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1 Introduction

Since 1990, the iteration theory of the Maslov-type index theory for symplectic paths has
been systematically developed by Long and his research group [54–56]. It has become a
powerful tool in the study of various problems on periodic solutions (or orbits) of non-
linear Hamiltonian systems including: existence, multiplicity, and stability of periodic
solution orbits [57, 59, 67, 68] and closed geodesic [5, 13, 14], stability problems of peri-
odic orbits of n-body problems [35–37], Rabinowitz’s minimal periodic solution conjec-
ture [12,50–52], Conley’s conjecture on sub-harmonic periodic orbits for second as well as
first order Hamiltonian systems [27,32]. Recently, Long, Duan, and Zhu published a sur-
vey paper [15] on this topic. Interested readers are referred to this paper and references
therein.
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Since the paper of [57] of Long, Zhang, and Zhu in 2006, motivated by the study of the
existence, multiplicity and stability of brake orbit type periodic solutions of Hamiltonian
systems, in order to get more precise information, the index theory and its iteration theory
of the Maslov-type index for symplectic paths under brake orbit boundary conditions
have been systematically developed. This index and its iteration theory can be used to
study brake orbits problems of reversible Hamiltonian systems [47, 48, 57, 73, 74] as well
as other related problems including Conley conjecture and minimal periodic solution
problems in brake orbit case [42, 72].

In this survey, we shall give an introduction to this Maslov-type index theory and its
relationship with the Maslov index theory in Section 1. In Section 2, we shall describe the
main results in the iteration theory of such an index theory. For applications, in Section
3, we shall introduce recent developments on brake orbit problem for compact convex
reversible hypersurfaces in R2n, which yields some partial answer to the Seifert conjec-
ture on the multiplicity of brake orbits proposed by Seifert in 1948 [64]. In Section 4, we
shall briefly summarize the study of the minimal period solution problems of reversible
Hamiltonian systems in brake orbit case.

In this paper, let N, R, Z, Q and C denote the sets of natural integers, integers, rational
numbers, real numbers and complex numbers respectively. Let U be the unit circle of the
complex plane C, i.e., U = {z ∈ C| |z| = 1}.

2 A review on the Maslov-type index theory iL for symplectic
paths under Lagrangian boundary condition

2.1 The iω index theory for symplectic paths

We firstly give the definition of iω index for symplectic paths which was first introduced
by Long in [54] of 1999, all the materials here with historical notes can be found in [56]
of 2002 and the recent survey paper [15]. Let (R2n, ω0) be the standard symplectic vector
space with coordinates (x1, · · · , xn, y1, · · · , yn) and the standard symplectic form

ω0 =
n

∑
i=1

dxi ∧ dyi.

Let

J =
(

0 −In
In 0

)
be the standard symplectic matrix, where In is the identity matrix in Rn. The real sym-
plectic group Sp(2n) is defined by

Sp(2n) = {M ∈ GL(2n, R)|MT JM = J},
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whose topology is induced from that of R4n2
, where MT is the transpose of matrix M.

The set of symplectic paths in Sp(2n) starting from the identity matrix is defined by

Pτ(2n) = {γ ∈ C([0, τ], Sp(2n))|γ(0) = I2n}, ∀τ > 0,

whose topology is induced from Sp(2n). Denote the set of all 2n × 2n real matrices by
L(R2n) and its subset of symmetric ones by Ls(R2n). For any M ∈ Ls(R2n), we denote
the dimensions of the maximal positive definite subspace, negative definite subspace,
and kernel of M by m+(M), m−(M) and m0(M), respectively.

For ω ∈ U and M ∈ Sp(2n), the function

Dω(M) = (−1)n−1ω−ndet(M−ωI)

was defined and proved to be real by Long in [53] of 1999. Following [53] and [54], for
any ω ∈ U, we define

Sp(2n)0
ω = {M ∈ Sp(2n)|Dω(M) = 0},

Sp(2n)∗ω = Sp(2n) \ Sp(2n)0
ω,

P∗τ,ω(2n) = {γ ∈ Pτ(2n)|γ(τ) ∈ Sp(2n)∗ω},
P0

τ,ω(2n) = Pτ(2n) \ P∗τ,ω(2n).

For any two continuous paths ξ and η : [0, τ] → Sp(2n) with ξ(τ) = η(0), we define
their joint path by

η ∗ ξ(t) =

 ξ(2t), 0 ≤ t ≤ τ

2
,

η(2t− τ),
τ

2
≤ t ≤ τ.

For any two 2ki × 2ki matrices of square block form

Mi =

(
Ai Bi
Ci Di

)
with i = 1, 2 as in [56], the �-sum of M1 and M2 is defined by the following 2(k1 + k2)×
2(k1 + k2) matrix

M1 �M2 =


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .

We denote by M�k the k-time self �-sum of M for any k ∈ N.
Define a special path ξn ∈ Pτ(2n) by

ξn(t) =

 2− t
τ

0

0
(

2− t
τ

)−1


�n

, ∀t ∈ [0, τ] .
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Definition 2.1 ([54, 56]). For any ω ∈ U and M ∈ Sp(2n), define

νω(M) = dimC ker(M−ωI2n).

For any τ > 0 and γ ∈ Pτ(2n), let

νω(γ) = νω(γ(τ)).

If γ ∈ P∗τ,ω(2n), then we define

iω(γ) = [Sp(2n)0
ω : γ ∗ ξn], (2.1)

where the right-hand side of (2.1) is the usual homotopy intersection number and the orientation
of γ ∗ ξn is its positive time direction under homotopy with fixed endpoints.

If ω = 1, simply denote by i(γ) instead of i1(γ). If γ(τ) ∈ P0
τ,ω(2n), let F (γ) be the set of

all open neighborhoods of γ in Pτ(2n), and define

iω(γ) = sup
U∈F (γ)

inf{iω(β)|β ∈ U ∩ P∗τ,ω(2n)}.

Then (iω(γ), νω(γ)) ∈ Z× {0, 1, · · · , 2n} is called the index function of γ at ω.

For any M ∈ Sp(2n), following [54] we define

Ω(M) = {P ∈ Sp(2n)|σ(P) ∩U = σ(M) ∩U, νλ(P) = νλ(M), ∀λ ∈ σ(M) ∩U}.

Denote by Ω0(M) the path-connected component of Ω(M) containing M, and call it the
homotopy component of M ∈ Sp(2n).

Definition 2.2 ([54, 56]). For any M ∈ Sp(2n) and ω ∈ U, we define the splitting number of
M by

S±M(ω) = lim
ε→0+

iω exp(±
√
−1ε)(γ)− iω(γ)

for any path γ ∈ Pτ(2n) with γ(τ) = M.

2.2 The Maslov type iL-index theory associated with a Lagrangian subspace
for symplectic paths

In this section, we give a brief introduction to the Maslov type iL-index theory. We refer
to the papers [40, 41, 47, 48, 57] for more details.

A Lagrangian subspace L of the standard symplectic space (R2n, ω0) with

ω0 =
n

∑
i=1

dxi ∧ dyi

is an n dimensional subspace satisfying ω0|L = 0. The set of all Lagrangian subspaces in
(R2n, ω0) is denoted by Λ(n).
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When τ = 1, we write simply P(2n) instead of P1(2n). For a symplectic path γ ∈
Pτ(2n), we write it in the following form

γ(t) =
(

S(t) V(t)
T(t) U(t)

)
, (2.2)

where S(t), T(t), V(t), U(t) are n× n matrices. The n vectors consisting of columns of the

matrix
(

V(t)
U(t)

)
are linearly independent and they span a Lagrangian subspace path of

(R2n, ω0). For L0 = {0} × Rn ∈ Λ(n), we define the following two subsets of Sp(2n) by

Sp(2n)∗L0
= {M ∈ Sp(2n)|detV 6= 0},

Sp(2n)0
L0

= {M ∈ Sp(2n)|detV = 0},

for M =

(
S V
T U

)
.

Since the space Sp(2n) is path connected, and the set of n× n non-degenerate matrices
has two path connected components consisting of matrices with positive and negative
determinants respectively, we denote by

Sp(2n)±L0
= {M ∈ Sp(2n)| ± detV > 0},

Pτ(2n)∗L0
= {γ ∈ Pτ(2n)| γ(1) ∈ Sp(2n)∗L0

},
Pτ(2n)0

L0
= {γ ∈ Pτ(2n)| γ(1) ∈ Sp(2n)0

L0
}.

Definition 2.3 ([40, 57]). We define the L0-nullity of any symplectic path γ ∈ Pτ(2n) by

νL0(γ) = dim ker V(τ)

with the n× n matrix function V(t) defined in (2.2).

Note that the complex matrix U(t) ±
√
−1V(t) is invertible. We define a complex

matrix function by

Q(t) = [U(t)−
√
−1V(t)][U(t) +

√
−1V(t)]−1.

The matrix Q(t) is unitary for any t ∈ [0, τ]. We denote by

M+ =

(
0 In
−In 0

)
, M− =

(
0 Jn
−Jn 0

)
, Jn = diag(−1, 1, · · · , 1).

It is clear that M± ∈ Sp(2n)±L0
.

For a path γ ∈ Pτ(2n)∗L0
, we define a symplectic path by

γ̃(t) =

 I cos
(τ − 2t)π

2τ
+ J sin

(τ − 2t)π
2τ

, t ∈ [0, τ/2],

γ(2t− τ), t ∈ [τ/2, τ],
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and choose a symplectic path β(t) in Sp(2n)∗L0
starting from γ(τ) and ending at M+ or

M− according to γ(τ) ∈ Sp(2n)+L0
or γ(τ) ∈ Sp(2n)−L0

respectively. We now define a joint
path by

γ̄(t) = β ∗ γ̃ :=

{
γ̃(2t), t ∈ [0, τ/2],
β(2t− τ), t ∈ [τ/2, τ].

By the definition, we see that the symplectic path γ̄ starts from −M+ and ends at either
M+ or M−. As above, we define

Q̄(t) = [Ū(t)−
√
−1V̄(t)][Ū(t) +

√
−1V̄(t)]−1

for

γ̄(t) =
(

S̄(t) V̄(t)
T̄(t) Ū(t)

)
.

We can choose a continuous function ∆̄(t) on [0, τ] such that

detQ̄(t) = e2
√
−1∆̄(t).

By the above arguments, we see that the number 1
π (∆̄(τ) − ∆̄(0)) ∈ Z and it does not

depend on the choices of the path β and the function ∆̄(t) by a proof similar to that
in [56].

Definition 2.4 ([40]). For a symplectic path γ ∈ Pτ(2n)∗L0
, we define the L0-index of γ by

iL0(γ) =
1
π
(∆̄(τ)− ∆̄(0)).

Definition 2.5 ([40]). For a symplectic path γ ∈ Pτ(2n)0
L0

, let F (γ) be the set of all open
neighborhoods of γ in Pτ(2n), we define the L0-index of γ by

iL0(γ) = sup
U∈F (γ)

inf{iL0(γ
∗)| γ∗ ∈ U ∩ Pτ(2n)∗L0

}.

In the general situation, let L ∈ Λ(n). It is well known that Λ(n) = U(n)/O(n), this
means that for any linear subspace L ∈ Λ(n), there is an orthogonal symplectic matrix

P =

(
A −B
B A

)
with A±

√
−1B ∈ U(n) such that PL0 = L. We define the conjugated symplectic path

γc ∈ Pτ(2n) of γ by γc(t) = P−1γ(t)P.
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Definition 2.6 ([40]). We define the L-nullity of any symplectic path γ ∈ Pτ(2n) by

νL(γ) = dim ker Vc(τ),

the n× n matrix function Vc(t) is defined in (2.2) with the symplectic path γ replaced by γc, i.e.,

γc(t) =
(

Sc(t) Vc(t)
Tc(t) Uc(t)

)
.

Definition 2.7 ([40]). For a symplectic path γ ∈ Pτ(2n), we define the L-index of γ by

iL(γ) = iL0(γc).

Remark 2.1. (1) The Definitions 2.6 and 2.7 do not depend on the special choice of P.
(2) In [57] of 2006, Long, Zhang and Zhu studied the multiple solutions of the brake
orbit problem on a convex hypersurface, they introduced indices (µ1(γ), ν1(γ)) and
(µ2(γ), ν2(γ)) for any symplectic path γ. The indices µ1(γ) and µ2(γ) are special cases
of the L-index iL(γ) for Lagrangian subspaces L0 = {0} × Rn and L1 = Rn × {0} re-
spectively up to a constant n. In [63] of 1993, Robbin and Salamon defined a half integer
valued index for symplectic paths with Lagrange boundary conditions.

The iL index can also be defined by Maslov indices of the corresponding Lagrangian
subspace pair paths. There is a good introduction on Maslov indices of the corresponding
real Lagrangian subspace pair paths in [11] of 1994 by Cappel, Lee and Miller, which can
be extended to complex Lagrangian subspace pair paths [58]. Recently the first author
of this paper defined also an iL-index theory for general symplectic curves in the mono-
graph [43], such an index theory satisfies an axioms characterization in terms of the affine
scale invariance, homotopy invariance, path additivity, symplectic additivity, symplectic
invariance and normalization.

We denote by

F = R2n ⊕ R2n

equipped with the standard inner product (·, ·) and define the symplectic structure of F
by

{v, w} = (J v, w), ∀v, w ∈ F, where J = (−J)⊕ J =
(
−J 0
0 J

)
.

We denote by Lag(F) the set of Lagrangian subspaces of F, and equip it with the topology
as a subspace of the Grassmannian of all 2n-dimensional subspaces of F.

It is easy to check that, for any M ∈ Sp(2n) its graph

Gr(M) ≡
{(

x
Mx

)∣∣∣∣ x ∈ R2n
}
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is a Lagrangian subspace of F.
Let

V1 = L0 × L0 = {0} × Rn × {0} × Rn ⊂ R4n,

V2 = L1 × L1 = Rn × {0} × Rn × {0} ⊂ R4n.

Proposition 2.1 ([47, 59]). For any continuous path γ ∈ Pτ(2n), there hold

iL0(γ) = µCLM
F (V1, Gr(γ), [0, τ])− n,

iL1(γ) = µCLM
F (V2, Gr(γ), [0, τ])− n,

νLj(γ) = dim(γ(τ)Lj ∩ Lj), j = 0, 1,

where we denote by iCLM
F (V, W, [a, b]) the Maslov index for Lagrangian subspace path pair

(V, W) in F on [a, b] defined by Cappell, Lee, and Miller in [11]. For any M ∈ Sp(2n) and
j = 0, 1, we also denote by νLj(M) = dim(MLj ∩ Lj).

In [16], Duistermaat introduced the Hörmander index which expresses the difference
of Maslov index of the same symplectic path under different lagrangian boundary con-
ditions as signature of corresponding quadratic form in nondegenerate case. In [75] of
2018, Zhou, Wu, and Zhu extended the Hörmander index into degenerate case. By the
computation of the Hörmander index, in [57] of 2006, Long, Zhang and Zhu proved

Theorem 2.1 ([57]). For any continuous path γ ∈ Pτ(2n), there hold

|iL0(γ)− iL1(γ)| ≤ n.

More precisely, for any P ∈ Sp(2n) and ε ∈ R, set

Mε(P) = PT
(

sin 2εIn − cos 2εIn
− cos 2εIn − sin 2εIn

)
P +

(
sin 2εIn cos 2εIn
cos 2εIn − sin 2εIn

)
.

In [72], Zhang proved

Theorem 2.2 ([72]). For γ ∈ Pτ(2n) with τ > 0, we have

iL0(γ)− iL1(γ) =
1
2

sgnMε(γ(τ)),

where sgnMε(γ(τ)) is the signature of the symmetric matrix Mε(γ(τ)) and ε > 0 is sufficiently
small.

We also have,

(iL0(γ) + νL0(γ))− (iL1(γ) + νL1(γ)) =
1
2

sgnMε(γ(τ)),

where ε < 0 and |ε| is sufficiently small.
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The key ingredients in the proof of Theorem 3.2 below are some ideas from [47, 57]
and the following estimate, where the iteration path γ2 will be defined in Section 2 below.

Theorem 2.3 ( [48]). For γ ∈ Pτ(2n), let P = γ(τ). If iL0(γ) ≥ 0, iL1(γ) ≥ 0, i(γ) ≥ n,
γ2(t) = γ(t− τ)γ(τ) for all t ∈ [τ, 2τ], then

iL1(γ) + S+
P2(1)− νL0(γ) ≥ 0.

3 The iteration theory for iL0 and iL1 index

In many problems related to nonlinear Hamiltonian systems, it is necessary to study it-
erations of periodic solutions. In order to distinguish two geometrically distinct periodic
solutions, one way is to study the Maslov-type indices of the iteration paths of the funda-
mental solutions of the corresponding linearized Hamiltonian systems. For γ ∈ Pτ(2n),
we define γ̃(t) = γ(t− j)γ(1)j, j ≤ t ≤ j + 1, j ∈ {0} ∪N, and the k-times iteration path
of γ by γk = γ̃|[0,k] for any k ∈ N. In the paper [54] of Long in 1999, the following result
was proved

i(γk) = ∑
ωk=1

iω(γ), ν(γk) = ∑
ωk=1

νω(γ).

In [55] of 2000, Long established the precise index iteration formula for the Maslov-type
indices. From these results, various iteration index formulas were obtained and were
used to study the multiplicity and stability problems of periodic solutions related to the
nonlinear Hamiltonian systems. We refer to the book [56] of Long in 2002 and the refer-
ences therein for these topics.

In order to study the brake orbit problem, it is necessary to study iterations of the
brake orbits. In order to do this, one way is to study the L0-index of the iteration path
γk of the fundamental solution γ of the corresponding linear system for any k ∈ N. In
this case, the L0-iteration path γk of γ is different from that of the general periodic case
mentioned above. Its definition is given below.

In 1956, Bott in [10] established the famous iteration formula of the Morse index
for closed geodesics on Riemannian manifolds. For convex Hamiltonian systems, Eke-
land developed the similar Bott-type iteration index formulas for the Ekeland index the-
ory [17] of 1990. In [54] of 1999, Long established the Bott-type iteration formulas for the
Maslov-type index theory. Motivated by the above results, in [47] of Liu and Zhang in
2014, the following Bott-type iteration formulas for the L0-index was established. In [70]
of 2018, Wu and Zhu extended the iteration formula to weak symplectic Hilbert spaces.

Define the involution matrix of (R2n, ω0) by

N =

(
−I 0
0 I

)
.

It is anti-symplectic, i.e., NJ = −JN. The fixed point set of N and−N are the Lagrangian
subspaces L0 = {0} × Rn and L1 = Rn × {0} of (R2n, ω0), respectively.
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For simplicity, we suppose γ ∈ P1(2n), i.e., we take τ = 1. For j ∈ N, we define the
j-times iteration path γj : [0, j]→ Sp(2n) of γ by

γ1(t) = γ(t), t ∈ [0, 1],

γ2(t) =

{
γ(t), t ∈ [0, 1],
Nγ(2− t)γ(1)−1Nγ(1), t ∈ [1, 2],

and in general, for k ∈ N, we define γ(2) = Nγ(1)−1Nγ(1) and

γ2k−1(t) =



γ(t), t ∈ [0, 1],
Nγ(2− t)γ(1)−1Nγ(1), t ∈ [1, 2],
· · ·
Nγ(2k− 2− t)Nγ(2)k−1, t ∈ [2k− 3, 2k− 2],
γ(t− 2k + 2)γ(2)k−1, t ∈ [2k− 2, 2k− 1],

γ2k(t) =



γ(t), t ∈ [0, 1],
Nγ(2− t)γ(1)−1Nγ(1), t ∈ [1, 2],
· · ·
γ(t− 2k + 2)γ(2)k−1, t ∈ [2k− 2, 2k− 1],
Nγ(2k− t)Nγ(2)k, t ∈ [2k− 1, 2k].

For γ ∈ Pτ(2n), we define

γk(t) = γ̃k
( t

τ

)
with γ̃(t) = γ(τt). (3.1)

Theorem 3.1 ( [47] of Liu and Zhang in 2014). Suppose γ ∈ Pτ(2n), for the iteration sym-
plectic paths γk, when k is odd, there hold

iL0(γ
k) = iL0(γ

1) +

k−1
2

∑
i=1

iω2i
k
(γ2), νL0(γ

k) = νL0(γ
1) +

k−1
2

∑
i=1

νω2i
k
(γ2),

when k is even, there hold

iL0(γ
k) = iL0(γ

1) + iL0√
−1
(γ1) +

k
2−1

∑
i=1

iω2i
k
(γ2),

νL0(γ
k) = νL0(γ

1) + νL0√
−1
(γ1) +

k
2−1

∑
i=1

νω2i
k
(γ2),

where ωk = eπ
√
−1/k, and (iL0

ω (γ1), νL0
ω (γ1)) is the (L0, ω)-index pair first defined in [47] for

ω ∈ U (see also [72] and Definition 3.1 below in a different way).
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From the Bott-type formulas in Theorem 3.1, the abstract precise iteration index for-
mula of iL0 was given in [47]. We recall the definition of E(a) = min{k ∈ Z|k ≥ a} for
a ∈ R.

Theorem 3.2 ( [47]). Let γ ∈ Pτ(2n), γk is defined by as above, and M = γ2(2τ). Then for
every k ∈ 2N− 1, there holds

iL0(γ
k) =iL0(γ

1) +
k− 1

2
(i(γ2) + S+

M(1)− C(M))

+ ∑
θ∈(0,2π)

E
(

kθ

2π

)
S−M(e

√
−1θ)− C(M),

where C(M) is defined by
C(M) = ∑

θ∈(0,2π)

S−M(e
√
−1θ)

and S±M(ω) is the splitting number of the symplectic matrix M at ω for ω ∈ U defined in
Subsection 1.1. For every k ∈ 2N, there holds

iL0(γ
k) =iL0(γ

2) +

(
k
2
− 1
) (

i(γ2) + S+
M(1)− C(M)

)
− C(M)− ∑

θ∈(π,2π)

S−M(e
√
−1θ) + ∑

θ∈(0,2π)

E
(

kθ

2π

)
S−M(e

√
−1θ).

In [72] of Zhang in 2015, the minimal period problems for symmetric brake orbits was
studied, the Maslov-type index of symmetric brake orbits was defined as follows.

Definition 3.1 ( [72]). For any γ ∈ Pτ(2n) and ω = e
√
−1θ with θ ∈ (0, π), let Vω =

L0 × (eθ J L0), we define

iL0
ω (γ) = µCLM

F (Vω, Gr(γ), [0, τ]),

νL0
ω (γ) = dim

(
γ(τ)L0 ∩ e

√
−1θ J L0

)
.

In order to estimate the minimal period for symmetric brake orbits, we need the it-
eration formula of the Maslov-type index of (iL0√

−1
, νL0√

−1
) for symplectic paths starting at

the identity. Precisely the following Bott-type iteration formula was proved.

Theorem 3.3 ([72] ). Let γ ∈ Pτ(2n) and ωk = eπ
√
−1/k. For odd k we have

iL0√
−1
(γk) = iL0√

−1
(γ1) +

(k−1)/2

∑
i=1

iω2i−1
k

(γ2),

νL0√
−1
(γk) = νL0√

−1
(γ1) +

(k−1)/2

∑
i=1

νω2i−1
k

(γ2),
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and for even k, we have

iL0√
−1
(γk) =

k/2

∑
i=1

iω2i−1
k

(γ2), νL0√
−1
(γk) =

k/2

∑
i=1

νω2i−1
k

(γ2). (3.2)

For any given compact strictly convex (or star-shaped) C2 hypersurface Σ in R2n, a
closed characteristic (τ, y) on Σ is a solution of the problem{

ẏ = JnΣ(y),
y(τ) = y(0),

(3.3)

where nΣ(y) is the outward normal vector of Σ at y normalized by the condition nΣ(y) ·
y = 1. Here a · b denotes the standard inner product of a, b ∈ R2n.

In the study of closed characteristics problems and closed geodesics, the common in-
dex jump theorem [59] of Long and Zhu in 2002 and the enhanced common index jump
theorem [13] of Duan, Long and Wang in 2016 for a finite collection of symplectic paths
starting from identity with positive mean indices i1(γj) play important roles. The com-
mon index jump theorem of the iL0-index for a finite collection of symplectic paths start-
ing from identity with positive mean iL0-indices was established in [47]. In the following
of this paper, we write (iL0(γ, k), νL0(γ, k)) = (iL0(γ

k), νL0(γ
k)) for any symplectic path

γ ∈ Pτ(2n) and k ∈ N. From Theorems 3.1 and 3.2, we know that the mean indices

îL0(γ) := lim
k→∞

iL0(γ, k)
k

and î(γ) := lim
k→∞

i(γ, k)
k

are well defined and we have

îL0(γ) = îL1(γ) = î(γ)

for any symplectic path γ ∈ Pτ(2n).

Theorem 3.4 (The common index jump theorem for brake orbit boundary condition [47,
59]). Let γj ∈ Pτj(2n) and Mj = γ2

j (2τj) = Nγj(τj)
−1Nγj(τj) for j = 1, · · · , q. Suppose

îL0(γj) > 0, ∀j = 1, · · · , q.

Then there exist infinitely many (R, m1, m2, · · · , mq) ∈ Nq+1 such that

(i) νL0(γj, 2mj ± 1) = νL0(γj),

(ii) iL0(γj, 2mj − 1) + νL0(γj, 2mj − 1) = R− (iL1(γj) + n + S+
Mj
(1)− νL0(γj)),

(iii) iL0(γj, 2mj + 1) = R + iL0(γj),

(iv) ν(γ2
j , 2mj ± 1) = ν(γ2

j ),
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(v) i(γ2
j , 2mj − 1) + ν(γ2

j , 2mj − 1) = 2R− (i(γ2
j ) + 2S+

Mj
(1)− ν(γ2

j )),

(vi) i(γ2
j , 2mj + 1) = 2R + i(γ2

j ),

where we have set

i(γ2
j , nj) = i(γ

2nj
j , [0, 2njτj]), ν(γ2

j , nj) = ν(γ
2nj
j , [0, 2njτj])

for nj ∈ N.

4 Applications, brake orbits on given reversible hypersurfaces
in R2n

The iL index theory is suitable for studying the Lagrangian boundary value problems (L-
solution, for short) related to nonlinear Hamiltonian systems. A typical application is to
study the Seifert conjecture for the multiplicity of brake orbits.

4.1 The Seifert conjecture

Let us recall the famous conjecture proposed by H. Seifert in his pioneer work [64] of
1948 concerning the multiplicity of brake orbits in certain Hamiltonian systems in R2n.

We assume that H ∈ C2(R2n, R) possesses the following form

H(p, q) =
1
2

A(q)p · p + V(q), (4.1)

where p, q ∈ Rn, A(q) is a C2 positive definite n × n symmetric matrix in q ∈ Rn and
V ∈ C2(Rn, R) is the potential energy. The solution of the following Hamiltonian system

ẋ = JH′(x), x = (p, q), (4.2a)

p(0) = p
(τ

2

)
= 0, (4.2b)

is called a brake orbit. Moreover, if h is the total energy of a brake orbit (p, q), i.e.,
H(p(t), q(t)) = h and V(q(0)) = V(q(τ)) = h. Then q(t) ∈ Ω̄ ≡ {q ∈ Rn|V(q) ≤ h} for
all t ∈ R.

In [64] of 1948, Seifert studied the existence of brake orbits for system (4.2a)-(4.2b)
with the Hamiltonian function H being in the form of (4.1) and proved that the set Jb(Σ)
of brake orbits on the energy surface Σ = H−1(h) is not empty, i.e., Jb(Σ) 6= ∅ provided
V ′ 6= 0 on ∂Ω, V is analytic and Ω̄ is bounded and homeomorphic to the unit ball Bn

1 (0) in
Rn. Denoted by J̃b(Σ) the set of geometrically distinct brake orbits on the energy surface
Σ. The precise sense of the sets Jb(Σ) and J̃b(Σ) are explained in the next subsection.
Then in the same paper he proposed the following conjecture #J̃b(Σ) ≥ n for Σ described
as above.
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We note that for the Hamiltonian function

H(p, q) =
1
2
|p|2 +

n

∑
j=1

a2
j q2

j , q, p ∈ Rn,

where ai/aj ∈ R \Q for all i 6= j and q = (q1, q2, · · · , qn), there are exactly n geometrically
distinct brake orbits on the energy hypersurface Σ = H−1(h).

4.2 The generalized Seifert conjecture for reversible hypersurfaces

In general, we suppose that H ∈ C2(R2n \ {0}, R) ∩ C1(R2n, R) satisfies the following
reversible condition

H(Nx) = H(x), ∀x ∈ R2n. (4.3)

For given h > 0, we consider the following fixed energy problem of nonlinear Hamilto-
nian system with Lagrangian boundary conditions

ẋ(t) = JH′(x(t)), (4.4a)
H(x(t)) = h, (4.4b)
x(0) ∈ L0, x(τ/2) ∈ L0. (4.4c)

It is clear that a solution (τ, x) of (4.4a)-(4.4c) is a characteristic chord on the contact
submanifold Σ := H−1(h) = {y ∈ R2n |H(y) = h} of (R2n, ω0) and satisfies

x(−t) = Nx(t), (4.5a)
x(τ + t) = x(t). (4.5b)

In general, this kind of τ-periodic characteristic (τ, x) is called a brake orbit on the hy-
persurface Σ. We note that the problem (4.2a)-(4.2b) with the Hamiltonian function H de-
fined in (4.1) is a special case of the problem (4.4a)-(4.4c). We denote by Jb(Σ, H) the set of
all brake orbits on Σ. Two brake orbits (τi, xi) ∈ Jb(Σ, H) with i = 1, 2, are equivalent, if
the two brake orbits are geometrically the same, i.e., x1(R) = x2(R). We denote by [(τ, x)]
the equivalence class of (τ, x) ∈ Jb(Σ, H) in this equivalence relation and by J̃b(Σ, H)
the set of [(τ, x)] for all (τ, x) ∈ Jb(Σ, H). In fact J̃b(Σ, H) is the set of geometrically
distinct brake orbits on Σ, which is independent of the choice of H. So from now on we
simply denote it by J̃b(Σ) and in the notation [(τ, x)] we always mean that x has the min-
imal period τ. We also denote by J̃ (Σ) the set of all geometrically distinct closed charac-
teristics on Σ. The number of elements in a set S is denoted by #S. It is well known that
#J̃b(Σ) (and also #J̃ (Σ)) depends only on Σ, that is to say, for simplicity we take h = 1,
if H and G are two C2 functions satisfying (4.3) and ΣH := H−1(1) = ΣG := G−1(1),
then #Jb(ΣH) =# Jb(ΣG). So we can consider the brake orbit problem in a more gen-
eral setting. Let Σ be a C2 compact hypersurface in R2n bounding a compact set C with
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nonempty interior. Suppose Σ has non-vanishing Gaussian curvature and satisfies the
reversible condition N(Σ− x0) = Σ− x0 := {x − x0|x ∈ Σ} for some x0 ∈ C. Without
loss of generality, we may assume x0 = 0. We denote the set of all such hypersurfaces
in R2n by Hb(2n). For x ∈ Σ, let nΣ(x) be the outward unit normal vector at x ∈ Σ as
in (3.3). Note that here by the reversible condition there holds nΣ(Nx) = NnΣ(x). We
consider the dynamics problem of finding τ > 0 and a C1 smooth curve x : [0, τ] → R2n

such that

ẋ(t) = JnΣ(x(t)), x(t) ∈ Σ, (4.6a)
x(−t) = Nx(t), x(τ + t) = x(t) for all t ∈ R. (4.6b)

A solution (τ, x) of the problem (4.6a)-(4.6b) determines a brake orbit on Σ. Now the
generalized Seifert conjecture can be represented as

The Generalized Seifert Conjecture: For any Σ ∈ Hb(2n), there holds
#J̃b(Σ) ≥ n.

We can view the above estimate as a result on the number of Lagrangian intersection
(more precisely the Legendre intersection, since Σ ∩ L0 is a Legendre submanifold of the
contact manifold Σ) of “reversible” Hamiltonian map ϕb:

#{Σ ∩ L0 ∩ ϕb(L0)} ≥ n.

The famous Arnold conjecture is related to the Lagrangian boundary problem, it says
that the number of Lagrangian intersection of a Hamiltonian map on a closed symplectic
manifold M can be estimated from below by the Betti number of M in the non-degenerate
case and by the cuplength of M [4] of 1965. In this direction readers are referred to [22,
34, 39] of 1989, 1998, and 2005 respectively.

4.3 Some related results since 1948

As a special case, letting A(q) = I in (4.1), the problem (4.2a)-(4.2b) corresponds to the
following classical fixed energy problem of the second order autonomous Hamiltonian
system

q̈(t) + V ′(q(t)) = 0 for q(t) ∈ Ω, (4.7a)
1
2
|q̇(t)|2 + V(q(t)) = h, ∀t ∈ R, (4.7b)

q̇(0) = q̇
(τ

2

)
= 0, (4.7c)

where V ∈ C2(Rn, R) and h is a constant such that Ω ≡ {q ∈ Rn|V(q) < h} is nonempty,
bounded and connected.

A solution (τ, q) of (4.7a)-(4.7c) is still called a brake orbit in Ω̄. Two brake orbits q1
and q2 : R → Rn are geometrically distinct if q1(R) 6= q2(R). We denote by O(Ω, V) and
Õ(Ω) the sets of all brake orbits and geometrically distinct brake orbits in Ω̄ respectively.
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Remark 4.1. It is well known that via

H(p, q) =
1
2
|p|2 + V(q),

x = (p, q) and p = q̇, the elements in O(Ω, V) and the solutions of (4.4a)-(4.4c) are one to
one correspondent.

After 1948, various studies have been carried out for the brake orbit problem. Bolotin
proved in [8] of 1978 the existence of brake orbits in general setting. Hayashi in [31] of
1983, Gluck and Ziller in [28] of 1983, and Benci in [6] of 1984 proved #Õ(Ω) ≥ 1, if V
is C1, Ω̄ = {V ≤ h} is compact, and V ′(q) 6= 0 for all q ∈ ∂Ω. Rabinowitz in [62] of
1978 proved that if H satisfies (4.3), Σ ≡ H−1(h) is star-shaped, and x · H′(x) 6= 0 for all
x ∈ Σ, then #J̃b(Σ) ≥ 1. Benci and Giannoni gave a different proof of the existence of
one brake orbit in [7] of 1989. In 2005, it was pointed out in [24] of Giambò, Giannoni
and Piccione that the problem of finding brake orbits is equivalent to find orthogonal
geodesic chords on manifold with concave boundary. Giambò, Giannoni and Piccione
in [25] of 2010 proved the existence of an orthogonal geodesic chord on a Riemannian
manifold homeomorphic to a closed disk and with concave boundary. For the multiplic-
ity of the brake orbit problems, Weinstein in [69] of 1973 proved a local result: Assume
H satisfies (4.3). For any h sufficiently close to H(z0) with z0 being a nondegenerate local
minimum of H, there exist at least n geometrically distinct brake orbits on the energy sur-
face H−1(h). In [9] of 1978 of Bolotin and Kozlov and in [28] of 1983 of Gluck and Ziller,
the existence of at least n brake orbits was proved under assumptions of Seifert in [64]
and an additional assumption on the energy integral such that different minimax critical
levels correspond to geometrically distinct brake orbits. Szulkin in [65] of 1989 proved
that #J̃b(H−1(h)) ≥ n, if H satisfies conditions in [62] of 1978 of Rabinowitz and the en-
ergy hypersurface H−1(h) is

√
2-pinched. Groesen in [29] of 1985 and Ambrosetti, Benci

and Long in [1] of 1993 also proved #Õ(Ω) ≥ n under different pinching conditions.

4.4 Recent progress on the Seifert conjecture

Definition 4.1. We denote by

Hc
b(2n) = {Σ ∈ Hb(2n)| Σ is strictly convex },
Hs,c

b (2n) = {Σ ∈ Hc
b(2n)| − Σ = Σ}.

Without any pinching conditions, Long, Zhang and Zhu in [57] of 2006 established a
Maslov-type index theory for brake orbits and proved

Theorem 4.1 ([57]). For any Σ ∈ Hs,c
b (2n), there holds

#J̃b(Σ) ≥ 2.
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Liu and Zhang established the iteration theory for iL0 index in [47] and proved that
#J̃b(Σ) ≥

[ n
2

]
+ 1 for Σ ∈ Hs,c

b (2n). Moreover it was proved that if all brake orbits on Σ
are nondegenerate, then #J̃b(Σ) ≥ n+A(Σ), where 2A(Σ) is the number of geometrically
distinct asymmetric brake orbits on Σ. In [73] of 2014, Liu and Zhang improved the above
result to that #J̃b(Σ) ≥

[ n+1
2

]
+ 1 for Σ ∈ Hs,c

b (2n) with n ≥ 3. In this case, the Seifert
conjecture is true for n ≤ 3. In [74] of 2013 Liu and Zhang proved that #J̃b(Σ) ≥

[ n+1
2

]
+ 2

for Σ ∈ Hs,c
b (2n) with n ≥ 4. In this case, the Seifert conjecture is true for n ≤ 5.

For any integer n, the following result was proved by Liu and Zhang in 2014.

Theorem 4.2 ([48]). For any Σ ∈ Hs,c
b (2n), there holds

#J̃b(Σ) ≥ n.

In order to show the role of iteration theory of iL index, we give a sketch of the proof
of Theorem 4.2 below by applying Theorem 3.4 and the estimate in Theorem 2.3. More
details can be found in [48].

For any xτ being a τ-periodic brake orbit solution, let γxτ be the symplectic path
associated to xτ. We define

iL0(xτ) = iL0(γxτ |[0, τ
2 ]
), νL0(xτ) = νL0

(
γxτ

(τ

2

))
.

Definition 4.2. For Σ ∈ Hs,c
b (2n), a brake orbit (τ, x) on Σ is called symmetric if x(R) =

−x(R). Similarly, for a C2 convex symmetric bounded domain Ω ⊂ Rn, a brake orbit (τ, q) ∈
O(Ω, V) is called symmetric if q(R) = −q(R).

A sketch of the proof of Theorem 4.2. Suppose that there are p symmetric and 2q asymmetric
geometrically distinct brake orbits on Σ. Denote them by {(τj, xj)|j = 1, 2, · · · , p} and
{(τk, xk), (τk,−xk)k = p+ 1, p+ 2, · · · , p+ q} respectively, where τj is the minimal period
of xj for j = 1, 2, · · · , p + q. Then the proof is completed in three steps.

Step 1 Applying Theorem 3.4 to the associated symplectic paths of

(τ1, x1), (τ2, x2), · · · , (τp+q, xp+q), (2τp+1, x2
p+1), · · · , (2τp+q, x2

p+q)

we obtain a sufficient large integer R and the iteration times m1, m2, · · · ,
mp+q, mp+q, mp+q+1, · · · , mp+2q satisfying (i)-(vi) of Theorem 3.4.

By the proofs in [57] of Long, Zhang and Zhu in 2006 and the fact that x and −x
have the same iL0 and νL0 index, we can define a map φ with

φ(R− s + 1) = ((τk(s), xk(s)), m(s)) for s = 1, 2, · · · , n,

such that 1 ≤ k(s) ≤ p + q and

iL0(xk(s), m(s)) ≤ R− s ≤ iL0(xk(s), m(s)) + νL0(xk(s), m(s))− 1, (4.8a)

m(j) > m(l), ∀j < l with k(j) = k(l). (4.8b)
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Step 2 Let
S1 = { s ∈ {1, 2, · · · , n}| k(s) ≤ p} , S2 = {1, 2, · · · , n} \ S1.

We shall prove that

m(s) = 2mk(s), s ∈ S1. (4.9)

In fact, by the strict convexity of Σ, we have iL0(xk(s)) ≥ 0. Hence by (4.8a) and (iii)
of Theorem 3.4, for every s = 1, 2, · · · , n, there holds

iL0(xk(s), m(s)) < R ≤ iL0(xk(s), 2mk(s) + 1). (4.10)

Note that γxk satisfies conditions of Theorem 2.3 with τ = τk
2 . So by Theorem 2.3,

we have

iL1(xk) + S+
Mk

(1)− νL0(xk) ≥ 0, ∀k = 1, · · · , p. (4.11)

(4.11) and (ii) of Theorem 3.4 would yield

iL0(xk(s), 2mk(s) − 1) + νL0(xk(s), 2mk(s) − 1)

<iL0(xk(s), m(s)) + νL0(xk(s), m(s)). (4.12)

Note that the convex assumption of the hypersurface Σ implies that the iL0(x, j) and
iL0(x, j) + νL0(x, j) are both strictly increasing in the iteration time j for any brake
orbit x on Σ.

Hence by (4.10), (4.12), we obtain

2mk(s) − 1 < m(s) < 2mk(s) + 1.

Hence (4.9) holds.

Step 3 (4.8b) and (4.9) imply #S1 ≤ p. By similar arguments, we obtain

2mk(s) − 2 < m(s) < 2mk(s) + 1,

which yields #S2 ≤ 2q. So we have

p + 2q ≥# S1 +
# S2 = n.

The proof of Theorem 4.2 is completed.

Remark 4.2. Theorem 4.2 is a kind of multiplicity result related to the Arnold chord
conjecture. The Arnold chord conjecture is an existence result which was proved by
Mohnke in [60] of 2001. Another kind of multiplicity result related to the Arnold chord
conjecture was proved by Guo and Liu in [30] of 2008.



C. G. Liu, Y. M. Long and D. Z. Zhang / Anal. Theory Appl., 37 (2021), pp. 129-156 147

A typical example of Σ ∈ Hs,c
b (2n) is the ellipsoid En(r) defined as follows. Let r =

(r1, · · · , rn) with rj > 0 for 1 ≤ j ≤ n. Define

En(r) =

{
x = (x1, · · · , xn, y1, · · · , yn) ∈ R2n

∣∣∣∣∣ n

∑
k=1

x2
k + y2

k
r2

k
= 1

}
.

If rj/rk ∈ R \Q whenever j 6= k, one can easily see that there are precisely n geometrically
distinct symmetric brake orbits on En(r) and all of them are nondegenerate.

The following two important results are direct consequences of Theorem 4.2.

Corollary 4.1 ([48]). If H(p, q) defined by (4.1) is even and convex, then Seifert conjecture holds.

Corollary 4.2 ([48]). Suppose V(0) = 0, V(q) ≥ 0, V(−q) = V(q) and V ′′(q) is positive
definite for all q ∈ Rn \ {0}. Then for any given h > 0 and Ω ≡ {q ∈ Rn|V(q) < h}, there
holds

#Õ(Ω) ≥ n.

In 2015, by non-smooth Lyusternik-Schnirelmann theory, Giambò, Giannoni and Pic-
cione proved the following result which means Seifert conjecture holds in the case n = 2
while it is still open for n ≥ 3.

Theorem 4.3 ([26]). Under Seifert’s condition with A and V weakened to C2, for n ≥ 2, there
holds

#J̃b(Σ) ≥ 2.

We call a compact star-shaped reversible hypersurface Σ ∈ R2n being dynamically
convex, if for any brake orbit (τ, x) on Σ, there holds

iL0(x) ≥ 0, iL1(x) ≥ 0.

We call Σ is L0-nondegenerate if every brake orbits on it is nondegenerate.
In a preprint of 2018, using the equivariant wrapped Floer homology theory and the

Common Index Jump Theorem 3.4, Kim, Kim and Kwon proved,

Theorem 4.4 ([38]). For any L0-nondegenerate compact dynamically convex reversible hyper-
surface Σ ∈ R2n, there holds

#J̃b(Σ) ≥ n.

The conclusion of Theorem 4.2 can be extended to dynamically convex case.

Theorem 4.5 ([49] of Z. Liu and Zhang). For any compact symmetric dynamically convex
reversible hypersurface Σ ∈ R2n, there holds

#J̃b(Σ) ≥ n.
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In 2006, Zhang considered the multiplicity of symmetric brake orbits and proved,

Theorem 4.6 ( [71]). For any Σ ∈ Hs,c
b (2n), there exist at least two geometrically symmetric

brake orbits on Σ.

For stability of brake orbits, there are only few results, since information obtained
from variational methods is not easy to be used. In 2017, Fan and Zhang proved,

Theorem 4.7 ( [19]). For any Σ ∈ Hs,c
b (2n), if there are exactly n geometrically distinct brake

orbits on Σ, then there are at least n− 2 among them possessing irrational mean iL0 indices.

4.5 Related results

It is interesting to ask the following question: whether all closed characteristics on any
hypersurfaces Σ ∈ Hs,c

b (2n) are symmetric brake orbits after suitable time translation
provided #J̃ (Σ) < +∞? In this direction, the following result was proved in [48] by Liu
and Zhang.

Theorem 4.8 ([48]). For any Σ ∈ Hs,c
b (2n), suppose

#J̃ (Σ) = n.

Then all of the n closed characteristics on Σ are symmetric brake orbits after suitable time trans-
lation.

Note that for the hypersurface

Σ =
{
(x1, x2, y1, y2) ∈ R4

∣∣∣ x2
1 + y2

1 +
x2

2 + y2
2

4
= 1

}
,

we have
#J̃b(Σ) = +∞ and #J̃ s

b (Σ) = 2,

where we have denoted by J̃ s
b (Σ) the set of all symmetric brake orbits on Σ. We also

note that on the hypersurface Σ = {x ∈ R2n| |x| = 1} there are some non-brake closed
characteristics.

For n = 2, it was proved in [33] of Hofer, Wysocki and Zehnder that #J̃ (Σ) is either
2 or +∞ for any C2 compact convex hypersurface Σ in R4. In the brake orbit case, in [23]
of 2016, Frauenfelder and Kang proved that #J̃b(Σ) is either 2 or +∞ for any C2 com-
pact dynamically convex reversible hypersurface Σ in R4. So it is natural to propose the
following conjecture:
Conjeture: #J̃b(Σ) is either n or +∞ for any C2 compact convex reversible hypersurface
Σ in R2n.

The multiplicity of closed characteristics on a fixed energy hypersurface in R2n is a
very important problem in nonlinear Hamiltonian systems. Similar to Seifert conjecture,
there is a long standing (more than 100 years) conjecture that on every compact convex
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hypersurface in R2n, there exist at least n closed characteristics. An important progress
was made by Long and Zhu in [59] of 2002, by using the iteration theory of Maslov-
type index of symplectic paths and establishing the common index jump theorem. They
proved that

#J̃ (Σ) ≥
[n

2

]
+ 1.

Then in 2002, Liu, Long and Zhu in [45] proved that

#J̃ (Σ) ≥ n

provided Σ is a convex compact symmetric hypersurface in R2n.
In [68] of 2007, Wang, Hu and Long proved that the conjecture holds in the case n = 3.

In [66] of 2016, Wang proved that #J̃ (Σ) ≥
[ n+1

2

]
+ 1 when n ≥ 2. In [67] of 2016, Wang

proved that the conjecture holds in the case n = 4.
It is also interesting to ask the following question: Can we prove the above conjecture

on closed characteristics if the hypersurface is additionally reversible?

5 Applications, minimal period solution problems in the brake
orbit case

For the nonlinear Hamiltonian system:

ẋ = JH′(x), x ∈ R2n, (5.1)

in his pioneering paper [61] of 1978, Rabinowitz proved the following famous result via
a variational method. Suppose H satisfies the following conditions:

(H1′) H ∈ C1(R2n, R).
(H2) There exist constants µ > 2 and r0 > 0 such that

0 < µH(x) ≤ H′(x) · x, ∀|x| ≥ r0.

(H3) H(x) = o(|x|2) at x = 0.
(H4) H(x) ≥ 0 for all x ∈ R2n.

Then for any T > 0, the system (5.1) possesses a non-constant T-periodic solution.
Because a T/k periodic function is also a T-periodic function, in [61] Rabinowitz pro-

posed the conjecture that under conditions (H1′) and (H2)-(H4), there is a periodic so-
lution of (5.1) with T as its minimal period for any T > 0. Since 1978, this conjecture
has been deeply studied by many mathematicians. A significant progress was made by
Ekeland and Hofer in their celebrated paper [18] of 1985, where they confirmed Rabi-
nowitz’s conjecture for the strictly convex Hamiltonian systems. For Hamiltonian sys-
tems with convex or weakly convex assumptions, we refer to [2,3,12,17,44,56] and refer-
ences therein for more details. For the seconder order case without any convex condition
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we refer to [50–52], and Chapter 13 of [56] as well as references therein. In [12] of 1997,
Dong and Long gave the first index theoretical proof of the Ekeland-Hofer theorem, and
discovered the deep connection between the minimal period and the index theory.

It is natural to consider the minimal period solution problem of brake orbits in re-
versible first order nonlinear Hamiltonian systems. The key tool is the iteration theory
of iL index. Motivated by [12, 20, 21, 50, 51] we consider the case that the systems are
semipositive, i.e., the Hessian H′′(x) has no negative eigenvalues at any x ∈ R2n, which
guarantees the existence of a lower bound of iL indices of brake orbits of the system.

It is natural to suppose H satisfies the following reversible and semipositive condi-
tions:

(H5) H(Nx) = H(x) for all x ∈ R2n.
(H6) H′′(x) is semipositive definite for all x ∈ R2n.

We also suppose the following smooth condition:
(H1) H ∈ C2(R2n, R).

In order to introduce our results more conveniently, we define the following (B1)
condition. Since the Hamiltonian systems considered here are reversible, this condition
is natural.

(B1) Condition. For any τ > 0 and B ∈ C([0, τ],Ls(R2n) of the n× n matrix square block
form

B(t) =
(

B11(t) B12(t)
B21(t) B22(t)

)
satisfying B12(0) = B21(0) = 0 = B12(τ) = B21(τ), we call B satisfying the condition
(B1).

For any B ∈ C([0, τ],Ls(R2n)), denote by γB the fundamental solution of the follow-
ing problem

γ̇B(t) = JB(t)γB(t),
γB(0) = I2n.

Then γB ∈ Pτ(2n). We call γB the symplectic path associated to B.
If H is even and xτ is a τ-periodic symmetric brake orbit solution of (5.1), let B(t) =

H′′(x(t)), we define γxτ = γB|[0, τ
4 ]

and call it the symplectic path associated to xτ. We
define

iL0√
−1
(xτ) = iL0√

−1
(γxτ ), νL0√

−1
(xτ) = iL0√

−1
(γxτ ).

Theorem 5.1 ([42] of Liu in 2010). Suppose that H satisfies conditions (H1)-(H6). Then for
any τ > 0, the system (5.1) possesses a τ periodic brake orbit xτ. Furthermore if xτ satisfies

(H6′)
∫ τ

2

0
H′′(xτ(t)) dt > 0.

Then the minimal period of xτ belongs to {τ, τ
2}.
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Theorem 5.2 ([72] of Zhang in 2015). Suppose that H satisfies conditions (H1)-(H6). Then
for any τ > 0, the system (5.1) possesses a τ periodic brake orbit xτ with minimal period not
less than τ

2n+2 . Moreover, for x = (x1, x2) with x1, x2 ∈ Rn, denote by H′′22(x) the second order
differential of H with respect to x2, if∫ τ

2

0
H′′22(xτ(t)) dt > 0, (5.2)

then the minimal period of xτ belongs to {τ, τ
2}.

For readers’ convenience we give the idea of Theorem 5.2 below as an example to
show how to estimate the minimal period by the index iteration theory, more details can
be found in [72] of Zhang in 2015.

Idea of the proof of Theorem 5.2. For any τ > 0, by the Galerkin approximation and the
variational argument, we obtain a τ-periodic brake orbit solution xτ of (5.1) such that
iL0(xτ) ≤ 1. Suppose its minimal period is T, then τ/T ≡ k is a positive integer and xτ =
xk

T with xT = xτ|[0,T]. In the variational argument we also have iL1(xT) + νL1(xT) ≥ 1. By
the semipositive assumption we have

iL1√
−1
(γxT ) ≥ 0 (5.3)

and iL0(γxT ) + νL0(γxT ) ≥ 0 which implies

iL0(γxT ) ≥ −n, (5.4)

where γxT is the associated symplectic path of the brake orbit xT. Hence i1(γ2
xT
) +

ν1(γ
2
xT
) ≥ n + 1. Thus by the above Theorem 3.1 and Proposition 4.1 of [44] of Liu and

Long in 2000 Theorem 10.1.1 of [56] of Long in 2002, we have

1 ≥ iL0(xτ) = iL0(γ
k
xT
) ≥

{
iL0(γxT ) + (k− 1)/2, k odd,

iL0(γxT ) + iL1√
−1
(γxT ) + k/2− 1, k even.

(5.5)

By (5.3)-(5.5) we have k ≤ 2n + 4. By Theorem 2.2 and the estimate of Hörmander index
we have k 6= 2n+ 3, 2n+ 4. So we have k ≤ 2n+ 2 which means that the minimal period
of xτ is not less than τ

2n+2 .
Moreover, if (5.2) holds, then we have iL0(γxT ) ≥ 0, by the same argument as above

we have k ≤ 2 which means that the minimal period of xτbelongs to {τ, τ
2}.

Next we consider the minimal period problem for

H(x) =
1
2

B0x · x + Ĥ(x),

where B0 ∈ Ls(R2n).
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Theorem 5.3 ([72]). Let B0 = diag(B11, B22) be a 2n× 2n real semipositive matrix with B11
and B22 being n× n matrices. Assume

H(x) =
1
2

B0x · x + Ĥ(x) for all x ∈ R2n,

and Ĥ satisfies conditions (H1)-(H6).
Then for any τ > 0, the system (5.1) possesses a τ-periodic brake orbit xτ with its minimal pe-

riod not less than τ
2iL0 (B0)+2νL0 (B0)+2n+2 , where B0 is viewed as an element in C([0, τ/2],Ls(R2n))

which satisfies the condition (B1).

Remark 5.1. In [72], it was proved that if B0 is semipositive, then iL0(B0) + νL0(B0) ≥ 0.

Theorem 5.4 ([72]). Suppose that H satisfies the conditions (H1)-(H6) and
(H7) H(−x) = H(x) for all x ∈ R2n.

Then for any τ > 0, the system (5.1) possesses a symmetric brake orbit with minimal period
belonging to {τ, τ/3}.

Theorem 5.5 ([72]). Let B0 = diag(B11, B22) be a 2n× 2n real semipositive matrix with B11
and B22 being n× n matrix. Assume H(x) = 1

2 B0x · x + Ĥ(x) for all x ∈ R2n, and Ĥ satisfies
the conditions (H1)-(H7). Then for any τ > 0, the system (5.1) possesses a symmetric brake orbit
xτ with minimal period not less than τ

4(iL0√
−1

(B0)+ν
L0√
−1

(B0))+7
. Moreover, if iL0√

−1
(B0) + νL0√

−1
(B0)

is even, then the minimal period of xτ is not less than τ

4(iL0√
−1

(B0)+ν
L0√
−1

(B0))+3
, where B0 is viewed

as an element in C([0, τ/4],Ls(R2n)) satisfying the condition (B1).

Remark 5.2. In [72], it was proved that, if B0 is semipositive, then iL0√
−1
(B0) ≥ 0, hence

iL0√
−1
(B0) + νL0√

−1
(B0) ≥ 0.
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[51] Y. Long, The minimal period problem of period solutions for autonomous superquadratic
second Hamiltonian systems, J. Differential Equations, 111 (1994), 147–174.

[52] Y. Long, On the minimal period for periodic solution problem of nonlinear Hamiltonian sys-
tems, A Chinese summary appears in Chinese Ann. Math. Ser. A, 18 (5) (1997), 666. Chinese
Ann. Math. Ser. B, 18(4) (1997), 481–484.

[53] Y. Long, Topological structures of ω-subsets in symplectic groups, Acta Math. Sinica, Eng.
Series, 15 (1999), 255–268.

[54] Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113–149.
[55] Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed

characteristics, Adv. Math., 154(1) (2000), 76–131.
[56] Y. Long, Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel, 2002.
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