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Abstract. In this paper, we study the following N-coupled nonlinear Schrédinger sys-
tem
—Au]- +uj= ‘u]‘M? + Zﬁi,]-u%uj, in R",
i#]

uj>0 in R", uj(x) >0 as [x| > 4o, j=1,--- N,

wheren < 3, N > 3, uj >0, /31-,]- = ,B]-,i > 0 are constants and ,B]-J = yj,j =1,---,N.
There have been intensive studies for the system on existence /non-existence and clas-
sification of ground state solutions when N = 2. However fewer results about the
classification of ground state solution are available for N > 3. In this paper, we first
give a complete classification result on ground state solutions with Morse indices 1,
2 or 3 for three-coupled Schrodinger system. Then we generalize our results to N-
coupled Schrodinger system for ground state solutions with Morse indices 1 and N.
We show that any positive ground state solutions with Morse index 1 or Morse index
N must be the form of (djw, dyw, - - - ,dyw) under suitable conditions, where w is the
unique positive ground state solution of certain equation. Finally, we generalize our
results to fractional N-coupled Schrédinger system.

Key Words: Nonlinear Schrodinger system, unique ground state solution, variational method,
Morse indices.

AMS Subject Classifications: 35B09, 35]47, 35]50

1 Introduction

In this paper, we study the following N-coupled nonlinear Schrodinger system
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by = il + i in R,
i (1.1)
u; >0 in R"uj(x) +0 as |x] = +oco, j=1,---,N,

where n < 3, N > 3, y; > 0 are constants and §;; = B;; > 0 are coupling parameters
(Bj,j = Hj)- This paper is concerned with the uniqueness of ground state solution in the
general case N > 3.

This system arises as standing wave solutions of the time-dependent N-coupled
Schrodinger systems of the form

) :
—wqm@:A@—wmq+m®@ﬁ+§m@ﬁjmmm
7]
®; =dj(x,t)eC, t>0, j=1,---,N,

and these systems are also known as coupled Gross-Pitaevskii equations. In the past fif-
teen years, a great attention has been focused on the study of two coupled systems with
nonlinear terms, both for their interesting theoretical structure and their concrete appli-
cations, such as in nonlinear optics and in Bose-Einstein condensates for multi-species
condensates. By using variational methods or Lyapunov-Schmidt reduction methods,
there are lots of results about existence, multiplicity and qualitative properties of non-
trivial solutions of two coupled elliptic system. Since it seems almost impossible for us
to provided a complete list of references, we refer the readers only to [1-11,18-20,25-27]
and reference therein.

For two coupled Schrodinger system with 1, = 21 = B, B. Sirakov [24] showed
that if 0 < B < min{puy, pa} or B > max{uy, u2}, then (Vkw, Iw) is ground state so-
lution, where k, [ satisfies u1k + Bl = 1,u1l + pk = 1 and they conjecture that under
the above hypotheses (vkw, vIw) is the unique positive solution. For this conjecture,
by the ODE method, J. Wei and W. Yao, [27, Theorem 4.2] proved this conjecture in case
B > max{p1, 42}, and [27, Theorem 4.1] proved it in case 0 < § < B1, where B is an un-
known small constant. When < min {1, ji» }, Z. Chen and W. Zou [10] gave a complete
answer to this conjecture and obtained the asymptotic behavior of ground state solution.
However, the above work are for purely attractive and purely repulsive cases, there have
been few results in the case of mixed couplings, i.e., the case having both positive and
negative coupling constants. For the systems in the entire space with mixed couplings
was considered by T. Lin and J. Wei [16], in which a 3-system was considered with two
coupling constants positive and one coupling constant negative.

For N-coupled system with mixed couplings, J]. Wei and T. Lin [16] established some
general theorems for the existence and nonexistence of ground state solution and showed
that when all §; ; are positive and the matrix B is positively definite, there exist a ground
state solution which is radially symmetric. However, if all B;; are negative, or one of
Bi; is negative and the matrix B is positively definite, there is no ground state solution.
Recently, J. Wei and Y. Wu [28] gave a systematic and an (almost) complete study on
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the existence of ground state solution for N-coupled system when the system admits
mixed couplings. By dividing this system into repulsive-mixed and total-mixed cases,
they proved the nonexistence of ground state solution for repulsive-mixed case and gave
an necessary condition for the existence of ground state solution for total-mixed cases.
Peng et al. [21] use a construction argument for singularly perturbed elliptic problems to
obtain vector solutions with some of the components synchronized between them while
being segregated with the rest of the components simultaneously.

Inspired by the above-mentioned works, especially by [14,22,28], in this paper our
goal is two-folds. One is to give a complete classification of ground state solution with
different Morse indices for three-coupled Schrédinger system under suitable conditions.
Another goal of the paper is to give a different approach from [14] to get the exis-
tence of ground state solutions for N-coupled system. The difficulty is that we can’t
use the method introduced in [14], where the authors considered the ground state so-
lution with Morse index N on bounded domain of IR”, when the parameter satisfies
—M(Q) < Ay = ---Ay = A < 0. The novelty is that in order to obtain the unique
minimum point of ¢(7y, - - -, Tn), (2.6b), it is not feasible to use the method in [22] by di-
rectly calculate the second derivative to determine the unique minimum values, so we
use the method of Lagrange’s multiplier, implicit function theorem and the Cramer’s
Rule to show there exists a unique (T1,min,* * * , TN.min), Timin > 0,7 = 1,- -+, N, such that
L(Tmin, -+ » TN;min) = (1, -+ , N )min (see details in Lemma 3.3). Then we give a com-
plete classification of ground state solutions with Morse index 1 for system (1.1) under
suitable conditions. We prove that all the ground state solutions of (1.1) must be the form
of (ciw,- -+ ,cNyw), where w is the unique positive ground state solution of (1.5). Finally,
we generalize our results to fractional N-coupled Schrodinger system.

Before we state our main results we introduce some notations. Let H'(IR") be the
Hilbert space of functions in R" endowed with the standard scalar product and norm

(u,v) = / (VuVo+ uo)dx, [[ull g = (1).

The energy functional associated with (1.1) is given by

N 11 1 1Y
E(u) = Z% [z/n(lwﬂzﬂ‘“f)dx— i /]R ”?dx} - 4§5i,f”?”]2dx~
j= 7

Define two Nehari manifolds
N
M; — {u e 7\{(0,0,---0,0)} : Z/ \Vujyzder/ Wdx
=R R™

51-,]-/” u%ufdx}, (1.2a)
j R
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My = {u € H\{(0,0,---0,0)} : /]Rn \Vujlzdx—i—/w ujzdx

N
= m/ uf+y) ,81-,]-/ ufuidx, j= 1,---,N}, (1.2b)
]Rn Z,l;é] ]Rn

and the associated minimization problems

N
¢j:= inf E(u) :uier}\f[j;i [/Rn|wi|2dx+/wu$dx}, j=1,---,N, (1.3)

uEM]-

foru = (uy,--- ,uy) € Hand K = (H'(R"))N.

We say that u is a ground state solution of (1.1),if u; > 0,j =1,---, N, u solves (1.1)
and E(u) = 4;,i = 1, N. If u is a nontrivial solution of (1.1), thenuisin M;, I =1, N. Itis
easy to see that M; # @. In fact, if we take ¢; € CZ°(R"),j =1,--- ,N, with ¢; # 0 and

supp(¢;) (|supp(¢x) =@ for j#k,

then there exists t1,- - - ,ty > 0, such that (t1¢1,-- -, tN¢N) € M.
To state our results, we introduce the matrix B and B~ as following, where B~ is the
inverse matrix of B

B11,B21, - Bna gt g2, o pUN
B12,B22, - Bn2 gt B2, o pAN

3 — , ‘Bi = (14)
Bin,BaN, - BNN prt, BN, e NN
From [15], we can let w be the unique positive solution of following problem
—ANu+u=u’ in R”,
(1.5)
u>0 inR", u(x) >0 as |x| — oo.

By Lemma 1 and Lemma 2 in [16], w is also the unique positive ground solution of above
problem.

2 Statement of main results

Before we present the results in the general case N > 3, we first explain the key ideas and
main results when N = 3.
We first study the following three-coupled nonlinear Schrodinger system
—Auqg +u; = ‘ulu{’ + ﬁlrzu%ul + ,31/311%1/[1 in R",
—Auy + Uy = poui + Poruiuy + Posuiuy in RY, @.1)
—Aus +uz = ‘1131/{% + [33,11/[%1/[3 + ,33,211%143 in R", ‘

u; >0 in R”, wu;(x) —0 as |x| = 4o, i=1,2,3,
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where n < 3, y; > 0 are constants and B;; = B;; > 0,1,j = 1,2,3. By the method of
moving plane, we can assume that all solutions to (2.1) are radially symmetric.

We first give an almost complete classification of ground state solution with differ-
ent Morse indices for 3-coupled system under suitable conditions. We will show that
any positive ground state solution with different Morse indices must be the form of
(crw, cow, caw), where w is the unique positive ground state solution of (1.5). As far as
we know, there are some results about the existence and nonexistence of ground state
solution. J. Wei and Y. Wu [28] gave an (almost) complete study on the existence and
nonexistence of ground state solution with different Morse indices of (2.1) under dif-
ferent conditions by the idea of block decomposition and measure the total interaction
between different blocks for 3-coupled system when the system admits mixed couplings.
For other results about the existence and nonexistence of ground state solution for three-
coupled system, see [16,17,23] and references therein.

We state our main results now. By the the definition of Morse index, it is well-known
that if the ground state solution of (2.1) is defined on Nehari manifold My (see(1.2a)),
then the ground state solution has Morse index 1. If the ground state solution of (2.1)
is defined on Nehari manifold Mj (see (1.2b)), then the ground state solution has Morse
index < 3. If the ground state solution of (2.1) is defined on Nehari manifold M, defined
below

2
M, = {u € H\{(0,0,0)} : 2/ (IVuj|? + u?)dx
j=1 7R
2 4 2.2 2.2 2.2
= ; urdx +2 / ususdx + / ususdx + / usuzdx,
];#]/]Rn j Pra [ wipdx+Pis | uuzdx + oz | usus

/ (|Vus|* 4+ u3)dx = u3 /]R” usdx + a1 /]R" ududdx + B /Rn u%u%dx}, (2.2a)

IRIZ

then the ground state solution has Morse index < 2. Indeed, if we consider the ground
state solution on Nehari manifold M3, for any positive minimizer of E(u) on M3, denoted
by v, H = FVM3 @(]RV1 X 1RV2 X IRV3), where v, = (01,0,0), Voy = (0,02,0), V3 =
(0,0,v3) and I'yMj3 is the tangent space of M3 at v. Since v is a positive minimizer of
E(u) on M3, we have E”(v)(h,h) > 0 for all h € I'yM3, by the definition of the Morse
index, we know that Morse index of v is less than or equals to 3. On the other hand, since

3
Z ,BZ-,]-/ v*vldx
et L
= —2;11-/ v?dx <0 forall i=1,2,3,

]Rn

E'(v)(vi,vi) = [ (Vo +of)dx —3p; [ ofdx -
R" R"

which implies that the Morse index of v is greater than or equals to 3. Thus, v is a ground
state with Morse index 3. The other cases is similar as the proof of Morse index 3, so we
omit the details here.
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For ground state solution with Morse index 1, we define a multivariate function
2 2 2
(e o ol

-
3 .4 3 22.2)2
( imt T 2 1, Bi T T )

f(Tl,Tz, T3) = (23)

We first prove that if f(7,T,73) has a unique positive minimum point
(T4 min, T2min, T3min) under suitable conditions, then we show that (#minTi min®@,
HminT2,min@, min T3,min®@) is the unique positive ground state solution of (2.1) (where #min
is some positive constant defined later). For ground state solution with Morse index 3,
the key step is to show (diw, dow, dsw) is a ground state solution of (2.1)when matrix B
and B~ (see (1.4)) satisfy suitable conditions, where d;, i = 1, 2, 3 satisfy

B11d3 + B1od3 + B13ds =1,

Bo1d? + Bods + Basdl =1,

Bardi + Paodi + Pasd3 = 1.
Then by the same arguments as above step, we can show that if (11, u2,, u30) be any
positive ground state solution of (2.1), then (11, U2, usp) = (diw, dyw, dsw).

For ground state solution with Morse index 2, we first prove (diw, mdiw,dsw) is a
ground state solution of (2.1), where d;, d3 satisfy following equation,

(u1+ Pram?)di + Brad = 1,

(pam? + o1 )d? + Pad3 =1,

(Ba1 + Baom®)d] + padi = 1.
Then we prove that if (1120, muiz,u30) be any positive ground state solution of (2.1)
with Morse index 2 on Nehari manifold My, then (u12, mu12,, uzo) = (dyw, mdiw, dsw).
Let the matrix B and B~ be defined at (1.4) and f(7, 72, 73) be defined at (2.3). Our

first result on three-component system is the following on classification of ground state
solutions with Morse index 1.

Theorem 2.1. Assume B;; > 0, if (11,0, T2,0, T30) satisfies V f(11, T2, 13) = 0, then (10710,
HoT2,0W, HoTa,0W) is a positive solution of (2.1), where

1
1
2
(Biat2o + BiaT3o + Bia TS )

Conversely, under the condition that ﬁj < 2,forall j =1,2,3 and that detB # 0, f has a
unique global minimum (T4 min, T2,min, B,min ), Tmin > 0,1 =1,2,3, and

, 1=1,2,3.

Mo =

(WminTl,minw/ Hmin T2,minW, ﬂminTS,minw)/ Ti min > O/ 1= 1/ 2/ 3/
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is the unique positive ground state solution of (2.1) with the Morse index 1, where

1

, 1=1,2,3,

Hmin =

NI—=

2 2 2
(/31‘,1 Tmin T Pi2 T min T lBi/3T3,min)

and

3
ﬁ7=inf{/ (IVgP+¢7)dx | p e H'(RY), [ ) Zﬁi,ju?#dx:l}- (2.4)

i=1,i#j

Here, uj are the ground state state solution of two-coupled system. If j = 3, then (u1,uz) is a
ground state solution of system (2.1) when uz = 0. The other cases are similar.
Furthermore all ground state solutions to (2.1) must be

(Wmin T1,min@W, Hmin T2,minW, min T3,minw) .
The next theorem classifies ground state solutions with Morse index 3.

Theorem 2.2. Assume B;; > 0, Brx > 0, Vk,i # j, detB # 0 and Yo Bk >0, for all
k=1,2,3. Then (dyw, dyw, dzw) is a positive ground state solution of (2.1) with Morse index 3,
where d; > 0 for all i = 1,2,3 and satisfy

B11d% + B12d3 + B13d5 =1,

ﬁz,ld% + ﬁZ,Zd% + ,32,361% =1, (2.5)

Bs1di + B3ads + P3ads = 1.

Conversely, (diw,dyw, dsw) is the unique positive ground state solution of (2.1) with Morse
index 3.

The last result on three-component system classifies the ground state solutions with
Morse index 2.

Theorem 2.3. Assume B;; > 0, Bxx > 0, Vk,i # j, detD # 0, D™ is an inverse ma-
trix of D and (1 + m?)D'' + D?' > 0, (1 + m?)D'? + D* > 0. If (w120, mu1n0, u3p) be
any positive ground state solution of (2.1) with Morse index 2 on Nehari manifold My, then
(U120, M1, uzp) = (dyw, mdiw, dsw), where dy, ds satisfy following equation,

(1 + Brom?)di + Br3d3 =1,

(pam® + Bp1)d2 + Bosd3 =1,

(Bs1 + B3, 2m2)d2 + ]J3d2 =1,

D — M1+ V2k4 + 2B, 2m B3+ B2, 3m D- — D11 D12
Ba1 + Baam?, U3 ’
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Theorem 2.1 can be extended to N-component system as follows.

Theorem 2.4. Assume B;; > 0, if (T1,0, T2,0, - - , Tn,0) satisfies Vg(T, 12, -+, ™) = 0, then

(0T1,0w, M0T2,0W, * * * , N0 TN,OW)
is a positive solution of (1.1), where

1

(ﬁz‘,l”ffo +BiaTio+ -+ 5i,NT§r,o>

N 12
g(t, @, ,N) = iz T T (2.6b)

N 4 N 2.2)2
(Zi:l ]/llTl + 2Zi,j:1,i<j IBlr]Tl T] )

Conversely, under the condition that ,B;‘ <2, forallj=1,---,N and that det B # 0, g has a
unique global minimum (T min, T,min, ** * , TNmin ), Timin > 0,i=1,---,N,and

, i=1,---,N, (2.6a)

Mo =

Nl—

(ﬂminTl,minw/ Nmin T2,min®W, * * ﬂminTN,minw)/ T min > 0/ 1= 1/ Tty N/

is the unique positive ground state solution of (2.1) with the Morse index 1, where

1 .
Hmin = 7, i=1---,N, (2.7a)
2
:Birlle,min + :Bi,2T22,min +ot .Bi,NTI%I,min)
N
B; = inf {/ (|Vp[> + ¢?)dx | ¢ € H'(RY), / Y. 2B ui¢rdx = 1} . (27b)
R" R i—1,i

Furthermore, all ground state solutions to (2.1) must be

(UminTl,minw/ Nmin2,minW, * * * , WminTN,minw)-
Similarly Theorem 2.2 can be extended to N —component systems:

Theorem 2.5. Assume B;; > 0, Brx > 0,V k,i # j, detB # 0 and YN, B >0, for
allk =1,---,N. Then (dyw,drw, - - - ,dyw) is a positive ground state solution of (1.1) with
Morse index N, where d; > 0 foralli =1,2--- , N and satisfy
,Bl,ld% + ,31,2(1% +---+ ﬁl,Nd%\, =1,
Bo1d? + Bopd3 + -+ - + Bandd =1, 28)
Bnadi + Bnods + -+ Bundy = 1.

Conversely (dyw, dyw, - - - dyw) is the unique positive ground state solution of (1.1) with Morse
index N.
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Remark 2.1. The similar results as Theorem 2.5 can be found in Guo et al. in [14], where
the authors considered the ground state solution with Morse index N for N-coupled sys-
tem on bounded domain of R", when the parameter satisfy —A1(Q)) < A} = --- Ay =
A <O.

Remark 2.2. We should point out that Theorem 2.1 to Theorem 2.5 are also true for corre-
sponding fractional Laplacian system, since for the following subcritical fractional equa-
tion

(=A)’u+u=u""! in R",
R. L. Frank and E. Lenzmann [12] showed the unique positive radial least energy solu-
tions for one dimension case and R. L. Frank, E. Lenzmann and L. Silvestre [13] showed
the general unique ground state solution for dimension greater than one.

Remark 2.3. In order to obtain the unique minimum point of g(7,---,Tn), (2.6b)
it is not feasible to use the method in [22] by directly calculate the second deriva-
tive to determine the unique minimum values, so we use the method of Lagrange’s
multiplier, implicit function theorem and the Cramer’s Rule to show there exists a
unique (T,min,* -, TN;min), Timin > 0,1 = 1,---, N, such that ¢(Timin, - * , Tmin) =
Q(f1, -+, tN)min (see details in Lemma 3.3).

The paper is organized as follows. In section 3, we introduce some preliminaries that
will be used to prove theorems. In Section 4, we prove Theorem 2.1 and Theorem 2.4. In
Section 5, we prove Theorem 2.2 and Theorem 2.5. Finally, Theorem 2.3 will be proved in
Section 6.

3 Some preliminaries

The energy functional associated with (2.1) is given by

311 1 1
E(u) = 21 [2 /Rn(Wuj\z +u]2)dx — M /]Rn u?dx} - 4;,31',]'1/1121/[]261%
j=

Recall the Nehari manifolds M;, M, M3 as defined in (1.2a), (1.2b) and (2.2) respectively.
Consider the minimization problems

IRES uienl\g[i]:“(u) = uler}&l;i {/}Rn |Vuj|dx + /]R” ujzdx] . (3.1)
Define
5= semniRno) fRnE’fW;;;i)dx’ (3:22)
R7
Sy — it i Jre (Vi + u2)dx (3.2b)

N|—=

ued\{0,0,-,0} [y N
(Zizl S Hiluil*dx +2 Yij=1i<jPij Je u%ujde>
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We first have the following lemma.
Lemma 3.1. For

S3 = f(T1, 2, B)minS, SN =g(T1, T2, - TN)minS,
where

f(11, 2, B)min = min f (11, 2, ), (7, , TN)min = ming(7w, -+, ).
7,>0 7,>0

Proof. Forany ¢ € H'(IR") \ {0}, let (71 min, 2min, B,min) = f(T1, T2, T3)min and
(u1,u2,u3) = (TL,min®, 2min®, Bmin@)-
Then by the definition of S3, we have
Y Tfmin Jre IV @|* + ¢*)dx
(213=1 WiThin + 2 Z?,jzl,iq' ﬁi,jTiz,minT;%min) (Jre l91*d2) :
Jre (VoI + 9?)dx
L

Nl—=

> Ss.

=f(T1, T2, T3) min

Hence
f(T1, 72, T3)minS > Ss. (3.3)
On the other hand, let (u1,,, U2, u3,) € H be a minimizing sequence of S3. Let z;,, =

tinUin,i=1,2,3, where
1
_— S [w]*dx \
l’n f]Rn ‘ui,n|4dx ’

/IR” 2|4 = /R wlidx, i=1,2,3, (3.4)

where w is the unique positive solution of Eq. (1.5). By Holder inequality and (3.4), we
have

then

/}R i PlzjalPdx < /R Jwltdx, ij=1,23. (3.5)
Therefore, by (3.5) and z; ,, = t; yutin, 1 = 1,2,3, we can deduce that
Y Jre (IVuin* + uz,)dx
1
(S8 S i el 4 255 B S 2,02 ,x)
LT S (| V0 + w?)dx
<E?:1 WiT + 2501 51‘,1‘7&12%2) U fefdx) %

> (T 0 T T )S = f(T1, T2, T3)minS.

>

N|—
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Let n — +o00. We have that

Sz > f(11, T2, T3) minS-

By (3.3) and (3.6), we get
S3 = f(T1, T2, T3 ) minS-

The case of N > 4 is similar.

(3.6)

O]

To prove the existence and uniqueness of ground state solution, we study the proper-

ties of f (71, T2, 13). To this end we first have following simple lemma
Lemma 3.2. If Vf(1y, T2, 73) = 0, and
1
= T, =123,
(BinTf + BTy + Bizt3)?

then (yTyw, nTow, yT3w) is a positive solution of (2.1).
Similarly, if Vg(t1, 2, -+ , ™) = 0, and

1
T]: 17 i:]-r"'/N/

(Bin T + BTy + -+ BiNTR)

then (ntyw, now, - - -, NTNW) is a positive solution of (1.1).

Proof. By direct calculation, we have
2nHi(n, 2, 1)

3 4 3 2.2
(Zi:1 uit + 221’,]‘:1,1'<j Bi,T; T )

fo(t, 1) =

7

NI

where

3

3 3
H1 (Tl, Ty, T3) = Z }lle4 +2 E ,31,]1'12”(]2 — (T12 —+ T22 + T32) (E ,BLJTJZ>
j=1

i=1 ij=1i<j
e :
=13 | 1 (Boj = Bi) T | +75 | 1(B3j— B1))T,
1 j=1
Similarly, we have
fa(t, ) =0 & Hi(n,n )=

fo(t, 1) =0 & H(T1, o, )

fn(t, 2, 13) =0 < Hi(t, 1) =

0,
0,
0,
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(;31] 52]) >+T3 <
]
(ﬁl] ,53]) >+T2 <
]

Thus H;(t1, 71, 3) = 0, i = 1,2,3, which implies that

;

where

.MW
Mw

Il
—

Hay(ty, 02, 13) = 77 (
j

(B3, — ﬁz,j)Tj2> /

Il
—_

e
MQ)

Hy(t1, 10, 3) = ¢ (

(%m—%ﬂﬁ>-

Il
—_
I
—

j

3
2 (Baj— Brj)T7 =0, Y (Bsj—Br)T7 =0,

Mw

-
Il
—

Mw
- T

Y (B1j— Boj) T =0, ) (Bsj— P2)T7 =0, (3.7)

\
I
—_
-
Il
—_

e

g

(ﬁl] ﬁ3,j)Tj2 =0, (ﬁzj ,33,]')1']2 =0.

-
Il
—_
-
Il
—_

If (yw, nw, nT3w) is a positive solution of (2.1), then

BrLi(nm)? + Bra(nm)* + Bra(nm)* =1,
Boi(171)% + Bo2(n2)* + Poa(nm3)* = 1, (3.8)
B3 (171)? + B32(nm2)* + Baa(nm)* = 1.

Itis easy to see that (3.7) and (3.8) are equivalent. Hence, we complete the proof of Lemma
3.2. The proof in the case of g(7y, - - - , Tv) is similar and thus omitted. O

Let ,B;‘ be defined at (2.7b). Then we have

Lemma 3.3. Under the condition of pj < 2, for all j = 1,2,3, there exists a unique
(T1,min, T2,min, T3min), Tymin > 0,1 = 1,2,3 such that f(T1,min, T2,min, Bmin) = f(t1, t2,3)min-

Similarly, under the condition of p; < 2, for all j = 1,---,N, there exists a unique
(Ti,min, * - TN,min), Timin > 0,1 =1,-- -, N, such that

g(Tl,min/ T /TN,min) = g(t1, Tty tN)min-
Proof. Let
h3 = inf 93(”(1, T, T3),
P3
where
3 2 4

1
S3(11, 2, 3) Z(T ks >—1HZ ',Bi,sz'zTJZ

=

Il
—
.
A

L
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Then

) 1 3 ) 1 3 3
hs = 19{13f1 ZTI»Z = 191;13f1 (Z Wit + Z ,Bi,jTiszz> .

i=1 i=1 ij=1,i<j

By a standard argument, we can see that

2
()
4hs = inf
(11,72,13) ER3\{(0,0,0) } (23 1]111—4_"21] 11<]lBl]T T )

= (71, T2, T3) fain-

Thus, h3 can be attained by some T; min > 0 for alli = 1,2,3 and T in > 0 for some
i. By the method of Lagrange’s multiplier, T; min > O for all i = 1,2, 3 also satisfies the
following system

Ti,min = ,z’liTl'?min + Z,Bi,jTi,mmTJme forall i=1,2,3,

i#]

N (3.9
Tymin >0 and ) Tjmin > 0 forall i=1,2,3.

i=1

Next, we prove T; min > 0 foralli =1,2,3.

To show that T3 min > 0,we just need to prove that ¢; < ¢* := E(uy, u2,0). In fact, by
the implicit function theorem, there exists a unique

Jro Ein 2Bisu2¢?dx — [ (IV I + ¢?)dx &2

tHs)=1—
(s) Y2 1 Jra (VUi + u?)dx

+0(s?),

such that (£(s)uy,t(s)up, t(s)s¢) € My for s > 0 small enough.
Recall the definition of 7 at (2.7b). 3 can be attained by some ¢3. Thus, we have

(1= Bi3) Jre Yo 2ﬁi,3“?‘4’§|2dx52 +0(s®) ass—0
Yo Jre(IVui2 + u?)dx

t(s) =

So,

tuq, tus, ts<p

E(
2
—tfl (2/ (Vi ud)dx+* [ (19432 + |q>§|2>dx>

1 (& 5 (2 _5;63) 2 2 20 %2
=3 (D [l by | = =22 [ sl P
=1 R" i3

+0(s?) < E(uy, u2,0)

=:c",
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for B3 < 2and s > 0is small enough. Thus, we have T3 min > 0.

Similarly we can use the condition that f; < 2, for all j = 1,2,3 to show that Tjmin > 0
foralli=1,2,3.
2

Lets; = T

#min- Then (3.9) is equivalent to the following linear system

1=pisi + Zﬁ,-,]-sj forall i=1,2,3,
i7] (3.10)
si>0 forall i=1,2,3.

By the Cramer’s Rule and the fact that detB # 0, the linear system (3.10) has a unique
solution s = (s1,5,53).

The proof of second part of this lemma are similar to the first part of this lemma. To
show Tjmin > Oforalli=1,--- ,N,weletm=1,--- ,N—1land l, = {l1,lo,--- ,lu} C
{1,--- ,N—=1}withj <l < ---,1,. We define

cy,m= inf Ep n(u)= inf i L [/}Rn |V, |*dx + /}Rn ulzidx] ,
where
- [ 1 2., .2 1 4 1y 2.2
Buont) = 35 |5 [, (09 d)ax— G [ utax] 5 ) pipdin
My, = {u € \{(0,0,---0,0)} : zi/ﬂ? qull.ydeJr/an ujdx
- 4 . 2.2 :
= Zyi /]R" uj, +i,j:;,i<j2ﬁi,j /]Rn uliuljdx, i=1,--- ,m}.
If we can show
cny <cy,m forall m=23,---,N—-1,
Ly ={h,lp,-- ,lu} C{1,--- ,N—1},

with
h<bh<--,ly
then we can see that Tjmin > O foralli = 1,---,N. Without loss of generality, we as-

sume cy_1 = min{cy,, ,, } and it is attained by (uy, uy, - - - ,un_1). By the implicit function
theorem, there exists a unique

S EE 2Binuig?dx — (VP + ¢%)dx
YNt Jra(|Vui|> + u?)dx

t(s) =1 +0(s%),
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such that (f(s)uy,t(s)uy, - - -, t(s)un—_1,t(s)s¢) € M for s > 0 small enough. So,
EN(tMl, tup, - -+, tuN-1, tSCP)

_A(s)

N-1
n (Z /R4(|Vui|2+u%)dx+sz/w(|vq>;g|2+|4>1*V|2)dx>
i=1

_1 NX:l/ (|Vu;|* 4+ u?)dx —(2_'3?’1\])52/ Ni;lz NP PR | Pdx
4 = R ! i 4 R = Binui ¢y

+ 0(s?)
<ENn-_1(uq,up, -+, un_1),

since B, < 2and s > 0 is small enough. Thus, we have Ty min > 0. The other cases are
similar. O

4 Proof of Theorem 2.1 and Theorem 2.4

Proof of Theorem 2.1 and Theorem 2.4. By Lemma 3.2, (170T1,0w, §oT2,0w, HoTsoW) is a posi-
tive solution of (2.1), where

1

L, i=1,2,3,
2
(,31'1T12,0 + BT + .31',3T3%0>

o =

and (1, 2,0, Ta0) satisfies V (11, T2, 13) = 0.
Next, we show that (#minTi min®, YminT2mim@, HminT3min@) is the unique positive
ground state solution of (2.1), where

1

, 1=1,2,3,

Nmin =

N|—=

ﬁ il le,min + IB i2 TZZ,min + IB i/3TI32,min>
and (71 min, T2,min, T3,min) Satisfies
f(Tl,min/ T2, min, T3,min) - f(Tl/ T, T3)min~
Since (Mmin T min@, Fmin T2,min@W, JminT3,min®) 1S a positive solution of (2.1), we have

(ﬂminTl,minw/ Hmin T2,minW, 77minT3,min7/U> S Ml/

1 2 2. L
4/]Rn(\Vw| —|—w)dx—45.
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Since V f (T4 min, T2,min, T3,min) = 0, from (3.7) in Lemma 3.2, we have

Mm
Mm

(.B 2, — :B 1,j) T]%min =0, (.B 3 :B 1,j) T]%min =0,

—.
Il
—
-
I
—

Mw
Mw

Y (B1j = Boj) Timin = 0, ) (B3 — B2,)) Tmin = 0, (4.1)

-
Il
—_
-
Il
—_

Mw
Mw

Y (B1j = B5,)Timin = 0 }_(B2j = B5,) Timin = 0.

-
Il
—
-
Il
—

Thus, by (4.1) and direct calculation, we have

3 3

4
Z‘uiTi,min +2 E ﬁl,] i,min ],mm
i=1 i,j=1,i<j

2 2 )
=T, min (ﬁLl T, min + IBLZTZ,min + 181,3T3,min)
) 2 2 )
+ T min (B21T min + B22T min + B23T min)
2 2 2 2
+ Tmin (B31 T min + B32T min + B33T min)

2 2 2 2
Ti min (ﬁ 3,11, min + :8 3,272 min + :B 3,3 T3,min)

|
.mm

Il
—_

2
T min (52 1T1 min T 132 2TZ min T ﬁZ 373 mm)

I
Mw

Il
=

2 2 2 2
Ti min (ﬁ 1,1 min + ;B 1,272 min + ;B 1,3T3,min) .

I
.mm

I
—

So

f (Tl,min/ T2,min, T3 mm)

Z l min

3 3 2
<Z —1 HiT lmm +2 Z i,j=1,i<j ;Blf] 1m1nT],m1n>
1
3 .2 2
(Zizl Ti,min)

(,B 31 le,min + IB 3,2 T22,rnin + ﬁ 33 T??,min)

Nl—

(4.2)

NI—

On the one hand, for any (uj, up,u3) € M; and by the definition of S3 (see (3.2b)), we
have

12 1
4;/11{'1(|Vui\2+u12)dx > 283
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Hence 1

On the other hand, by (4.2) and (#minT1 min®@, FminT2,min@, Jmin T3 min®) € M1, we have

c S E (Umin T,minW, HminT2,minW, ﬂminTS,minw)

3
=i (5 ) 7 [ (VP 4 w2)in
4\=3 R

3 2
1 Zi*l Tz‘ min '
_ = ’ 2 2
T4 .12 2 2 /”(|Vw| + w*)dx
Bi1 T min T Bi2Tamin + Bi3 T min
3 2
o Zizl Ti,min 1 2
CBinTE i+ B TR i + BisTh 5
i,1*1 min 212 min 1,3 '3, min
1 1
2a2 2
:Zf(Tl,min/ T2, min/, T3,min) 5° = 153
So,
1 2
E(ﬂminrl,minwr Hmin T2,minW, ﬂminTB,mir\w) = 153

Consequently, (#minTi min@, fminT2,min®@, JminT3,min@) iS @ positive ground state solution
of (2.1). If (T,min, T2min, 3,min) is the unique minimum point of f(71, T, 1), then
(Hmin Tt min@, min T2,min@, §minT3,min®) is the unique positive ground state solution of (2.1)
of the form (ciw, cow, c3w).

By Lemma 3.3 and above arguments, we complete the proof. The proof of Theorem
2.4 are similar to Theorem 2.1, we only need to replace i = 3 toi = N and use the second
part of Lemma 3.2, we omit the details here. Next, we prove the second part of Theorem
2.1 and Theorem 2.4.

Let (#minT1,min@, YminT2,min@, Jmin T3 min®W) be the unique positive ground state solu-
tion of (2.1) of the form (ciw, cow, caw) and let (uy, u20,u30) be any positive ground
state solution of (2.1) of Morse index 1. We first claim that

/]R" ’ui,0‘4dx = Uﬁiinrz%min /]R" ]w|4dx, i = 1/ 2/ 3/ (43&)

[ Juio
Rﬂ

To prove (4.3a) and (4.3b), we use implicit function theorem. We first consider the follow-
ing 3-coupled system, where j1; is replaced by y in system (2.1):

2\“]',0

2dx = i i T / |w|*dx for i,j=1,2,3. (4.3b)
Rﬂ

,min “j,min

—Aug +u; = yu‘i’ + ,31,211%1/[1 + ,31/311%1/[1 in R",
—Auy + Uy = pou + Poudus + Posuiu, in RY,
—Auz +uz = psui + Bsusuz + Paoudus in R”,

u; >0 in R", wuj(x)—0 as |x| = +o0, i=1,2,3,
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and the following function

2 2 2
T+ T

i, 1) = T (4.5)
(}”1 +Yi, Wit +2 Z?,jzl,i<j rBi,jTiszZ)

By the similar arguments as Lemma 3.2 and Lemma 3.3, there exists a small 0 < € < 1

such that (Tf,min(ﬂ)’T;,min(]’l)’T?f,min(ﬂ» is unique for u € (u1 — €, 41 + €) and

(Tl*,min(l’l)/ TZ*,min(l’l)/ TB*,min(V))

satisfies
2 HV s L1, L2, .
i, 2,1) = H (b, 7, 20 %) =0, i=123,
(VTl + Zz 2”11—4 +22 i,j=1,i<j IBl]T Tz) :
where
3 3 3
HY(w,1,7,0) =Y wtt+2 Y, Bymt —(G+5+1) | ) At
i ij=1,i<] =1
2 > o
=17 | (B21— Z Boj—B1)T | + 7 | (Bag — )T + Z Bsj— BT}
j=2 j=2
3
(11, 72,13) = 74 | (4 — B21) 75 +Z Brj—Bo)T | + 75 | Y (Bsj— Bay)
=1

Thus Hl” (4,71, 2, 13) = 0,i = 1,2,3, which implies that

p

(Bag —m T1+Zl32] Brj)TF =0,
(Bsp —p T1+Zﬁ3] Br))T? =0,
(n— ﬁ21T1+Z B1j— B2j)T7 =0, (4.6)
(1 — Bsa) T1+Z Bij— B3j)TF =0,

3 3

Y (Bsj— B2)T =0, Y (B2j— B3,)T7 = 0.

(/=1 j=1
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Since (T min, T2,min, T3,min) 1S the minimum point of f(7, 2, 73) (see (2.3)), we have

z
27T minH; (11, T, min, T3,min, T3,min)

FE (41, Tt ming T2min, Tmin) = =0.

NI

3 2 2
(nulTl min T Z:z 2 HiT zmm +2 Zi,]':l,i<j lBi/jFL-i,minFl'—j,min)
By direct calculation, we have

Gij

foiz (H1, T mins T2min, T3,min) =

NI

2
<H1T1m1n+21 2 Hi 1m1n+22] 11<]lBl] zmmT]mm)

where
3

Gij = 4T minTjmin (Z(Zﬁj,k — Bix — ,Bi,j)T]?, min) .

k=1
By (4.6), we have

Gi,j = 4TiminTjmin <k321(/3j,k - ,Bz',j)T]?,min> :
Since (T min, T2,min, T3,min) 1S the minimum point of (7, 72, 13) (see (2.3)), then
fE (1, T min, 2omin, Bymin) =0, i=1,2,3
LetG = [(31',]']3X 3 be the matrix defined above, then det § # 0 and so
V 5 (41, Tt min, 2min, Bymin) Z 0, 1,j =1,2,3.
By the implicit function theorem, we know

(Tl*,min(l’l)/ T?jmin(l’l)/ T;,min(l’l))

is also C! for u € (u1 — €, 11 + €). Thus, the energy functional associated with (4.4) is
given by

3

31 1 1
W= [ (98 -y L3t o = g [, v
= =
- 1/ iﬁ uuldx
4 n ‘ . l,] 1 ] 7

(‘u) E(“l/l, ﬂmlnrl mm(.u)wl U;inrik,min(‘u)wl W:xlmT;,min(ﬂ)w)

3 ) 1
Z 77m1n ]mm)21 |:/]R" |Vw|2dx+/w wzdx} .
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Next, we show that

- inf E(u, tuy, tuo, tuz). 4.7
1) (tntiani3) €30 [(0,0.0)} 10, (p, tu, tuz, tus) (4.7)

Indeed, by the definition of ¢; (y¢), for any € > 0, we can take a (11, uz, u3) # (0,0,0), such
that

3 3 1 3
3 [ (VP + ayix = W [ ubdxtgn [ wbdxt [ Y pubddx @8)
= j=

i#]
and
E(p,u) < c1(p) +e.
By (4.8), we have
E(y,u) = r?>a0x E(u, tuq, tup, tuz) > (ul,uz,u3)i€rﬂlf\{(0,0,0)}ntl>aOX E(u, tuy, tup, tuz).
Thus,

> inf E, (tuq, tus, t .
AW 2 s T (0000 T Bt bz, )

On the other hand, by the definition of

inf E(u, tuq, tuo, tu f €>0,
(ul,uz,ua)ler;C\{(O,O,U)}I?>aox (ks tur, tuz, tus) - for any

we can take a (19, up, u3) # (0,0,0) such that

E(p, tuu, tulin, tyliz) = max E(u, tuy, tuy, tus)
>

< inf max E(u, tuy, tuo, tus) + €
(u1,u2,u3)€H\{(0,0,0)} t>0 (,‘I/l 1 2 3)

and (tyu, tulip, tyuz) satisfies (4.8), which implies that
(tuulz tu“Z; tuu3> S Ml,w

where My, is a Nehari manifold when 1 was replaced by y in Nehari manifold M;.
Thus

c < inf E, (tuq,tus, tus).
1) S i B 000y T Bl iz, ta)

So the proof of (4.7) is complete. Thus, there exists () > 0 such that

E(p, t(p)ur0, t(p)unp, t(p)usp) = max E(p, tuq o, tup, tusp),
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where t(u) > 0 satisfies F(u, t(p)) = 0 and

3 3
F(ut) = (V /]R uiodx + ) pj /]R tjodx + /]R Zﬁi,juiouﬁodx)
=2 7

i [/ \Vujolz —i—u]O)dx} )

j=1
Since SF
F(p,1) =0, 5-(m,1) >0,

by implicit function theorem, there exists 6 > 0 such that t(u1) = 1, (1) € C(py —

0,1+ 6) and

f]Rn \“10|4dx

() = —

By Taylor expansion, we have

) =1+t (1) (p — 1) +o(|p — pal?),

thus,
() = 1+2 (1) (4 — 1) + (| — m]?).

Since

3

) {/ (IVujo? +u? )dx]

j=1

3

> / ]de—i—/ Z,Bz]”m“]odx
—4c( 1),

then, by (4.9)-(4.11), we have

c1(p) < Eu(t(p)uao, t(p)uz0,t(p)usp)
3
3P0 L | [ (V0502 + x| = a)20)

j=1

f]Rn |u1,0 |4dx

2 (Z] VW g ujodx—kf]Rn i2j Biju; o”]odx>

=c1(p1) —c1(p) (

+o(lu—ml?)
l
=c1(p1) — !“10|4dx(14 ) +o(lp — ml?).

3 4 3 2 .2
Y1 Hj Jre ”]',odx + Jg Yizj /3i,j”i,o”j,odx

yﬂ—m)

(4.9)

(4.10)

(4.11)
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Thus
) Zerla) 5 1/ et o(ju—mP) as g,
B— 4 Jre
SO
1
() > 1/ |0 dx.
Similarly,
a(p) —alm) _ 1/ 4 2
—_— = < —— u dx +o(|lu — as
= = 4 o 1410 ([ =l N
and
1
i) < =5 [ usol*dx.
Hence

1

/ 4

c = —- Uy 0| dx.

1) = =7 [, ol

Since (HminTi,min@, FminT2,min@, min T3min@) is the ground state solution of (2.1), we have

4

4
L TE .
ci(m) = —7;7““41’“““ /n whdx.

Thus,
45 4 _4 4
/ lur0[*dx = UminTl,min/ wdx.
R" R"

By the similar arguments as above, that is, by computing ¢} (12), ¢} (#3), we obtain
[ ol = it [ ol i=2,3
Thus, we get (4.3a). Similarly, by computing ¢’(B; ;), we obtain

/ |ui,0|2|uj,0’2dx = H;inﬁ%minr]%min/ |w|4dx for i < ] = 1/ 2/ 3.
R)Z ]Rn

Thus, by (4.3a), (4.3b), we have
/]R" ]uilo|2|u]-,0|2dx = Tz-,_rﬁinﬂ%min /]R” lujo|*dx for i<j=1,2,3. (4.12)
Next, we prove

(u1,o, Uuz0, Ma,o) = (WminTl,minW, NminT2,minW, ﬂminT3,minw)-
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Since (minTLmin@, Hmin T2,min@W, Jmin T3 minW) is @ ground state solution of (2.1), we have
2 2 2 2 2 2 _
‘ulrlmin’rl,min + ﬁ1/277minr2,min + ﬁlr?)ﬂminTB,min - 1’
2 2 2 2 2 2 _
:B 2,1 min T min + K21 min T2 min + .32,3’7m'mT3,min =1, (413)
2 2 2 2 2 2 _
ﬂ3,177minrl,min + ﬁ3/277minr2,min + I’l377minT3,min =1

Let

Uuio Uuz,0 uso )

<M1,M2,M3> = ( ’ ’ s
NminTl,min  YminT2,min  #min T3,min

then, by (4.12) and (4.13), we have

1
/]R,,,(W“i’Z 147 )dx = / (Vo + 1) dx
min “{,min
1
=22 /n (Vi“;%o + Zﬁi,jui%ou]z-,g)dx
Mmin i,min i#j
1
S ) [ ol
UmmTz min <‘ul l;]ﬁl,] pmin ],mm R" ’

dx

T

171’1111’1 1, min

:/ |ui| dx, i=1,2,3.
Rn

Hence, .
/ (|Vu* + u?)dx > / (|Vw* + w?)dx, i=1,2,3.
Rl’l Rﬂ

Since (u1, Uz0, 43,0) and (Pmin T min@, Fmin T2,minW, YminT3,min®W) are both the ground state
solution of (2.1), we obtain

N

3 1 3
3 L i hnin [ (V0P )= 3 [ (1Fuiof? + g )dx

1 1
72 min lmln/”(|vui‘2+ui2)dx > Eznilinngmin/ﬂin(’vw‘z+w2)dx/
i i

g;

which implies that
/ (|Vu|? 4+ u?)dx = / (|Vw|* + w?)dx, i=1,2,3.
R R”

So, u;, i = 1,2,3 are positive ground state solutions of (1.5). Since (u1, U2, Uz ) satisfies
(2.1) and

2 2 2 2 2 2 _
M1 min T, min + :B 21" min T2, min + :B 31 min T3,min = 1,
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we have

3

_ 2 2 3 2 2 2 2 2 2 _
_Aul +up = Vlﬂminrl,m'mul + ﬁZ,lﬂminTZ,minMZI’ll + 133,1’7minT3,minu3u1 = Uj.

So

u“i’ = uful and u; =u;, i=2,3.
Since (1.5) has a unique positive ground state solution w, thus, we have
(11,0, 42,0, 43,0) = (Mmin T, min@, Nmin T2,min W, NminT3,min ) -

The proof is thus completed.

253

The proof of second part of Theorem 2.4 is similar to the proof second part of Theorem

2.1. We choose auxiliary function as following

N .2
Yis1 T
4, vN 4 N 2.2
(Vfl FYizo T + 2 01,4 Bij T T >

gy(,u/TllTZI' o /TN) =

N=

So

2THH ,T,T,"',T
g;’é(y’TLTz/"'/TN): ! l<‘u 1,72 N> =0,

(et + XNy et + 250 e Biy TR

NI

where

H
Hi (VIT]/TZI' o /TN)

N N N
=ut + ) wT +2 ), BTy - (WA TE e+ 1) (Z /Si,fo)
j=1

i=2 i,j:1 i<j

N
—Tl ((V :Bll Tl + Z ,Bl,] ﬁz,] ) + T2 (Z<52/] — ,Bl,])T]2> c.

j=1
+ (
]
+ Tﬁ;_l <
j

M=

N
(Bi- 1j — .Bz,]) ) +T1+1 lzl Bit1,j — ‘31,] ]

N
(:BN—lj 131] ) +TI%I (Z BN, — ﬁz,] )

j=1

Il
—

™=z

1
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Thus Hf(y, T, T, - ,TN) =0,i=1,---,N, which implies that
(v —Bi1) "ﬁ"‘Z,Bl] ‘Bl]T =0,

Z(ﬁz,j —Bij)T7 =0,

j=1

(,51 Lj — 51‘,]‘)7']'2 =0,

= L=

(ﬁl-i—l] IBi,j)sz - 0;

~.
Il
—_

S

(ﬁN 1] — .Bz',]')Tj2 =0,

~.
Il
—_

M™M=

(Bn,j — Bij)TF = 0.

Il
—_

j

The other part of the proof is similar as the proof of the second part of Theorem 2.1. [

5 Proof of Theorem 2.2 and Theorem 2.5

Proof of Theorem 2.2 and Theorem 2.5. We follow some ideas from [10] and recent
work [29], where two-coupled system was considered. Indeed, by Lemma 1 and Lemma
21in [16], w is the unique function attaining S. Thus,

/ (Vw2 + w?)dx = [ widx = S2.
R” R"

On the one hand, if dy, d», d3 satisfy (2.5), it is easy to see that
(d1w, dzw, d3w)

satisfies (2.1) and belongs to M3. So
¢3 < E(dyw, dyw, dyw) = Zd2/ (IVw? + w? Zd252. (5.1)

On the other hand, let (1, U2, U3,,) € M3 be a minimizing sequence for c3, that is

E(”l,n/ Uz n, uS,n) — (3 as n — +oo.
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Define

%
Qi = </}R u;{ndx> , =123,

then by the definition of S (see (3.2a)) and Holder inequality, we have

1
2
S(/ u‘llndx> g/ (|Vuy,|* +u3,)dx
n 4 R” 4

3
4 2 .2
R A R

1 1
<m /]R" Ui pdx +;Z; B1, (/]Rn u‘indx> i (/IR” “?,Mx) :
Thus

S < miqin + B12q2n + B1,3q3-
Similarly, we have

S < magan + Boaqi,n + B2,3931s
S < usqsn + B3iqin + B3292.n-

Since s
1
Bt 12, 3) = Z; /R (Vujl? + 122, )dx,
=
we have
> > 2 2
SY gin < 2/ (Vi + 122, ) dx
j=1 j=1/R"
=4E(u1,, Uz, u3,) +0(1)
3
=4c3+0(1) < gdjzsz +0(1).
]:
Thus

3 3
Y 9ia < Y d2S +0(1).
=1 =1
By (2.5), (5.2) to (5.4), we obtain
(g — d3S) + B12(q2,n — d5S) + Bu,3(gan — d3S) > 0,
B (g1 — d3S) + pa(qan — d58) + Bos(gan — d3S) > 0,

B3,1(q1,n — d1S) + B32(q2n — d35) + u3(gan — d3S) > 0,
(10 — d3S) + (q2,0 — d35) + (gan — d35) < o(1).

255

(5.2)

(5.3a)
(5.3b)

(5.4)

(5.5)
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We claim
(g0 — d2S) + (qon — d3S) + (gan — d3S) — 0 as n — 4oo.

Indeed, from (5.5), we have

BX >0,
where
Hi, P2, Pis qin — d2S 0
B=| Ba, M2, B |, X=| gan—d5S |, 0= 0
B3, P32, M3 Gan — d3S 0

Next, we show
(ql,n - d%S) + (6]2,;1 - d%S) + (qS,n - d%S) > 0.

Since B~ is the invertible matrix of B, we let

BX=C>0=X=3BC,

where
‘31’1, 131’2, 131/3 Cl
B~ = ﬁ?.,l, 52,2, ,32'3 , C = C2 ,
‘33’1, ‘33,2, IBS’S C3

then, if Y3, B¥ > 0 for all k = 1,2,3, we have

Z(qzn_ j iiﬁlkck (Z k)

i= i=1k=1 k=1

w

3 .
Y. B*) >o0. (5.6)

=1

/N

By (5.5) and (5.6), we have

(qin — d3S) + (qon — d3S) + (q3,n — d3S) — 0 as n — +oo.

Thus,
3 3
Zq]-,n — Zd]zS as n — +oo.
=1 =1
So
1.3 1S 50
CS—HETOOE(ulnIMZn/ufin)2452%71:12%‘5 . (57)

Il
—_

j=1 j

Combining (5.1) with (5.7), we have

ZdZSZ dlw dzw d3ZU)
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Thus, (diw, dyw, dsw) is a positive ground state solution of (2.1). The proof of Theorem
2.5 are similar to above proof.

To proof the uniqueness of positive ground state solution of (2.1), we show that if
(u1,0, Uz, usp) be any ground state solution of (2.1), then

(11,0, U2, Uzp0) = (diw, dyw, dsw).

Let (u1,0,t20,u30) be any ground state solution of (2.1), then by strong maximum
principle, we have u;o > 0,j = 1,2,3. We claim

/ whdx = d* | whdx for i=1,2,3, (5.8a)
Rr R"

/ , Uiotodx = didj | widx - for ij=1,2,3 (5.8b)

To proof the claim, we consider the following system, where i is replaced by y in system
(2.1).

—Auy +uy = pui + Bioudug + Braudu;  in R7,
—Auy +upy = yzug + ,Bz/lu%uz + ‘52,31/1%1/!2 in R”,
—Auz + uz = psu + Bsjudus + Paoudus  in R,

u; >0 in R", wuj(x)—0 as |x| = 4o, i=1,2,3.

The corresponding energy functional is given by

3 3
1 1

Ey(p 1, u2,u3) =) = /IRn(Wujl2 +uf)dx — o ) i juiujdx

j=1 i#]

4 2,1 4

_ ]l /]Rn uldx —]Zz 1;11] /]Rn u]'dx.
It is easy to see
c1(p) = inf max E, (p, tuq, tup, tuz).

(u1,u2,u3)€H\{(0,0,0)} t>0

The next steps are same as the proof of Theorem 2.1 and Theorem 2.4. Thus, we have
proof

(u10, U, usp) = (drw, drw, dzw).

Thus, we complete the proof. O
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6 Proof of Theorem 2.3

Proof of Theorem 2.3. Step 1. When ZZ = m, then (d1w, dyw, dsw) is a positive ground state
solution of (2.1). On the one hand, it dy, d3 satisfy following equation,

(p1 + Brom?)d + B13d3 =1,
(pam? + Bo)d3 + Bopds =1,
(B31 + Baom?)d? + psd3 = 1.

So
{(Vl + pokt +2B12m7)d5 + (Br3 + Baam®)d5 = 1+ m?, 6
(B3 + Baam?)d? + pzd3 =1,
it is easy to see that (dyw, md;w, dsw) satisfies (2.1) and belongs to M,. So
c2 <E(dyw, mdiw, dzw)
1
= (L) + ) /anvm\z +w?)dx
1
=4 ((L+m*)d] +d3) $°. 6.2)

On the other hand, let (112, Mmu12,4, U3,) € Mp be a minimizing sequence for ¢y, that is

E(u1p,, M1, Usy) — C2 @S N — 400,

1 1
2 2
4 4
5]12,;1 = </ u12,ndx> 7 5]3,71 = </ MSIndx> 7
R” R"

then by the similar arguments as (5.2), we have

Define

S < usqan + (Bs1 + Ba2m* )iz, (6.3a)
(1+m*)S < (1 + pok* +2B12m*)q120 + (B13 + B2,3m*)G3,n- (6.3b)
Since
S((1+m*)qram + qan)

g(l—|—m2)AH(IV“12,n’2+“%2,n)dx+/Rnﬂvu&”‘z""u%'”)dx
:4E<u12,n1 mu12 u, “3,11) + 0(1)

:4C2 —|—0<1)

< ((1+m?)di +d3) S*+o(1).
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So
(14 m2)(q12,0 — d7S) + (43,0 — d35) < o(1). (6.4)
Thus, by (6.1), (6.3a), (6.3b) and (6.4), we have
(1 +m?)(q120 — d1S) + (3.0 — d3S) < 0(1),

(p1 + pok* +2B1o0m?) (q120 — d2S) + (B1s + B2,sm?) (g3, — d3S) > 0, (6.5)
(B3 + B32m?)(qran — d1S) + a(qn — d35) > 0.

Next, we claim
(1+ mz)(qlzln — d%S) + (930 — d%S) —0 as n— +oo.

From (6.5), we have
DX >0,

where

7 p1 + pok* +2B1o,m?, B3+ ,32,37112 X — G1on — d{-S 0 0 .
B3 + Baam?, M3 ’ qan —d3S )’

Next, we show
(1+m?) (g1 — d3S) + (g3, — d3S) > 0.

Since D~ is the invertible matrix of D, we let

DX=C>0 = X=DC,

where
_— Dll, DlZ _ Cl
- D21 D22 4 C= CZ :
If we let
(1+m?) D" + D! >0,
(1 _|_ mZ)D12 _|_ DZZ Z 0,
then
(1+ m?)(qu2,0 — d7S) + gz — d3S
=((1+m*)D" + D*")C1 + ((1+m*)D* + D*?)C,
>0.
So,

(1+m?)(q1o,0 — d3S) +qan —d3S — 0 as n — +oo.
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Thus,
(1+m)q12n + qan — (1+m?)d2S +d3S as n — +oo.
So,
2= nl_i)r_{loo E(”lZ,n/ muq2 p, ugln)
1
2,51+ m*)q1on + Gan)
1
= (1 +m?)di +d3)S*.
Thus,
1
2= (1 +m*)di +d3)$%
So when
i,
d

(dyw, dyw, dzw) is a positive ground state solution of (2.1).

Step 2. We show that if (115, mu120, us) be any ground state solution of (2.1), then
(12,0, mutr20, Uz ) = (diw, mdyw, dzw).

The next steps are similar as we proof Theorem 2.1, for readers conveniences, we give the
details here.

Let (u12,0, muq20, Usp) be any ground state solution of (2.1), then by strong maximum
principle, we have uip9 > 0,u39 > 0. We claim

4 4 4
Uty gdx = d wdx, 6.6a
/]Rn 12’0 1 R” ( )
/ b ody = & [ whdx, (6.6b)
R Rr
/ Uiy gU3odx = didj Ydx. (6.6¢)
R” R”

To proof the claim, we consider the following system, where y; is replaced by y in system
(2.1).

—Auy +uy = yui’ + ﬁl,zugm + ﬁl,guéul in R”,

—Auy +upy = ,‘l/lzug + ,32,114%1/[2 + ,32,31/1%1/12 in R”,

—Auz +uz = }lgug + ,33,114%1/[3 + ﬁ3/2u%u3 in R”,

u; >0 in R", wu;(x)—0 as |x| = 4o, i=1,2,3.
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The corresponding energy functional is given by

Eu(p, u1,uz,u3) Z / |Vu]]2—i-u dx — — Zﬁljuluzdx
Z#J

—y/ dx— 4y]/ 4dx.

It is easy to see

— f E, (1, tuq, tmuy, t
2 = s e (0000 T B iz, iy, k).

Thus, there exists t(¢) > 0 such that
Eyu(p, (g0, t(p)mutrz,o, t(p)us) = max Ey (p, b, tmuy, tus),

where t(y) > 0 satisfies F(u,t(p)) = 0 and F(u, t) is defined as following

F(u,t) =2 <;4 /]R" u‘ﬁ/odx + ;uzm4 /Rn u%zlodx + u3 /]R" ué/odx
+ /]R 2p1 2ty gdx + /IR (2B15+ 2ﬁ2,3m2)u%z,ou§,odX>
- [(1 + m?) /]Rn(|Vuu,o|2 + ufpo)dx + /W(|VM3'O|2 + u%/o)dx] ,

then

oF (u,t
P, 1) =0, 2 1) >,

by implicit function theorem, there exists 6 > 0 such that t(y1) = 1, t(1) € CH(p1 —
0,41 + 6) and
t' (1) (6.7)

Jn l112,0|*dx
2((p1 + pam* +2B12m2) [ ufy 0dx + [ (2B1,3 +2Bam?)ugy gu3 0dx + p3 [ 13dx)

By Taylor expansion, we have

() = 1+t () (u — 1) + ol — 1 %),

thus,
() =142 (1) (u — p1) + 0| — a)?). (6.8)
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Since

dor(py) = (1—|—m2>/]R (’V”u,o\z+“%2,0)dx+An(‘V”3,o\2—|—“§,o>dx

n

= ((7,{1 + pgm* + 281 om?) /]R" u‘llz,odx + /]R” (2B13+ 2ﬁ2[3m2)u%2,0u§,0dx
+ i3 /]R ubgdx), 6.9)
then, by (6.7)-(6.9), we have
ca(p) < Ey(t(p)urzo, t(p)kuizp, t(p)usp)
=320 () [ (FuraoP + )+ [ (Tusol? + udg)r)

=c3(p1)
B c3(p1) fro lur20*dx(p — 1)
((Vl + pam* + 2P12m?) Jeu Ui 0% + [ (2B13 + 2B23m2)uty o113 gdx + i3 [ ”é,odx>
+o(lp—ml)

1
=es(i) = g o, lwol'dx(p—p) + ol = ).

Thus 1
() —e2(m) o _7/ |uraol*dx +o(|u — ml?) as u g,
n—m /R
SO
! 1 4
calp) = =7 /}R |t12,0["dx.
Similarly,
ca(p) — () _1/ Junzl®dx + o —mf?) as N\,
H— /R
1
Cé(.“l) S _1 /]Rn ’M12,0’4dx-
Hence

1
Since (dyw, kdiw, dsw) is the ground state solution of (2.1), we have

/ d% 4
i) = 7 [ whdx.

/ ]u12,0]4dx:d‘11/ widx.
IRH IRH

Thus,
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By the similar arguments as above, that is, by computing c4(12), ¢5(¢3), we obtain

/ lug o|*dx = d%/ |w|*dx.
R R”

Thus, we get (6.6b). Similarly, by computing c3(8;,;), we obtain

/ 120 [2 13,0 2dx = d2f2 / lw|*dx.
R” R”

Thus, by (6.6a), (6.6c), we have

/;n]ulZOF\uagfdx:::dfzdgjgﬁ|u110ﬁdx. 6.10)

Next, we prove
(12,0, Mut12,0, Uz0) = (dyw, mdiw, dsw).

Since (dyw, mdiw, dsw) is a ground state solution of (2.1), we have

(11 + Brom?)d} + B13d5 =1,
(pom? + Bo1)d3 + Boad3 =1, (6.11)
(Ba1 + Bspom?)d? + usd} = 1.

Let

U0 Mui20 U30
(M12/WM12/ u3) ’

di ' dr ds
then, by (6.10) and (6.11), we have

/Rn(|Vu12|2 + 1)) dx

1
:ﬁ /]Rn(|Vu12,0|2 + M%Z,O)dx
1

1
=2 /Rn((ﬂl + Bram? )l + Buatity gli3 ) dx
1

1 _
Z?(ﬂl + ,31,sz -+ ,31,3d1 2d§) /IR" |u12’0|4dx
1

1
:74/ |u12,0|4dx:/ |u12|4dx.
d; JRr RR"

Similar, we have

[ (Vs + ud)dx = [ Jus|ax.
Rn IRH
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Hence,
/ (| Vitra]? +u12)dx>/ (Vw2 + w?)dx,
n IR"
/ (|Vus|? + 12) dx>/ (Vw2 + w?)dx.
R” R”

Since (u12,0, mu12,0, U30) and (d1w, mdw, dsw) are both the ground state solution of (2.1),
we obtain

(L) + ) [ (Vo +?)d

=1 fo, A+ w2 (Vuiz P+ uhyg) + (IVunol? + 1)
[ (14 m? d2 (\Vuu! +u12)dx+d3/n(|Vu3|2+u§)dx

b—\»-lkﬁ—\ »-IMH»P\H

> (14 m?)d +d2>/w<|w12+w2>dx,

which implies that

/IR”(|Vu12!2+u%2)dx = /]Rn(|Vw|2—|—w2)dx,
/]Rn(|Vu3|2+u§)dx — /Rn(|Vw|2—|—w2)dx.

So, u1p, u3 are positive ground state solutions of (1.5). Since (u1p, mu120, Us) satisfies
(2.1) and (p1 + B1om?)d? + B13d% = 1, we have

2\ 12,3 2.2 3
—Aurp + w1z = (1 + Prom”)diuy; + Bsdsuzuny = ug,.

So
3 _ .2 d _
Uip = Uzl an usz = uqa.

Since (1.5) has a unique positive ground state solution w, thus
(12,0, mur20,uzp) = (dyw, mdiw, dzw).

This completes the proof. O
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