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Abstract. This paper concerns with existence and qualitative properties of ground
states to generalized nonlinear Schrödinger equations (gNLS) with abstract symbols.
Under some structural assumptions on the symbol, we prove a ground state exists and
it satisfies several fundamental properties that the ground state to the standard NLS
enjoys. Furthermore, by imposing additional assumptions, we construct, in small mass
case, a nontrivial radially symmetric solution to gNLS with H1-subcritical nonlinearity,
even if the natural energy space does not control the H1-subcritical nonlinearity.
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1 Introduction

We consider the generalized nonlinear Schrödinger equation (NLS for abbreviation) of
the form

i∂tψ = P(−∆)ψ− |ψ|p−1ψ, (1.1)

where ψ = ψ(t, x) : R×Rd → C with d ≥ 2 and P(−∆) is defined as a Fourier multiplier
of symbol P = P(λ) : [0, ∞) → R. The nonlinear Schrödinger equation is a universal
equation describing dynamics of waves in various physical contexts. When P(λ) = λ,
the equation is simply the standard NLS, and it appears in nonlinear optics or as a mean-
field approximation to the many-body bosonic system The case P = λs/2, 0 < s < 2 arises
in the study of fractional Schrödinger equations [15]. When relativistic effects are taken
in account, the symbol P =

√
λ + m2 −m, or more generally P = (λ + m2)s/2 −ms with

0 < s < 2, is chosen [18].
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In this article, we are concerned with the ground state solution to the generalized NLS
(1.1). By a ground state, we mean a standing wave solution of the form

ψ(t, x) = eiµtu(x), µ > 0, (1.2)

which minimizes the value of the action integral. A rigorous definition of a ground state
shall be given in Section 4. As for the standard NLS, i.e., the case P(λ) = λ, inserting the
standing wave ansatz (1.2) into (1.1), we get the standard stationary NLS

−∆u + µu = |u|p−1u. (1.3)

In this case, the theory of ground states has been almost completed during several
decades. A criteria for their existence and nonexistence, depending on the range of µ
and p, is established in [1, 22, 23]. Qualitative properties of ground states, such as posi-
tiveness, radial symmetry, monotonicity, and uniqueness have been proved in [4, 13, 14].

With a general symbol P, the stationary generalized NLS is given by

P(−∆)u + µu = |u|p−1u in Rd. (1.4)

For some special choices of P, such as λs/2 and
√

λ + m2 − m, a great deal of intensive
works on ground states to (1.4) have been carried out. An important remark is that
ground states to (1.4) with aforementioned symbols share common qualitative properties
such as sign-definiteness, radial symmetry, monotone decreasing property and unique-
ness [3, 5, 6, 9–11, 16, 20].

In this paper, we are interested in finding general conditions on the symbol P which
allow ground states to the generalized NLS (1.4) to have the same kinds of qualitative
properties. We propose the following structural assumptions for the symbol P:

(H1) P : [0, ∞)→ [0, ∞) is continuous on [0, ∞) and smooth on (0, ∞);

(H2) P is a Bernstein function, i.e., P′ is totally monotone (see Section 2 for definition);

(H3) there exists s ∈ (0, 2] such that P(λ) & λ
s
2 for all large λ.

Important examples of differential operators satisfying the assumptions (H1)–(H3) in-
clude the factional Laplacians P(λ) = λs/2 with 0 < s < 2 and the generalized pseudo-
relativistic operators P = (λ + m2)s/2 − ms with 0 < s < 2. Some algebraic functions

λ
(λ+1)s , 0 < s < 1 or λβ−1

λα−1 − 1, 0 < α < β < 1 are also included. For more examples
satisfying (H1)–(H3), we refer to the comprehensive book [21].

Our first theorem states that by assuming (H1)–(H3), one can construct a ground state
to (1.4) that fulfills desired qualitative properties.

Theorem 1.1 (Existence of a ground state). Suppose (H1)–(H3). Let p ∈ (1, (d+ s)/(d− s))
be given. Then for any µ > 0, the generalized NLS

P(−∆)u + µu = |u|p−1u in Rd (1.5)

possesses a ground state u ∈ HP+µ which is positive, radially symmetric and monotone decreasing
in the radial direction.
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The sign-definiteness of a ground state is naturally expected for the original NLS as
a result of Hopf maximum principle enjoyed by second order elliptic PDEs. Here, we
show that the minimizing property of a ground state and the strict positiveness of the
fundamental solution of the operator P(−∆) + µ gives the same consequence.

Theorem 1.2 (Sign-definiteness of a ground state). Suppose (H1)–(H3). Let p ∈ (1, (d +
s)/(d− s)) be given and u ∈ HPµ be a ground state to (1.4). Then u0 is either positive everywhere
or negative everywhere.

The radial symmetry of a ground state is usually shown by the moving plain
method [13] for standard NLS or by strict Riesz rearrangement inequality [17] for frac-
tional NLS and pseudo-relativistic NLS. These methods do not seem to work without the
explicit form of P. As for uniqueness, a standard argument requires spectral information
for the linearized operator at the ground state (see [4]). In [16], Lenzmann showed by a
perturbative method that a (radial) ground state to pseudo-relativistic nonlinear Hartree
equations (NLH for abbreviation) is unique for the small mass case. In [8], the authors
developed, in a similar point of view, some perturbative arguments that show the unique-
ness, up to a translation, of a (possibly non-radial) ground state to higher-order NLH. In
the same spirit, we are able to show the symmetry and uniqueness of a ground state un-
der more restrictive assumptions on P and p when µ is sufficiently small. More precisely,
we require that

P(0) = 0, P′(0) = 1 and P′′(0) exists. (H4)

We note that the choices of P(0) = 0 and P′(0) = 1 in (H4) are just for numerical simplic-
ity. Indeed, the assumption (H4) can be relaxed to

P(0) > −µ, P′(0) > 0 and P′′(0) exist (H4’)

by a simple reformulation of Eq. (1.4).

Theorem 1.3 (Uniqueness of a ground state). Suppose (H1)–(H4). Let p ∈ (1, d/(d− s))
be given and u ∈ HPµ be a positive ground state to (1.4). Then there exists µ0 > 0 such that if
µ ∈ (0, µ0) then u is unique up to a translation.

The uniqueness result asserted in Theorem 1.3 is perturbative in nature. Indeed, the
smallness of the mass µ is transferred to the smallness of ε > 0 in the equation

1
ε

P(−ε∆)v + v = |v|p−1v

by the scaling u(x) = ε
1

p−1 v(εx). This shows Theorem 1.3 crucially depends on the exis-
tence of P′(0) in (H4). Actually, the convergence of the formal limit

1
ε

P(−ε∆)→ ∆ as ε→ 0 (1.6)
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plays an indispensable role in the proof.
It is worth to mention that when P(λ) =

√
λ + m2 −m, the formal limit process (1.6)

is called the non-relativistic limit. In [6], the authors are able to construct a nontrivial
radial solution to pseudo-relativistic NLS (the case that P(λ) =

√
λ + m2−m) with every

H1 subcritical range of p for sufficiently small ε > 0 by exploiting the convergence of
nonrelativistic limits. Later, the same result is obtained in [20] for P(λ) = (λ + m2)s/2 −
ms. We note that this family of solutions cannot be come from ground states or any
variationally constructed solutions because the energy space controlled by the pseudo
relativistic symbol (λ + m2)s/2 − ms is Hs/2. In the following theorem, we generalize
these results to Eq. (1.4) with the symbol P satisfying (H1)–(H4).

Theorem 1.4 (Existence of a radial solution for H1 subcritical range of p). Suppose (H1)–
(H4). For any p ∈ (1, (d + 2)/(d − 2)) and any q > d/s, there exists µ0 > 0 such that if
µ ∈ (0, µ0) then there exists a radially symmetric nontrivial solution u ∈Ws,q(Rd) to (1.4).

The rest of this paper is organized as follows. In Section 2, we introduce the concept of
Bernstein functions and the properties of Fourier multiplier operators made by Bernstein
symbols. In Section 3, we construct a nontrivial radial solution to (1.4) for small mass
µ > 0 by using perturbation argument. Section 4 is devoted to the study of existence and
qualitative properties on ground states to (1.4).

2 Preliminaries

2.1 Bernstein functions

A continuous function f : [0, ∞) → [0, ∞) is said to be totally monotone if it is smooth on
(0, ∞), and

(−1)n f (n)(λ) ≥ 0

for all nonnegative integer n and λ > 0, where f (n) is the n-th derivative of f . Totally
monotone functions are an important class of functions in many areas of analysis. We
refer the book [21] for a comprehensive overview. As for totally monotone functions, an
important theorem is Bernstein’s theorem. It asserts that a totally monotone function is
the Laplace transform of a Borel measure.

Theorem 2.1 (Bernstein’s theorem [2]). If f : [0, ∞)→ [0, ∞) is totally monotone, then there
exists a non-negative Borel measure µ on [0, ∞) such that

f (λ) =
∫ ∞

0
e−tλdµ(t).

From now on, we assume that f : [0, ∞) → [0, ∞) and f ′ is totally monotone. Such a
function is called a Bernstein function. Note that the symbols (λ + m2)s −m2s, 0 < s < 1



J. Seok and Y. Hong / Anal. Theory Appl., 37 (2021), pp. 157-177 161

for the pseudo-relativistic operator or λs, 0 < s < 1 for the fractional Laplacian are ex-
amples of Bernstein functions. We define the Hilbert space H f (R

d; R) by the completion
of C∞

c (Rd; R) with respect to the norm

‖u‖H f :=
{∫

Rd
f (−∆)u · u dx

}1/2

.

This function space is equipped with the inner product

〈u, v〉H f :=
∫

Rd
f (−∆)u · v dx.

First, we prove that the symmetric decreasing rearrangement reduces the norm.

Proposition 2.1 (Pólya-Szegö inequality). Suppose that f : [0, ∞) → [0, ∞) is a Bernstein
function. Then, for any non-negative function u ∈ H f (R

d; R), we have

‖u∗‖H f (Rd;R) ≤ ‖u‖H f (Rd;R),

where u∗ is the symmetric decreasing rearrangement of u.

Proof. We claim that if f is a Bernstein function, then e− f (λ) is totally monotone. For the
claim, it suffices to show that the n-th derivative of e− f (λ) is of the form (−1)ne− f (λ)gn(λ),
where gn is a (non-negative) totally monotone function. When n = 0, it is obviously true
with g0 = 1. Suppose that the claim holds when n = k. Then, the next order derivative
of e− f (λ) is (−1)k+1e− f (λ)gk+1(λ), where

gk+1(λ) := f ′(λ)gk(λ)− g′k(λ),

and gk+1(t) satisfies

(−1)ng(n)k+1(λ) = (−1)n

{
n

∑
`=0

f (`+1)(λ)g(n−`)k (λ)− g(n+1)
k (λ)

}
≥ 0.

By functional calculus, we write

‖u‖2
H f (Rd;R) = 〈 f (−∆)u, u〉L2(Rd;R)

=− d
ds

∣∣∣
s=o+
〈e−s f (−∆)u, u〉L2(Rd;R)

= lim
s→0+

1
s

{
‖u‖2

L2(Rd;R) − 〈e
−s f (−∆)u, u〉L2(Rd;R)

}
.

Note that by the claim and Bernstein’s theorem, for each s ≥ 0, there exists a non-negative
Borel measure µs such that

e−s f (λ) =
∫ ∞

0
e−tλdµs(t).
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Hence, inserting λ = −∆, we see that the operator e−s f (−∆) is the convolution of the
radially symmetric, non-negative and decreasing function

Ks(x) =
∫ ∞

0

1
(4πt)d/2 e−

|x|2
4t dµs(t). (2.1)

Therefore, by the Riesz rearrangement inequality, we conclude that

‖u‖2
H f (Rd;R) = lim

s→0+

1
s

{
‖u‖2

L2(Rd;R) −
∫∫

Rd×Rd
Ks(x− y)u(x)u(y)dxdy

}
≥ lim

s→0+

1
s

{
‖u∗‖2

L2(Rd;R) −
∫∫

Rd×Rd
Ks(x− y)u∗(x)u∗(y)dxdy

}
= · · ·

=‖u∗‖2
H f (Rd;R).

Thus we complete the proof.

Next, we prove the symmetry and the positivity of the fundamental solution.

Proposition 2.2 (Positivity of the fundamental solution). If f : [0, ∞) → [0, ∞) is a Bern-
stein function, then the fundamental solution Φ = Φ f for the differential operator f (−∆) is
radially symmetric, strictly positive and decreasing.

Proof. It follows from

f (−∆)−1 =
∫ ∞

0
e−s f (−∆)ds,

(2.1) and the heat kernel.

We also show that a real-valued function in H f can be orthogonally decomposed into
two functions having different signs.

Proposition 2.3 (Orthogonal decomposition). Suppose that f : [0, ∞) → [0, ∞) is a
Bernstein function. Then, for any u ∈ H f (R

d; R), there exist u± ∈ H f (R
d; R) such that

u = u+ − u−, u± ≥ 0 a.e. and 〈u+, u−〉H f (Rd;R) = 0.

Proof. Let K be the set of non-negative functions in H f (R
d; R), which is a closed convex

non-empty cone in H f (R
d; R). Then, by Theorem 3.4 in [12] (see [19] for the original

work), there exists a unique decomposition u = u1 + u2, with u1 ∈ K and u2 ∈ K∗, such
that 〈u1, u2〉H f (Rd;R) = 0, where K∗ is the dual cone of K defined by

K∗ :=
{

w ∈ H f (R
d; R) : 〈w, u〉H f ≤ 0 for all u ∈ K

}
.

It remains to show that every w ∈ K∗ is non-positive. Indeed, if u ∈ C∞
c (Rd; R) is non-

negative, then by Proposition 2.2, so is Φ ∗ u. Therefore, for any w ∈ K∗, we have

〈w, u〉L2(Rd;R) = 〈 f (−∆)w, Φ ∗ u〉L2(Rd;R) = 〈w, Φ ∗ u〉H f (Rd;R) ≤ 0.

However, since u is arbitrary, this proves that w is non-positive.
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2.2 Assumptions on the symbol P and its properties

Here we recall the structural assumptions for the symbol P:

(H1) P : [0, ∞)→ [0, ∞) is continuous on [0, ∞) and smooth on (0, ∞);

(H2) P is a Bernstein function, i.e., P′ is totally monotone;

(H3) there exists s ∈ (0, 2] such that P(λ) & λ
s
2 for all large λ;

(H4) P(0) = 0, P′(0) = 1 and P′′(0) exists.

The advantage of assuming (H2) is to provide a nice integral representation of the
symbol from which several important properties in our analysis are deduced.

Lemma 2.1 (Integral representation of the symbol). Suppose that the symbol P : [0, ∞)→ R

satisfies (H2). Then, there exists a unique measure µ on [0, ∞) such that

P(λ) = λ
∫ 1

0

∫ ∞

0
e−λ`tdµ(t)d` =

∫ ∞

0

1− e−λt

t
dµ(t). (2.2)

As a consequence, if we further assume (H4), then the zeroth and the first moments of the measure
is finite and ∫ ∞

0
tkdµ(t) = (−1)kP(k+1)(0), k = 0, 1. (2.3)

Proof. By the fundamental theorem of calculus, we have

P(λ) =
∫ 1

0

d
d`
(

P(λ`)
)
d` = λ

∫ 1

0
P′(λ`)d`.

By (H2), it follows from Bernstein’s theorem for complete monotone functions [21, Theo-
rem 1.4] that

P′(λ) =
∫ ∞

0
e−λtdµ(t)

for some unique measure µ on [0, ∞). Therefore, inserting the integral formula for P′(λ)
and then integrating in `, we obtain (2.2).

By (H2), the symbol P is sub-linear, and differentiation reduces the degree of the sym-
bol.

Lemma 2.2 (Properties of the symbol). Suppose that P : [0, ∞)→ R satisfies (H2).

(i) For all λ1, λ2 ≥ 0, we have P(λ1 + λ2) ≤ P(λ1) + P(λ2).

(ii) For any integer k ≥ 0 and λ ≥ 0, we have |P(k)(λ)| . λ−kP(λ).
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Proof. (i) By (2.2), we have

P(λ1 + λ2) =

{∫ 1

0

∫ ∞

0
e−(λ1+λ2)`tdµ(t)d`

}
(λ1 + λ2)

≤
{∫ 1

0

∫ ∞

0
e−λ1`tdµ(t)d`

}
λ1 +

{∫ 1

0

∫ ∞

0
e−λ2`tdµ(t)d`

}
λ2

=P(λ1) + P(λ2).

(ii) Differentiating (2.2) k times, we write

∣∣λkP(k)(λ)
∣∣ = ∫ ∞

0

(λt)ke−λt

t
dµ(t),

and then apply the elementary inequality

(λt)ke−λt . 1 . 1− e−λt.

Thus we complete the proof.

3 Construction of a radial solution to the generalized NLS in H1

subcritical range of p

This section is devoted to prove Theorem 1.4. Consider a one-parameter family of non-
linear elliptic equations

Pε(−∆)u + µu = |u|p−1u, (3.1)

where Pε(λ) = P(ελ)/λ. If P′(0) exists, Eq. (3.1) formally converges to the nonlinear
elliptic equation

−∆u + µu = |u|p−1u (3.2)

as ε→ 0. To prove Theorem 1.4, we may construct a nontrivial radial solution to (3.1) for

small ε > 0 since (3.1) is equivalent to (1.4) by the scaling u(x) = ε
1

p−1 v(εx).
We assume that the nonlinearity is H1-subcritical, i.e.,

max
{

d− 2
d + 2

, 0
}

<
1
p
< 1. (3.3)

We remark that Eq. (3.1) is possibly supercritical, since the differential operator may have
a lower order than the Laplacian (see Lemma 2.2(i)).

In this section, we impose the hypotheses (H1)–(H4) on the symbol P to establish
existence of a non-trivial solution to (3.1) by the contraction mapping argument in [6]
provided that ε is sufficiently small.

The following two lemmas will be employed in the contraction mapping argument.
The first lemma asserts a certain coercivity of the Fourier multiplier Pε(−∆).
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Lemma 3.1 (Coercivity). Suppose that (H1)–(H3) hold for some s ∈ (0, 2]. Let µ > 0. Then,
for any 1 < q < ∞, we have ∥∥∥∥ 1

Pε(−∆) + µ

∥∥∥∥
L(Lq;Ws,q)

. 1,

where ‖ · ‖L(Lq;Ws,q) denotes the standard operator norm from Lq to Ws,q.

Proof. By the Hörmander-Mikhlin theorem, it suffices to show that for all integer k ≥ 0,∣∣∣∣∣
(

d
dλ

)k ( 1
Pε(λ) + µ

)∣∣∣∣∣ . 1
λk(λ + µ)

s
2

. (3.4)

First, we claim that the k-th derivative of 1
Pε(λ)+µ

is the linear combination of products of
fractions of the form

1
Pε(λ) + µ

· · · P(j1)
ε (λ)

Pε(λ) + µ
· · · P(jm)

ε (λ)

Pε(λ) + µ
(3.5)

with j1 + · · · jm = k. We prove the claim by induction. The zeroth step is trivial. If
the claim is true for the k-th step, then the (k + 1)-th step follows, because when the
derivative hits one of the fractions, it generates fractions of the same kind. Precisely, we
have (

P(j)
ε (λ)

Pε(λ) + µ

)′
=

P(j+1)
ε (λ)

Pε(λ) + µ
− P(j)

ε (λ)

Pε(λ) + µ
· P′ε(λ)

Pε(λ) + µ
. (3.6)

Now, we show (3.4) by induction again. The zeroth step follows from the assumption
(H3). Suppose that (3.4) holds for k. Then, each term in the k-th derivative (see (3.5))
is bounded by λ−k(λ + µ)−

s
2 . However, when the derivative hits one of the factor (like

(3.6)), one can see from Lemma 2.2(ii) that an extra factor λ−1 is gained.

The second lemma claims the convergence Pε(−∆) → −∆ in the norm resolvent
sense.

Lemma 3.2 (Norm resolvent convergence of Pε). Suppose that (H1)–(H4) hold for some s ∈
(0, 2]. Let µ > 0. Then, for any 1 < q < ∞, we have∥∥∥∥ 1

Pε(−∆) + µ
− 1
−∆ + µ

∥∥∥∥
L(Lq;Lq)

. ε
s
2 .

Proof. By the Hörmander-Mikhlin theorem again, it suffices to show that∣∣∣∣∣
(

d
dλ

)k ( 1
Pε(λ) + µ

− 1
λ + µ

)∣∣∣∣∣ . ε
s
2

λk . (3.7)
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If λ ≥ 1
ε , then we have ∣∣∣( d

dλ

)k( 1
λ + µ

)∣∣∣ . (λ + µ)−(k+1) . ελ−k

and by (3.4), we have ∣∣∣( d
dλ

)k( 1
Pε(λ) + µ

)∣∣∣ . λ−k− s
2 . ε

s
2 λ−k.

Suppose that λ ≤ 1
ε . In this case, we enjoy cancelation from the difference. We write

1
Pε(λ) + µ

− 1
λ + µ

=
λ− Pε(λ)

(Pε(λ) + µ)(λ + µ)
=

(λ + µ)
s
2

Pε(λ) + µ

1
(λ + µ)1+ s

2
(λ− Pε(λ)).

It is obvious that ∣∣∣( d
dλ

)k
(λ + µ)−1− s

2

∣∣∣ . λ−k−1− s
2

and we have shown that ∣∣∣( d
dλ

)k( (λ + µ)
s
2

Pε(λ) + µ

)∣∣∣ . λ−k

(see (3.4)). Thus, it remains to consider the last factor (λ− Pε(λ)). Indeed, differentiating
(2.2) and using (2.3), one can show that∣∣λ− Pε(λ)

∣∣ ≤ ∫ ∞

0

∣∣∣∣1− ελt− e−ελt

εt

∣∣∣∣ dµ(t) ≤ 1
2

∫ ∞

0
εtλ2dµ(t) =

ελ2|P′′(0)|
2

. ε
s
2 λ1+ s

2 ,∣∣(λ− Pε(λ)
)′∣∣ = ∫ ∞

0
1− e−ελtdµ(t) ≤

∫ ∞

0
(εtλ)dµ(t) = ελP′(0) ≤ ε

s
2 λ

s
2 ,

and that for k ≥ 2,∣∣(λ− Pε(λ)
)(k)∣∣ = ∫ ∞

0
(εt)k−1e−ελtdµ(t) .

∫ ∞

0
(εt)λ−k+2dµ(t)

=ελ−k+2P′(0) ≤ ε
s
2 λ1+ s

2−k.

Therefore, collecting all, we complete the proof of (3.7).

3.1 Construction of a non-trivial solution

Now, we seek for a solution of the form near the ground state to the limit equation. Note
that Theorem 3.1 below obviously includes Theorem 1.4.

Theorem 3.1 (Existence and local uniqueness of a non-trivial solution). Suppose that (H1)–
(H4) for some s ∈ (0, 2]. Assuming (3.3), let u0 be the unique radially symmetric solution to the
limit equation (3.2). Then, there exists small ε0 > 0 such that Eq. (3.1) has a non-trivial radially
symmetric solution uε ∈ Ws,q for all r ≥ 2. Moreover, uε is a unique radial solution in the
neighborhood of u0 with respect to the norm ‖ · ‖Ws,q .
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We insert uε = u0 + wε, assuming that the difference wε is small. Then, reorganizing
in the linearized form, the equation for wε is derived as(

Pε(−∆) + µ− pup−1
0

)
wε

=
(
− ∆− Pε(−∆)

)
u0 +

{
(u + wε)

p − up
0 − pup−1

0 wε

}
. (3.8)

We claim that the linearized operator on the left hand side is invertible.

Lemma 3.3 (Invertibility of the linearized operator). Suppose that (H1)–(H4) hold for some
s ∈ (0, 2]. Then, for any q ∈ [2, ∞), there exists small ε0 > 0 such that if 0 < ε ≤ ε0, then the
operator

Pε(−∆) + µ− pup−1
0 : Ws,q

r → Lq
r

is invertible, where Lq
r and Ws,q

r are the radial sub-spaces of Lq and Ws,q respectively. Moreover,
we have

sup
0<ε≤ε0

∥∥∥∥(Pε(−∆) + µ− pup−1
0

)−1
∥∥∥∥
L(Lq

r ;Ws,q
r )

< ∞.

Proof. We write

Pε(−∆) + µ− pup−1
0

=
(

Id− pup−1
0 (Pε(−∆) + µ)−1

)
(Pε(−∆) + µ)

=

(
A+ pup−1

0

(
1

−∆ + µ
− 1

Pε(−∆) + µ

))
(Pε(−∆) + µ),

where
A = Id− pup−1

0 (−∆ + µ)−1.

Using invertibility of the operator A : Lq
r → Lq

r for all q ≥ 2 (see [6, Lemma 3.2]), we
factor out A to the right,

Pε(−∆) + µ− pup−1
0

=

{
Id + pup−1

0

(
1

−∆ + µ
− 1

Pε(−∆) + µ

)
A−1

}
A(Pε(−∆) + µ). (3.9)

Since the ground state u0 is bounded, it follows from Lemma 3.2 that for small 0 < ε ≤ ε0,∥∥∥∥pup−1
0

(
1

−∆ + µ
− 1

Pε(−∆) + µ

)
A−1

∥∥∥∥
L(Lq

r→Lq
r )

≤p‖u0‖p−1
L∞

∥∥∥∥ 1
−∆ + µ

− 1
Pε(−∆) + µ

∥∥∥∥
L(Lq

r→Lq
r )

∥∥∥A−1
∥∥∥
L(Lq

r→Lq
r )
≤ 1

2
.
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Therefore,

Id + pup−1
0

( 1
−∆ + µ

− 1
Pε(−∆) + µ

)
A−1

is invertible on Lq
r , and its inverse is uniformly bounded. Therefore, inverting (3.9) and

applying Lemma 3.1, we complete the proof.

By the above lemma, Eq. (3.8) can be written as

wε =
(

Pε(−∆) + µ− pup−1
0

)−1 (
− ∆− Pε(−∆)

)
u0

+
(

Pε(−∆) + µ− pup−1
0

)−1 {
(u0 + wε)

p − up
0 − pup−1

0 wε

}
. (3.10)

We aim to find a solution to (3.10) by a contraction mapping argument. The following
elementary inequality is helpful to handle the nonlinearity in the equation.

Lemma 3.4. If a > 0 and p > 1, then∣∣∣|a + b|p−1(a + b)− |a + b̃|p−1(a + b̃)− pap−1(b− b̃)
∣∣∣

.

{
(|b|+ |b̃|)p−1|b− b̃|, if 1 < p ≤ 2,
(a + |b|+ |b̃|)p−2(|b|+ |b̃|)|b− b̃|, if p ≥ 2.

Proof. By the fundamental theorem of calculus,

|a + b|p−1(a + b)− |a + b̃|p−1(a + b̃)− pap−1(b− b̃)

=p(b− b̃)
∫ 1

0

{
|a + (b− b̃)`|p−1 − ap−1

}
d`.

If 1 < p ≤ 2, using the inequality

||α|p−1 − |β|p−1| ≤ ||α| − |β||p−1 ≤ |α− β|p−1,

we obtain the desired bound. If p > 2, we apply the fundamental theorem of calculus
again to get

|a + b|p−1(a + b)− |a + b̃|p−1(a + b̃)− pap−1(b− b̃)

=p(p− 1)(b− b̃)2
∫ 1

0

∫ `

0

{
|a + (b− b̃)`′|p−3(a + (b− b̃)`′)− ap−2} d`′d`.

Then, one can show the bound.

Proof of Theorem 3.1. We define

Φ(w) =
(

Pε(−∆) + µ− pup−1
0

)−1 (
− ∆− Pε(−∆)

)
u0

+
(

Pε(−∆) + µ− pup−1
0

)−1 {
(u0 + w)p − up

0 − pup−1
0 w

}
.
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For sufficiently small δ > 0 to be chosen later, we denote

Bδ(0) =
{

w : ‖w‖Hs
r∩Ws,q

r
≤ δ

}
for some q > d

s . Then, by Lemma 3.3, we obtain

‖Φ(w)‖Hs
r∩Ws,q

r
.
∥∥(− ∆− Pε(−∆)

)
u0
∥∥

L2
r∩Lq

r
+
∥∥∥(u0 + w)p − up

0 − pup−1
0 w

∥∥∥
L2

r∩Lq
r

,

‖Φ(w1)−Φ(w2)‖Hs
r∩Ws,q

r
.
∥∥∥{(u0 + w1)

p − up
0 − pup−1

0 w1

}
−
{
(u0 + w2)

p − up
0 − pup−1

0 w2

}∥∥∥
L2

r∩Lq
r

.

For (−∆− Pε(−∆))u0, we recall that u∞ ∈ H2
r ∩W2,q

r for all q ≥ 2. Therefore, by density,
there exists u0,δ2 ∈ C∞

c such that ‖u0 − u0,δ2‖H2
r∩W2,q

r
≤ δ2. Then, we have

‖(−∆− Pε(−∆))(u0 − u0,δ2)‖L2
r∩Lq

r
. ‖u0 − u0,δ2‖H2

r∩W2,q
r
≤ δ2,

‖(−∆− Pε(−∆))u0,δ2‖L2
r∩Lq

r
→ 0 as ε→ 0.

Therefore, there exists small ε0 > 0 (depending on the function u0) such that for ε ∈
(0, ε0],

‖(−∆− Pε(−∆))u0‖L2
r∩Lq

r
≤ δ

2
.

For the nonlinear terms, we apply Lemma 3.4 and Hölder’s inequality and the Sobolev
embedding Ws,q ↪→ L∞ with q > d

s . Indeed, if 1 < p ≤ 2, then∥∥∥(u0 + w)p − up
0 − pup−1

0 w
∥∥∥

L2
r∩Lq

r

.
∥∥∥|w|p−1|w|

∥∥∥
L2

r∩Lq
r
≤ ‖w‖p−1

L∞
r
‖w‖L2

r∩Lq
r
. δp−1‖w‖L2

r∩Lq
r
,

while if p > 2, ∥∥∥(u0 + w)p − up
0 − pup−1

0 w
∥∥∥

L2
r∩Lq

r

.
∥∥(u0 + |w|)p−2|w|2

∥∥
L2

r∩Lq
r

.
{
‖u∞‖L∞

r
+ ‖w‖L∞

r

}p−2 ‖w‖2
L2

r∩Lq
r
≤ δ‖w‖L2

r∩Lq
r
.

Similarly, one can show that∥∥∥{(u0 + w1)
p − up

0 − pup−1
0 w1

}
−
{
(u0 + w2)

p − up
0 − pup−1

0 w2

}∥∥∥
L2

r∩Lq
r

.

{
δp−1‖w1 − w2‖L2

r∩Lq
r
, if 1 < p ≤ 2,

δ‖w1 − w2‖L2
r∩Lq

r
, if p ≥ 2.

Collecting all, we conclude that Φ is contractive on Bδ(0). Therefore, Eq. (3.10) (conse-
quently, (3.1)) has a unique solution in Bδ(0).
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4 Ground state for the generalized lower-order NLS

In this section we prove Theorems 1.1–1.3. Throughout this section, µ denotes a positive
constant.

4.1 Variational settings

For a symbol P satisfying (H1)–(H3), we consider the Hilbert space HP+µ = HP+µ(R
d; R).

We note that P + µ is a Bernstein function because so is P. By (P2) and Sobolev embed-
ding, one has a natural embedding

HP+µ ↪→ Hs(Rd) ↪→ L2(Rd) ∩ L2d/(d−s)(Rd).

Then the functional I given by

I(u) = 1
2
‖u‖2

HP+µ
− 1

p + 1

∫
Rd
|u|p+1 dx (4.1)

is well-defined and C1 on HP+µ. It is clear that (1.4) is the Euler-Lagrange equation of
(4.1).

We say u0 ∈ HP+µ is a ground state to (1.4) if u0 is a critical point of I and I(u0) ≤
I(v) for any nontrivial critical point v ∈ HP+µ of I .

4.2 Existence of a ground state

In this subsection, we construct a ground state for the generalized NLS, which is positive,
radially symmetric and monotone decreasing up to translation. We shall be done by
establishing existence of a minimizer for the variational problem

Imin = inf
0 6=u∈HP+µ

{
I(u) : 〈I ′(u), u〉L2 = 0

}
. (4.2)

Such a minimizer is of course a ground state for the generalized NLS, since every critical
point of I satisfies the constraint.

The following lemma is trivial, but we write it as a lemma, because it will be used
frequently.

Lemma 4.1. Suppose that u is admissible for the variational problem (4.2), i.e., u 6= 0 and

〈I ′(u), u〉L2 = ‖u‖2
HP+µ
−
∫

Rd
|u|p+1dx = 0.

We assume that

‖ũ‖HP+µ
≤ ‖u‖HP+µ

, (4.3a)∫
Rd
|ũ|p+1dx ≥

∫
Rd
|u|p+1dx. (4.3b)
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Then, there exists t ∈ (0, 1] such that tũ is admissible and

I(tũ) ≤ I(u).
If we further assume that either the inequality (4.3a) or (4.3b) holds strictly, then

I(tũ) < I(u).
Proof. Since

‖ũ‖2
HP+µ
−
∫

Rd
|ũ|p+1dx ≤ ‖u‖2

HP+µ
−
∫

Rd
|u|p+1dx = 0,

there exists t ∈ (0, 1] such that tũ is admissible, i.e.,

‖tũ‖2
HP+µ
−
∫

Rd
|tũ|p+1dx = t2

{
‖ũ‖2

HP+µ
− tp−1

∫
Rd
|ũ|p+1dx

}
= 0.

Therefore, by (4.3a), it follows that

I(tũ) =1
2
‖tũ‖2

HP+µ
− 1

p + 1

∫
Rd
|tũ|p+1dx =

(
1
2
− 1

p + 1

)
‖tũ‖2

HP+µ

=

(
1
2
− 1

p + 1

)
t2‖ũ‖2

HP+µ
≤
(

1
2
− 1

p + 1

)
‖u‖2

HP+µ
= I(u).

If either (4.3a) or (4.3b) holds strictly, then t < 1 and I(tũ) < I(u).

Proof of Theorem 1.1. By the constraint,

I(u) =
(

1
2
− 1

p + 1

)
‖u‖2

HP+µ

for admissible u. Let {un}∞
n=1 ⊂ HP+µ be a minimizing sequence. For each n, apply-

ing Proposition 2.3, we write un = un,+ − un,− such that un,± ∈ HP+µ, u± ≥ 0 and
〈un,+, un,−〉HP+µ

= 0. We define a new sequence {ũn}∞
n=1 by ũn = un,+ + un,− ≥ |un|.

Then, we have
‖ũn‖2

HP+µ
= ‖un,+‖2

HP+µ
+ ‖un,−‖2

HP+µ
= ‖un‖2

HP+µ
,

but ∫
Rd
|ũn|p+1 dx =

∫
Rd
|un,+ + un,−|p+1dx

=
∫

supp(un,+)\supp(un,−)
|un,+|p+1 dx +

∫
supp(un,−)\supp(un,+)

|un,−|p+1 dx

+
∫

supp(un,+)∩supp(un,−)
|un,+ + un,−|p+1 dx

≥
∫

supp(un,+)\supp(un,−)
|un,+|p+1 dx +

∫
supp(un,−)\supp(un,+)

|un,−|p+1 dx

+
∫

supp(un,+)∩supp(un,−)
|un,+ − un,−|p+1 dx

=
∫

Rd
|un|p+1 dx.
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Thus, it follows from Lemma 4.1 that there exists {tn}∞
n=1 ⊂ (0, 1] such that {tnũn}∞

n=1 is
also a minimizing sequence. Replacing un by tnũn, we assume that un is nonnegative.

Let u∗n, where f ∗ is the symmetric decreasing rearrangements of f ≥ 0. Then, by
Pólya-Szegö inequality (Proposition 2.1) and the measure preserving property of the re-
arrangement,

‖u∗n‖2
HP+µ

≤ ‖un‖2
HP+µ

,
∫

Rd
|u∗n|p+1 dx =

∫
Rd
|un|p+1dx.

Hence, by Lemma 4.1 again, we can find a sequence {tn}∞
n=1 ⊂ (0, 1] such that {tnu∗n}∞

n=1
is also a minimizing sequence. Replacing un by tnu∗n, we assume that un is radially sym-
metric and monotone decreasing.

We now have a minimizing sequence {un}∞
n=1 of nonnegative radially symmetric

functions monotone decreasing in the radial direction. Hence, passing to a subsequence,
{un} weakly converges to some u in HP+µ, which implies that

‖u‖HP+µ
≤ lim inf

n→∞
‖un‖HP+µ

.

On the other hand, by the compact embedding Hs
rad ↪→ Lq

rad with 2 < q < 2d/(d− s), we
have

lim
n→∞

∫
Rd
|un|p+1 dx =

∫
Rd
|u|p+1dx

and {un} converges to u a.e. This shows that u is also nonnegative radial symmetric
function monotone decreasing in radial direction.

We claim that u 6= 0. If not, un strongly converges to 0 in HP+µ since ‖un‖2
HP+µ

=

‖un‖p+1
p+1. However by Sobolev embedding, one has

‖un‖2
HP+µ

= ‖un‖p+1
p+1 ≤ C‖un‖p+1

HP+µ
.

This implies a positive lower bound of ‖un‖HP+µ
, which makes a contradiction. Thus,

choosing appropriate t ∈ (0, 1] by Lemma 4.1 as above, we can make tu admissible, and

I(tu) =
(

1
2
− 1

p + 1

)
t2‖u‖2

HP+µ
≤
(

1
2
− 1

p + 1

)
‖u‖2

HP+µ

≤ lim inf
n→∞

(
1
2
− 1

p + 1

)
‖un‖2

HP+µ
= lim inf

n→∞
I(un).

Therefore, we conclude that tu is a minimizer.
We once more redefining tu as u so that u is a nonnegative ground state to (1.4) which

is radially symmetric and decreasing in radial direction. It remains to show that u is
strictly positive everywhere. Let ΦP+µ be the fundamental solution of the differential
operator P(−∆) + µ. By Proposition 2.2, it is strictly positive. Since the ground state u is
represented by

u =
∫

Rd
ΦP+µ(x− y)up(y) dx,

we see that u is strictly positive. This completes the proof.
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4.3 Sign-definiteness of a ground state

This subsection is devoted to prove Theorem 1.2, the sign-definiteness of a ground state
to (1.4).

Proof of Theorem 1.2. By Proposition 2.3, there are non-negative u± ∈ HP+µ such that u =

u+ − u−, 〈u+, u−〉HP+µ
= 0. We observe that u+(x)u−(x) = 0 for all x ∈ Rd. In other

words, u+ and u− have disjoint supports,

supp(u+) ∩ supp(u−) = ∅. (4.4)

Indeed, if (4.4) does not hold, the function ũ = u+ + u− obeys ‖ũ‖2
HP+µ

= ‖u‖2
HP+µ

and

∫
Rd
|ũn|p+1 dx =

∫
Rd
|un,+ + un,−|p+1dx

=
∫

supp(un,+)\supp(un,−)
|un,+|p+1 dx +

∫
supp(un,−)\supp(un,+)

|un,−|p+1 dx

+
∫

supp(un,+)∩supp(un,−)
|un,+ + un,−|p+1 dx

>
∫

supp(un,+)\supp(un,−)
|un,+|p+1 dx +

∫
supp(un,−)\supp(un,+)

|un,−|p+1 dx

+
∫

supp(un,+)∩supp(un,−)
|un,+ − un,−|p+1 dx

=
∫

Rd
|un|p+1 dx, (4.5)

where the inequality holds strictly due to cross terms. Thus, it follows from Lemma 4.1
that there exists t ∈ (0, 1] such that tu is admissible and I(tu) < I(u). It contracts to that
u is a minimizer.

Next, we claim that
u+ = 0 or u− = 0. (4.6)

To prove the claim, we note that by (4.4), the equality holds in (4.5). As a consequence, the
function ũ defined previously is also a minimizer, so it is a solution to (1.4). Moreover,
ũ = |u|. For contradiction, we assume that u+ 6= 0 and u− 6= 0. Observe from the
orthogonality of u+ and u− that

‖u+‖2
HP+µ
− ‖u+‖p+1

p+1 + ‖u−‖
2
HP+µ
− ‖u−‖p+1

p+1 = 0.

Then either

‖u+‖2
HP+µ
− ‖u+‖p+1

p+1 ≤ 0 or ‖u−‖2
HP+µ
− ‖u−‖p+1

p+1 ≤ 0
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and we just may assume ‖u+‖2
HP+µ
− ‖u+‖p+1

p+1 ≤ 0. Since u+ 6= 0, we can take t ∈ (0, 1]

such that ‖tu+‖2
HP+µ
− ‖tu+‖p+1

p+1 = 0. This implies

I(tu+) =

(
1
2
− 1

p + 1

)
‖tu‖2

HP+µ

<

(
1
2
− 1

p + 1

)
‖u+‖2

HP+µ
+

(
1
2
− 1

p + 1

)
‖u−‖2

HP+µ

=I(u).

The strict inequality is due to the assumption that u− 6= 0. Since u is a minimizer, this
makes a contradiction and the claim is proved. Finally, we have already seen in the
proof of Theorem 1.1 that a nonnegative (nonpositive) minimizer is positive (negative)
everywhere since the fundamental solution ΦP+µ of P + µ is strictly positive. This ends
the proof.

4.4 Uniqueness of a ground state

Here, we prove Theorem 1.3. Throughout this subsection, we assume (H1)–(H4) on the
symbol P hold. We fix arbitrarily chosen p ∈ (1, d/(d− s)) and denote by u0 the unique
radial positive ground state to the original NLS,

−∆u + u = |u|p−1u. (4.7)

As mentioned in Section 3, the generalized NLS

P(−∆)u + εu = |u|p−1u (4.8)

is equivalently transformed to

Pε(−∆)v + v = |v|p−1v (4.9)

by the scaling u(x) = ε
1

p−1 v(εx), where Pε(λ) := 1
ε P(ελ). It is also straightforward to see

that a ground state uε ∈ HP+ε to (4.8) corresponds to a ground state vε ∈ HPε+1 to (4.9) by

the scaling uε(x) = ε
1

p−1 vε(εx) and vice versa. Thus, to prove Theorem 1.3, it is sufficient
to show that a ground state vε to (4.9) is unique up to a translation for sufficiently small
ε > 0.

Lemma 4.2 (Convergence). Let vε ∈ HPε+1 be a positive ground state to (4.9). Then there
exists {aε} ⊂ Rd such that

lim
ε→0
‖vε(· − aε)− u0‖HPε+1 = 0. (4.10)
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Proof. The lemma is a natural consequence of energy minimality of the ground states vε

to (4.9). We refer to Proposition 2.3 in [8], with which their proof follows the exactly same
lines. We omit the proof for avoiding the paper too lengthy.

Lemma 4.3 (Nondegeneracy). Let {vε} ⊂ HPε+1 be a family positive ground state to (4.9)
such that {vε} converges to u0 in HPε+1 as ε→ 0. Define the linearized operator by

Lε := Pε(−∆) + 1− pvp−1
ε . (4.11)

Then there exists a constant β > 0 independent of small ε > 0 such that

β‖g‖HPε+1 ≤ ‖Lεg‖L2 (4.12)

for any g ∈ HPε+1 which is HPε+1 orthogonal to ∂xi vε for each i = 1, · · · , d.

Proof. This lemma can be proved in the same spirit with Lemma 3.3 but one should
take care on the change of function spaces from the radial function space (Ws,q

r →
span{∂xi vε | i = 1, · · · , d}⊥). This can be easily done by repeating the proof of Proposi-
tion 3.3 in [8]. We omit it.

Proof of Theorem 1.3. Let {vε}, {ṽε} ⊂ HPε+1 be two families of positive radially symmet-
ric ground states to (4.9). By Lemma 4.2, we may assume that both of {vε} and {ṽε}
converge to u0 in HPε+1 as ε→ 0 by taking translations if necessary. This means that

lim
ε→0
‖vε − ṽε‖HPε+1 = 0. (4.13)

Let {aε} ⊂ Rd be a family of vectors such that

‖ṽε(· − aε)− vε‖2
HPε+1

= min
a∈Rd
‖ṽε(· − a)− vε‖2

HPε+1
. (4.14)

Then one has

〈ṽε(· − aε)− vε, ∂xi vε〉HPε+1 = 0 for each i = 1, · · · , d, (4.15)

since

0 =∇a
∣∣

a=aε
‖ṽε(· − a)− vε‖2

HPε+1
= ∇a

∣∣
a=aε
‖ṽε − vε(· − a)‖2

HPε+1

=− 2〈ṽε − vε(· − aε), (∇xvε)(· − aε)〉HPε+1 = −2〈ṽε(· − aε)− vε, ∇xvε〉HPε+1 .

We redefine ṽε(· − aε) by ṽε so that ṽε is still a ground state, ṽε − vε is orthogonal to ∂xi vε

in HPε+1 and limε→0 ‖vε − ṽε‖HPε+1 = 0 by definition of aε.
Let us define rε = ṽε − vε. From Eq. (4.9), one has

(Pε(−∆) + 1)rε = |vε + rε|p−1(vε + rε)− |vε|p−1vε,
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so that by Lemma 4.3,

β‖rε‖HPε+1 ≤ ‖Lεrε‖L2 = ‖|vε + rε|p−1(vε + rε)− |vε|p−1vε − pvp−1
ε rε‖L2 . (4.16)

It is easy to see from (H3) that there exists a uniform constant C > 0 independent of
ε ∈ (0, 1) such that

‖u‖Hs/2 ≤ C‖u‖HPε+1 .

Then we invoke Lemma 3.4 and Hölder inequality to obtain

‖|vε + rε|p−1(vε + rε)− |vε|p−1vε − pvp−1
ε rε‖L2

≤
{
‖rε‖p

HPε+1
, if 1 < p ≤ 2,

‖vε + |rε|‖p−2
HPε+1
‖rε‖2

HPε+1
, if 2 < p.

Combining this with (4.16) and using the fact that limε→0 ‖rε‖HPε+1 = 0, we get rε = 0 for
sufficiently small ε > 0. This shows ṽε = vε and ends the proof.
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