ex
tn
[Ytn+1 ]+θ∆tn

¯̄ftn,h+(1−θ)∆tnEx
tn
[ ftn+1,h]

+
(3θ−1)(∆tn)2

6
¯̄Ftn,h+

(3θ−2)(∆tn)2

6
Ex

tn
[Ftn+1,h]+Rn

y3, (3.34)

where Rn
y3=Rn

Y1+Rn
Y2+Rn

Y3 with

Rn
Y3= θ∆tn

(
ftn,h− ¯̄ftn,h

)
+
(3θ−1)(∆tn)2

6
(

Ftn,h− ¯̄Ftn,h
)
. (3.35)
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Now based on (3.34), we turn to constructing the second reference equation for Yt. To
this end, we take θ= 1

2 in (3.26) to obtain

Ytn =Ex
tn
[Ytn+1 ]+

1
2

∆tn ftn,h+
1
2

∆tnEx
tn

[
ftn+1,h

]
+

1
12

(∆tn)
2Ftn,h−

1
12

(∆tn)
2Ex

tn

[
Ftn+1,h

]
+ R̂n

Y1+ R̂n
Y2, (3.36)

where R̂n
Y1 and R̂n

Y2 are the truncation error terms Rn
Y1 and Rn

Y2 with θ= 1
2 . By removing

the truncation error term Rn
y3 in (3.34), we have

Ŷtn =Ex
tn
[Ytn+1 ]+θ∆tn

¯̄ftn,h+(1−θ)∆tnEx
tn
[ ftn+1,h]

+
(3θ−1)(∆tn)2

6
¯̄Ftn,h+

(3θ−2)(∆tn)2

6
Ex

tn
[Ftn+1,h]. (3.37)

Let

f̂tn,h = f
(
tn,x,Ŷtn(x),D0

hŶtn(x)σ(tn,x)
)
, (3.38a)

F̂tn,h =Ftn,h
(
tn,x,Ŷtn(x),D0

hŶtn(x),D2
hŶtn(x)

)
. (3.38b)

Then by (3.36) and (3.38), we get the second reference equation for solving Yt

Ytn =Ex
tn
[Ytn+1 ]+

1
2

∆tn f̂tn,h+
1
2

∆tnEx
tn

[
ftn+1,h

]
+

1
12

(∆tn)
2F̂tn,h−

1
12

(∆tn)
2Ex

tn

[
Ftn+1,h

]
+Rn

y4, (3.39)

where Rn
y4= R̂n

Y1+ R̂n
Y2+ R̂n

Y3 with

R̂n
Y3=

1
2

∆tn
(

ftn,h− f̂tn,h
)
+

1
12

(∆tn)
2(Ftn,h− F̂tn,h

)
. (3.40)

3.3 The explicit one-step schemes for FBSDEs

Let (Xn,Yn,Zn) denote the numerical approximation of the solution (Xt,Yt,Zt) of the FB-
SDE (1.1) at time level t= tn, (n=N,··· ,0). For simplicity, we define f n,h and Fn,h by

f n,h = f
(
tn,Xn,Yn(Xn),D0

hYn(Xn)σ(tn,Xn)
)
,

Fn,h =F
(
tn,Xn,Yn(Xn),D0

hYn(Xn),D2
hYn(Xn)

)
.

Based on the reference equations (3.23), (3.29), (3.32) and (3.34), we first propose the
following explicit third order one-step scheme for solving the FBSDE (1.1).
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Scheme 3.1. Given random variable YN , for n=N−1,··· ,0, we solve the random variables
Yn =Yn(Xn) and Zn =Zn(Xn) by

Ȳn =Ex
tn
[Yn+1]+∆tnEx

tn
[ f n+1,h],

¯̄Yn =Ex
tn
[Yn+1]+

1
2

∆tn f̄ n,h+
1
2

∆tnEx
tn
[ f n+1,h],

Yn =Ex
tn
[Yn+1]+θ∆tn

¯̄f n,h+(1−θ)∆tnEx
tn
[ f n+1,h]

+
(3θ−1)(∆tn)2

6
¯̄Fn,h+

(3θ−2)(∆tn)2

6
Ex

tn
[Fn+1,h],

Zn =D0
hYnσ(tn,Xn),

where θ∈ [0,1] and

f̄ n,h = f
(
tn,Xn,Ȳn(Xn),D0

hȲn(Xn)σ(tn,Xn)
)
,

¯̄f n,h = f
(
tn,Xn, ¯̄Yn(Xn),D0

h
¯̄Yn(Xn)σ(tn,Xn)

)
,

¯̄Fn,h =F
(
tn,Xn, ¯̄Yn(Xn),D0

h
¯̄Yn(Xn),D2

h
¯̄Yn(Xn)

)
,

with Xn being solved by Itô-Taylor schemes.

Furthermore, based on the reference equations (3.23), (3.29), (3.32), (3.37) and (3.39),
we construct the following explicit fourth order one-step scheme for the FBSDE (1.1).

Scheme 3.2. Given random variable YN , for n=N−1,··· ,0, we solve the random variables
Yn =Yn(Xn) and Zn =Zn(Xn) by

Ȳn =Ex
tn
[Yn+1]+∆tnEx

tn
[ f n+1,h],

¯̄Yn =Ex
tn
[Yn+1]+

1
2

∆tn f̄ n,h+
1
2

∆tnEx
tn
[ f n+1,h],

Ŷn =Ex
tn
[Yn+1]+θ∆tn

¯̄f n,h+(1−θ)∆tnEx
tn
[ f n+1,h]

+
(3θ−1)(∆tn)2

6
¯̄Fn,h+

(3θ−2)(∆tn)2

6
Ex

tn
[Fn+1,h],

Yn =Ex
tn
[Yn+1]+

1
2

∆tn f̂ n,h+
1
2

∆tnEx
tn
[ f n+1,h]

+
1
12

(∆tn)
2F̂n,h− 1

12
(∆tn)

2Ex
tn
[Fn+1,h],

Zn =D0
hYnσ(tn,Xn),

where θ∈ [0,1] and

f̄ n,h = f
(
tn,Xn,Ȳn(Xn),D0

hȲn(Xn)σ(tn,Xn)
)
,

¯̄f n,h = f
(
tn,Xn, ¯̄Yn

2 (Xn),D0
h

¯̄Yn
2 (Xn)σ(tn,Xn)

)
,

¯̄Fn,h =F
(
tn,Xn, ¯̄Yn

2 (Xn),D0
h

¯̄Yn
2 (Xn),D2

h
¯̄Yn
2 (Xn)

)
,

f̂ n,h = f
(
tn,Xn,Ŷn(Xn),D0

hŶn(Xn)σ(tn,Xn)
)
,

F̂n,h =F
(
tn,Xn,Ŷn(Xn),D0

hŶn(Xn),D2
hŶn(Xn)

)
,
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with Xn being solved by Itô-Taylor schemes.

3.4 Error estimates

Now we turn to analyzing the accuracy and convergence of Schemes 3.1 and 3.2. To this
end, we give the estimations of the truncation error terms Rn

y3 and Rn
y4 in the reference

equations (3.34) and (3.39), respectively.

Assumption 3.1. The functions b, σ, f and ϕ are bounded and smooth enough with
bounded derivatives.

To proceed, we first estimate the truncation error terms Rn
y1 and Rn

y2.

Theorem 3.1. Under Assumption 3.1, we have the following local estimates for n=0,1,··· ,N−1:∣∣∣Rn
y1

∣∣∣≤C
(
(∆tn)

2+h4∆tn
)
, (3.41a)∣∣∣Rn

y2

∣∣∣≤C
(
(∆tn)

3+h4∆tn
)
, (3.41b)

where C is a positive constant depending on T and the upper bounds of derivatives of b, σ, f and
ϕ.

Proof. By (3.7) and (3.28), we have

Rn
y1=

∫ tn+1

tn

Ex
tn
[ fs]ds−∆tnEx

tn
[ ftn+1,h]

=
∫ tn+1

tn

(
Ex

tn
[ fs]−Ex

tn
[ ftn+1 ]

)
ds+∆tn

(
Ex

tn
[ ftn+1− ftn+1,h]

)
. (3.42)

By Itô-Taylor expansion, it is easy to deduce (see [38])∣∣∣∣∫ tn+1

tn

(
Ex

tn
[ fs]−Ex

tn
[ ftn+1 ]

)
ds
∣∣∣∣≤C(∆tn)

2. (3.43)

Using the accuracy of D0
h in (2.7), we get∣∣ ft− ft,h

∣∣≤C
∣∣Yt(Xt)−D0

hYt(Xt)
∣∣≤Ch4. (3.44)

Eqs. (3.42)–(3.44) lead to the inequality (3.41a). By (3.7) and (3.31), we have

Rn
y2=

∫ tn+1

tn

Ex
tn
[ fs]ds− 1

2
∆tn f̄tn,h−

1
2

∆tnEx
tn
[ ftn+1,h]

=
∫ tn+1

tn

(
Ex

tn
[ fs]−

1
2

ftn−
1
2

Ex
tn
[ ftn+1 ]

)
ds

+
1
2

∆tn
(

ftn− ftn,h
)
+

1
2

∆tn
(

ftn,h− f̄tn,h
)

+
1
2

∆tn

(
Ex

tn

[
ftn+1− ftn+1,h

])
. (3.45)
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By Itô-Taylor expansion, it is easy to obtain ( [38])∣∣∣∣∫ tn+1

tn

(
Ex

tn
[ fs]−

1
2

ftn−
1
2

Ex
tn
[ ftn+1 ]

)
ds
∣∣∣∣≤C(∆tn)

3. (3.46)

Since Rn
y1=Ytn−Ȳtn , then by (2.7) and (3.41a), we deduce

∣∣ ftn,h− f̄tn,h
∣∣≤C

(∣∣Ytn−Ȳtn

∣∣+∣∣D0
hYtn−D0

hȲtn

∣∣)
≤C
(
(∆tn)

2+h4). (3.47)

Using (3.44)–(3.47), we get the inequality (3.41b).

For the term Rn
y3 =Rn

Y1+Rn
Y2+Rn

Y3 and Rn
y4 = R̂n

Y1+ R̂n
Y2+ R̂n

Y3, we have the following
theorem.

Theorem 3.2. Under Assumption 3.1, we have the following local estimates for n=0,1,··· ,N−1:∣∣∣Rn
y3

∣∣∣≤C
(
(∆tn)

4+h4∆tn
)
, (3.48a)∣∣∣Rn

y4

∣∣∣≤C
(
(∆tn)

5+h4∆tn
)
, (3.48b)

where C is a positive constant depending on T and the upper bounds of derivatives of b, σ, f and
ϕ.

Proof. Utilizing (3.16) and (3.27), it is easy to deduce

|Rn
Y1|≤C(∆tn)

4, |Rn
Y2|≤C

(
h4∆tn

)
. (3.49)

Moreover, Rn
y2=Ytn− ¯̄Ytn , then by (2.7) and (3.41b), we have∣∣∣ ftn,h− ¯̄ftn,h

∣∣∣≤C
(∣∣Ytn− ¯̄Ytn

∣∣+∣∣D0
hYtn−D0

h
¯̄Ytn

∣∣)≤C
(
(∆tn)

3+h4),∣∣∣Ftn,h− ¯̄Ftn,h

∣∣∣≤C
(∣∣Ytn− ¯̄Ytn

∣∣+∣∣D0
hYtn−D0

h
¯̄Ytn

∣∣+∣∣D2
hYtn−D2

h
¯̄Ytn

∣∣)≤C
(
(∆tn)

3+h4),
which imply that

|Rn
Y3|=

∣∣∣∣θ∆tn
(

ftn,h− ¯̄ftn,h
)
+
(3θ−1)(∆tn)2

6
(

Ftn,h− ¯̄Ftn,h
)∣∣∣∣

≤C
(
(∆tn)

4+h4∆tn
)
. (3.50)

Eqs. (3.49) and (3.50) lead to the inequality (3.48a).
Note that R̂n

Y1 and R̂n
Y2 are given by taking θ = 1

2 in Rn
Y1 and Rn

Y2. Then by (3.16) and
(3.27), we get ∣∣R̂n

Y1
∣∣≤C

(
(∆tn)

5), ∣∣R̂n
Y2
∣∣≤C

(
h4∆tn

)
. (3.51)
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By (3.34) and (3.37), we have Rn
y3=Ytn−Ŷtn . Then by (2.7) and (3.48a), we deduce

∣∣∣ ftn,h− f̂tn,h

∣∣∣≤C
(∣∣Ytn−Ŷtn

∣∣+∣∣D0
hYtn−D0

hŶtn

∣∣)≤C
(
(∆tn)

4+h4),∣∣Ftn,h− F̂tn,h
∣∣≤C

(∣∣Ytn−Ŷtn

∣∣+∣∣D0
hYtn−D0

hŶtn

∣∣+∣∣D2
hYtn−D2

hŶtn

∣∣)≤C
(
(∆tn)

4+h4),
which imply that

∣∣R̂n
Y3
∣∣= ∣∣∣∣12∆tn

(
ftn,h− f̂tn,h

)
+

1
12

(∆tn)
2(Ftn,h− F̂tn,h

)∣∣∣∣
≤C

(
(∆tn)

5+h4∆tn
)
.

(3.52)

Using (3.51) and (3.52), we obtain the inequality (3.48b).

By Theorem 3.2, we have{
Rn

y3=O
(
(∆tn)4), if h=O

(
(∆tn)

3
4
)
,

Rn
y4=O

(
(∆tn)5), if h=O

(
∆tn
)
.

(3.53)

Hence, we can expect that

1. Scheme 3.1 is convergent with third order when we choose h=(∆tn)
3
4 .

2. Scheme 3.2 is convergent with fourth order when we choose h=∆tn.

4 Numerical tests

In this section, we present some numerical experiments to illustrate the stability and
accuracy of the proposed schemes. For simplicity, we adopt the uniform time partition,
and the time partition number N is given by N= T

∆t . For some h>0, the space partition
Sh is chosen as

Sh =S1,h×S2,h×···×Sd,h, (4.1)

where Sj,h is the partition of the one-dimensional real axis R

Sj,h ={x
j
i : xj

i = ih, i=0,±1,··· ,±∞}

for j=1,2,··· ,d.
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4.1 The approximation of conditional expectation

By using the distribution of the Brownian motion and the Gauss-Hermite quadrature
rule, we show how to approximate the conditional expectation Ex

tn
[·].

Without loss of generality, we take Ex
tn
[Yn+1] for example and use the Euler scheme

to solve Xt. Then we get

EXn

tn
[Yn+1]=EXn

tn

[
Yn+1(Xn+1)]

=E
[
Yn+1(Xn+bn∆tn+σn∆Wn

)]
=

1√
2π

∫
R

Yn+1(Xn+bn∆tn+σn
√

∆tns
)
e−

s2
2 ds

=
1√
π

∫
R

Yn+1(Xn+bn∆tn+σn
√

2∆tn p
)
e−p2

dp

≈
M

∑
i=1

Yn+1(Xn+bn∆tn+σn
√

2∆tnai
)
wi, (4.2)

where {ai}M
i=1 are the roots of the Hermite polynomial of degree M and {wi}M

i=1 are the
corresponding weights [1].

In general,
Xn

i =Xn+bn∆tn+σn
√

2∆tnai

are not on the grid points. Hence, the interpolation methods are needed. Let Ih denote
the local interpolation operator such that Ihg(x)= g(x) for x∈Sh, and we obtain

EXn

tn
[Yn+1]≈

M

∑
i=1

IhYn+1
(

Xn+bn∆tn+σn
√

2∆tnai

)
wi.

In all our examples, we shall set the number of Gauss-Hermite quadrature points M=8
such that the spacial approximated error caused by the Gauss-Hermite quadrature rule
can be neglected.

Remark 4.1. Note that Gauss-Hermite quadrature rule and interpolation methods are
used to approximate the conditional expectations in our schemes, which will cause the
exponential growth in computation when solving high dimensional FBSDEs.

To solve this problem, in our future study, we shall focus on building an efficient
sparse grid spatial discretization, using the sparse grid Gaussian-Hermite quadrature
rule to approximate the conditional expectations and adopting an efficient spectral method
to deal with the associated high dimensional interpolations.

4.2 Some numerical tests

In our tests, we set the terminal time T=1.0. We also denote by |Y0−Y0| and |Z0−Z0| the
absolute errors between the exact solution (Yt,Zt) of the FBSDE (1.1) at time t=0 and the



Q. Zhou and Y. Sun / Adv. Appl. Math. Mech., 13 (2021), pp. 1293-1317 1311

numerical solutions (Yn,Zn) of Schemes 3.1 and 3.2 at n= 0. Moreover, we will choose
h=(∆t)

3
4 in Scheme 3.1 and h=∆t in Scheme 3.2, respectively.

The convergence rate (CR) with respect to the time step ∆t is obtained by using linear
least square fitting to the numerical errors.

Example 4.1. Consider the following pure BSDE −dYt =
1
2
(

exp(t2)−4tYt−3exp(t2−Yt exp(−t2))−Z2
t exp(−t2))dt−ZtdWt,

YT =exp(T2)ln
(
3+sin(WT)

)
.

(4.3)

It can be checked that the analytic solution yields

Yt =exp(t2)ln
(
3+sin(Wt)

)
, Zt =exp(t2)

cos(Wt)

3+sin(Wt)
.

We use Schemes 3.1 and 3.2 to solve the BSDE (4.3). In Tables 1 and 2, we have listed
the numerical errors |Y0−Y0| and |Z0−Z0| and the convergence rates of Schemes 3.1 and
3.2, respectively.

From the numerical results in Tables 1 and 2, we can conclude that Schemes 3.1 and 3.2
are stable and accurate for solving the pure BSDEs for different values of the parameter
θ. Moreover, Scheme 3.1 is convergent with order three and Scheme 3.2 with order four,
which are consistent with theoretical estimates in Theorem 3.2.

Table 1: Errors and convergence rates of Scheme 3.1 for Example 4.1.

θ=0 θ= 1
4 θ= 1

3
N |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0|
8 4.183E-03 1.992E-04 2.117E-03 7.696E-05 1.428E-03 3.267E-05

16 5.079E-04 2.126E-05 2.534E-04 7.879E-06 1.685E-04 2.770E-06
32 6.250E-05 2.422E-06 3.099E-05 9.009E-07 2.048E-05 2.946E-07
64 7.748E-06 2.877E-07 3.831E-06 1.113E-07 2.523E-06 3.749E-08

128 9.646E-07 3.505E-08 4.765E-07 1.441E-08 3.135E-07 5.315E-09
CR 3.020 3.115 3.028 3.091 3.037 3.138

θ= 1
2 θ= 2

3 θ=1
N |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0|
8 5.044E-05 6.670E-05 1.328E-03 1.549E-04 4.081E-03 3.307E-04

16 1.532E-06 9.185E-06 1.714E-04 1.940E-05 5.110E-04 3.972E-05
32 6.027E-07 1.207E-06 2.164E-05 2.418E-06 6.371E-05 4.837E-06
64 9.885E-08 1.542E-07 2.717E-06 3.019E-07 7.949E-06 5.967E-07

128 1.376E-08 1.948E-08 3.400E-07 3.768E-08 9.923E-07 7.405E-08
CR 2.763 2.938 2.984 3.002 3.002 3.031
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Table 2: Errors and convergence rates of Scheme 3.2 for Example 4.1.

θ=0 θ= 1
4 θ= 1

3
N |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0|
8 1.530E-04 3.503E-05 4.823E-05 1.334E-05 1.273E-05 2.273E-06
16 9.738E-06 2.037E-06 3.005E-06 7.484E-07 7.278E-07 1.010E-07
32 6.102E-07 1.218E-07 1.860E-07 4.362E-08 4.272E-08 6.662E-09
64 3.950E-08 7.652E-09 1.292E-08 2.841E-09 3.962E-09 5.230E-10

128 2.480E-09 4.802E-10 8.170E-10 1.820E-10 2.570E-10 4.835E-11
CR 3.977 4.037 3.956 4.036 3.871 3.864

θ= 1
2 θ= 2

3 θ=1
N |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0|
8 5.653E-05 8.353E-06 1.264E-04 2.282E-05 2.660E-04 5.174E-05
16 3.727E-06 5.403E-07 8.216E-06 1.399E-06 1.719E-05 3.118E-06
32 2.382E-07 3.457E-08 5.210E-07 8.669E-08 1.087E-06 1.909E-07
64 1.366E-08 1.969E-09 3.138E-08 5.176E-09 6.683E-08 1.159E-08

128 8.461E-10 1.163E-10 1.955E-09 3.151E-10 4.171E-09 7.588E-10
CR 4.015 4.037 3.999 4.037 3.993 4.019

Example 4.2. Consider the following decoupled FBSDE
dXt =sin(t+Xt)dt+

1
10

cos(t+Xt)dWt,

−dYt =

(
1
20

YtZt−cos(t+Xt)
(
1+sin(t+Xt)

))
dt−ZtdWt,

(4.4)

with the initial value X0=0 and the terminal condition YT=sin(T+XT). It can be checked
that the analytic solution yields

Yt =sin(t+Xt), Zt =
1

10
cos2(t+Xt).

We use the Schemes 3.1 and 3.2 to solve the FBSDE (4.4). For simplicity, we only test
our schemes with θ = 0.5 and θ = 1.0. The Euler scheme (3.1), the Milstein scheme (3.2),
the weak order-2.0 Itô-Taylor scheme (3.3), the weak order-3.0 Itô-Taylor scheme (3.4),
and the weak order-4.0 Itô-Taylor scheme (3.5) are used to solve SDEs, respectively.

In Tables 3 and 4, we have listed the numerical errors |Y0−Y0| and |Z0−Z0| and the
convergence rates of Schemes 3.1 and 3.2, respectively.

The errors and the convergence rates in Tables 3 and 4 show that Schemes 3.1 and
3.2 are stable and accurate for solving the decoupled FBSDE (4.4), and their accuracy
depends on the Itô-Taylor schemes used for SDEs. From Tables 3 and 4, we can draw the
following conclusions.

1. Schemes 3.1 and 3.2 are of order one accurate if the Euler scheme or Milstein scheme
are used to solve SDEs.
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Table 3: Errors and convergence rates of Scheme 3.1 for Example 4.2.

SDE Sch N 4 8 16 32 64 CR

Euler |Y0−Y0| 5.624E-02 2.825E-02 1.422E-02 7.527E-03 3.697E-03 0.976
|Z0−Z0| 3.282E-03 8.105E-04 8.826E-05 2.820E-04 1.362E-04 1.070

Milstein |Y0−Y0| 5.624E-02 2.785E-02 1.486E-02 7.457E-03 3.828E-03 0.965
|Z0−Z0| 3.540E-03 1.391E-03 4.292E-04 2.783E-04 1.538E-04 1.137

Weak-2.0 |Y0−Y0| 1.813E-03 7.707E-04 1.312E-04 3.660E-05 8.481E-06 1.988
|Z0−Z0| 3.468E-04 1.034E-04 2.452E-05 4.029E-06 1.078E-06 2.134

Weak-3.0 |Y0−Y0| 2.386E-03 2.961E-04 3.579E-05 4.373E-06 5.407E-07 3.030
|Z0−Z0| 4.218E-05 1.826E-06 5.438E-07 7.210E-08 8.981E-09 2.906

Weak-4.0 |Y0−Y0| 1.001E-03 6.047E-05 3.954E-06 5.424E-07 1.689E-07 3.187
|Z0−Z0| 1.370E-04 1.631E-05 1.470E-06 1.128E-07 6.114E-08 2.944

Table 4: Errors and convergence rates of Scheme 3.2 for Example 4.2.

SDE Sch N 4 8 16 32 64 CR

Euler |Y0−Y0| 5.624E-02 2.785E-02 1.486E-02 7.457E-03 3.828E-03 0.965
|Z0−Z0| 3.541E-03 1.391E-03 4.292E-04 2.783E-04 1.538E-04 1.137

Milstein |Y0−Y0| 5.624E-02 3.027E-02 1.450E-02 7.707E-03 3.796E-03 0.975
|Z0−Z0| 3.781E-03 7.372E-04 3.148E-04 3.194E-04 1.469E-04 1.058

Weak-2.0 |Y0−Y0| 1.817E-03 7.697E-04 1.311E-04 3.658E-05 8.478E-06 1.988
|Z0−Z0| 3.448E-04 1.032E-04 2.449E-05 4.026E-06 1.078E-06 2.132

Weak-3.0 |Y0−Y0| 2.391E-03 2.971E-04 3.595E-05 4.394E-06 5.433E-07 3.029
|Z0−Z0| 4.455E-05 1.565E-06 5.222E-07 7.002E-08 8.750E-09 2.911

Weak-4.0 |Y0−Y0| 5.171E-04 3.282E-05 1.933E-06 6.110E-09 6.423E-08 3.834
|Z0−Z0| 3.984E-05 6.188E-07 2.153E-08 1.863E-09 3.602E-10 4.189

2. Schemes 3.1 and 3.2 are of order two accurate if the weak order 2.0 Itô-Taylor
scheme is used to solve SDEs.

3. Scheme 3.1 is of order three accurate if the weak order 3.0 or weak order 4.0 Itô-
Taylor schemes are used to solve SDEs.

4. Scheme 3.2 is of order 3.0 accurate if the weak order 3.0 Itô-Taylor scheme is used
to solve SDEs.

5. Scheme 3.2 is of order 4.0 accurate if the weak order 4.0 Itô-Taylor scheme is used
to solve SDEs.

All of the conclusions above verify again the theoretical estimates in Theorem 3.2.
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Example 4.3. Consider the following decoupled FBSDE


dXt =

exp(t+Xt)

1+2exp(t+Xt)
dt+

exp(t+Xt)

10(1+exp(t+Xt))
dWt,

−dYt =

(
− 2Yt

1+2exp(t+Xt)
− 1

20

( YtZt

1+exp(t+Xt)
−Y2

t Zt

))
dt−ZtdWt,

(4.5)

with the initial value X0=0 and the terminal condition

YT =
exp(T+XT)

1+exp(T+XT)
.

It can be checked that the analytic solution yields

Yt =
exp(t+Xt)

1+exp(t+Xt)
, Zt =

(exp(t+Xt))2

10(1+exp(t+Xt))3 .

We use the Schemes 3.1 and 3.2 to solve the FBSDE (4.5). For simplicity, we test our
schemes with θ = 0.5 and θ = 1.0. The Euler scheme (3.1), the Milstein scheme (3.2), the
weak order-2.0 Itô-Taylor scheme (3.3), the weak order-3.0 Itô-Taylor scheme (3.4) and
the weak order-4.0 Itô-Taylor scheme (3.5) are used to solve SDEs, respectively.

In Tables 5 and 6, we have listed the numerical errors |Y0−Y0| and |Z0−Z0| and the
convergence rates of Schemes 3.1 and 3.2, respectively.

Table 5: Errors and convergence rates of Scheme 3.1 for Example 4.3.

SDE Sch N 5 10 15 20 25 CR

Euler |Y0−Y0| 3.471E-03 1.922E-03 1.098E-03 8.267E-04 7.615E-04 0.997
|Z0−Z0| 1.961E-04 9.468E-05 7.337E-05 5.385E-05 3.737E-05 0.979

Milstein |Y0−Y0| 3.471E-03 1.922E-03 1.098E-03 8.267E-04 7.615E-04 0.997
|Z0−Z0| 1.898E-04 8.595E-05 6.562E-05 4.743E-05 3.182E-05 1.052

Weak-2.0 |Y0−Y0| 2.122E-04 6.237E-05 2.352E-05 1.324E-05 9.616E-06 1.977
|Z0−Z0| 2.596E-05 8.512E-06 3.086E-06 1.677E-06 1.098E-06 2.007

Weak-3.0 |Y0−Y0| 9.242E-06 2.403E-06 9.018E-07 2.198E-08 2.524E-07 3.039
|Z0−Z0| 2.644E-06 3.444E-07 1.172E-07 2.188E-08 2.891E-08 3.034

Weak-4.0 |Y0−Y0| 6.571E-06 2.541E-06 9.137E-07 4.323E-07 1.910E-08 3.096
|Z0−Z0| 5.199E-06 5.768E-07 1.954E-07 9.057E-08 3.689E-08 2.999

The errors and the convergence rates in Tables 5 and 6 imply that Schemes 3.1 and
3.2 are stable and accurate for solving the decoupled FBSDE (4.5), and their accuracy
depends on the Taylor schemes used to solve SDEs. Based on the results listed in Tables
5–6, we can draw the same conclusions as the ones in Example 4.2.
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Table 6: Errors and convergence rates of Scheme 3.2 for Example 4.3.

SDE Sch N 5 10 15 20 25 CR

Euler |Y0−Y0| 3.369E-03 1.912E-03 1.272E-03 7.795E-04 6.139E-04 1.068
|Z0−Z0| 1.945E-04 9.129E-05 5.758E-05 4.925E-05 3.957E-05 0.990

Milstein |Y0−Y0| 3.320E-03 1.531E-03 1.271E-03 9.505E-04 5.869E-04 0.989
|Z0−Z0| 1.963E-04 1.078E-04 5.719E-05 4.297E-05 4.079E-05 1.047

Weak-2.0 |Y0−Y0| 2.251E-04 6.365E-05 2.387E-05 1.338E-05 9.686E-06 2.008
|Z0−Z0| 2.744E-05 8.689E-06 3.137E-06 1.699E-06 1.109E-06 2.035

Weak-3.0 |Y0−Y0| 2.065E-05 4.193E-07 1.519E-07 4.054E-07 5.311E-08 3.241
|Z0−Z0| 6.285E-06 3.496E-07 1.252E-07 7.973E-08 3.258E-08 3.152

Weak-4.0 |Y0−Y0| 1.268E-05 7.862E-07 1.696E-07 6.179E-08 3.008E-08 3.774
|Z0−Z0| 1.036E-06 5.486E-08 1.165E-08 3.629E-09 2.227E-09 3.891

5 Conclusions

In this work, we developed an explicit third order one-step scheme and an explicit fourth
order one-step scheme for decoupled FBSDEs. Numerical tests show that the one-step
schemes are efficient and are of high order rates of convergence. In our future work, we
shall consider to combine the sparse grid method to deal with high dimensional coupled
FBSDEs.
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