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Abstract. We study the insulated conductivity problem with inclusions embedded in
a bounded domain in Rn. When the distance of inclusions, denoted by ε, goes to 0, the
gradient of solutions may blow up. When two inclusions are strictly convex, it was
known that an upper bound of the blow-up rate is of order ε−1/2 for n = 2, and is of
order ε−1/2+β for some β > 0 when dimension n ≥ 3. In this paper, we generalize the
above results for insulators with flatter boundaries near touching points.
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1 Introduction and main results

Let Ω be a bounded domain in Rn with C2 boundary, and let D∗1 and D∗2 be two open sets
whose closure belongs to Ω, touching only at the origin with the inner normal vector of
∂D∗1 pointing in the positive xn-direction. Denote x = (x′, xn). Translating D∗1 and D∗2 by
ε
2 along xn-axis, we obtain

Dε
1 := D∗1 +

(
0′, ε/2

)
and Dε

2 := D∗2 −
(
0′, ε/2

)
.

When there is no confusion, we drop the superscripts ε and denote D1 := Dε
1 and D2 :=

Dε
2. Denote Ω̃ := Ω \ (D1 ∪ D2). A simple model for electric conduction can be formu-

lated as the following elliptic equation:div
(

ak(x)∇uk

)
= 0 in Ω,

uk = ϕ(x) on ∂Ω,
(1.1)
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where ϕ ∈ C2(∂Ω) is given, and

ak(x) =

{
k ∈ (0, ∞) in D1 ∪ D2,

1 in Ω̃,

refers to conductivities. The solution uk and its gradient∇uk represent the voltage poten-
tial and the electric fields respectively. From an engineering point of view, It is an inter-
esting problem to capture the behavior of ∇uk. Babuška, et al. [3] numerically analyzed
that the gradient of solutions to an analogous elliptic system stays bounded regardless of
ε, the distance between the inclusions. Bonnetier and Vogelius [5] proved that for a fixed
k, |∇uk| is bounded for touching disks D1 and D2 in dimension n = 2. A general result
was obtained by Li and Vogelius [11] for general second order elliptic equations of diver-
gence form with piecewise Hölder coefficients and general shape of inclusions D1 and
D2 in any dimension. When k is bounded away from 0 and ∞, they established a W1,∞

bound of uk in Ω, and a C1,α bound in each region that do not depend on ε. This result
was further extended by Li and Nirenberg [10] to general second order elliptic systems of
divergence form. Some higher order estimates with explicit dependence on r1, r2, k and ε
were obtained by Dong and Li [7] for two circular inclusions of radius r1 and r2 respec-
tively in dimension n = 2. There are still some related open problems on general elliptic
equations and systems. We refer to p. 94 of [11] and p. 894 of [10].

When the inclusions are insulators (k = 0), it was shown in [6,9,13] that the gradient of
solutions generally becomes unbounded, as ε→ 0. It was known that (see e.g., Appendix
of [4]) when k → 0, uk converges to the solution of the following insulated conductivity
problem: 

−∆u = 0 in Ω̃,
∂u
∂ν

= 0 on ∂Di, i = 1, 2,

u = ϕ on ∂Ω.

(1.2)

Here ν denotes the inward unit normal vectors on ∂Di, i = 1, 2.
The behavior of the gradient in terms of ε has been studied by Ammari et al. in [1]

and [2], where they considered the insulated problem on the whole Euclidean space:
∆u = 0 in Rn \ (D1 ∪ D2),
∂u
∂ν

= 0 on ∂Di, i = 1, 2,

u(x)− H(x) = O(|x|n−1) as |x| → ∞.

(1.3)

They established when dimension n = 2, D∗1 and D∗2 are disks of radius r1 and r2 respec-
tively, and H is a harmonic function in R2, the solution u of (1.3) satisfies

‖∇u‖L∞(B4) ≤ Cε−1/2,
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for some positive constant C independent of ε. They also showed that the upper bounds
are optimal in the sense that for appropriate H,

‖∇u‖L∞(B4) ≥ ε−1/2/C.

In fact, the equationdiv
(

ak(x)∇uk

)
= 0 in R2 \ (D1 ∪ D2),

u(x)− H(x) = O(|x|−1) as |x| → ∞,

was studied there, and the estimates derived have explicit dependence on r1, r2, k and ε.
Yun extended in [14] and [15] these results allowing D∗1 and D∗2 to be any bounded

strictly convex smooth domains in R2.
The above upper bound of ∇u was localized and extended to higher dimensions by

Bao, Li and Yin in [4], where they considered problem (1.2) and proved

‖∇u‖L∞(Ω̃) ≤ Cε−1/2‖ϕ‖C2(∂Ω), when n ≥ 2. (1.4)

The upper bound is optimal for n = 2 as mentioned earlier. For dimensions n ≥ 3, the
upper bound was recently improved by Li and Yang [12] to

‖∇u‖L∞(Ω̃) ≤ Cε−1/2+β‖ϕ‖C2(∂Ω), when n ≥ 3, (1.5)

for some β > 0.
Yun [16] considered the problem (1.3) in R3, with unit disks

D1 = B1 (0, 0, 1 + ε/2) , D2 = B1 (0, 0,−1− ε/2) ,

and a harmonic function H. He proved that for some positive constant C independent of
ε,

max
|x3|≤ε/2

|∇u(0, 0, x3)| ≤ Cε
√

2−2
2 .

He also showed that this upper bound of |∇u| on the ε-segment connecting D1 and D2 is
optimal for H(x) ≡ x1.

In this paper, we assume that for some m ∈ [2, ∞) and a small universal constant R0,
the portions of ∂D∗1 and ∂D∗2 in [−R0, R0]n are respectively the graphs of two C2 functions
f and g in terms of x′, and

f (0′) = g(0′) = 0, ∇ f (0′) = ∇g(0′) = 0, (1.6a)
λ1|x′|m ≤ ( f − g)(x′) ≤ λ2|x′|m for 0 < |x′| < R0, (1.6b)

|∇( f − g)(x′)| ≤ λ3|x′|m−1 for 0 < |x′| < R0, (1.6c)
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for some λ1, λ2, λ3 > 0. Let a(x) ∈ Cα(Ω̃), for some α ∈ (0, 1), be a symmetric, positive
definite matrix function satisfying

λ ≤ a(x) ≤ Λ for x ∈ Ω̃,

for some positive constants λ, Λ. Let ν = (ν1, · · · , νn) denote the unit normal vector on
∂D1 and ∂D2, pointing towards the interior of D1 and D2. We consider the following
insulated conductivity problem:

−∂i(aij∂ju) = 0 in Ω̃,
aij∂juνi = 0 on ∂(D1 ∪ D2),
u = ϕ on ∂Ω,

(1.7)

where ϕ ∈ C2(∂Ω) is given. For 0 < r ≤ R0, we denote

Ωx0,r :=
{
(x′, xn) ∈ Ω̃

∣∣ − ε

2
+ g(x′) < xn <

ε

2
+ f (x′), |x′ − x′0| < r

}
, (1.8a)

Γ+ :=
{

xn =
ε

2
+ f (x′), |x′| < R0

}
, Γ− :=

{
xn = − ε

2
+ g(x′), |x′| < R0

}
. (1.8b)

Since the blow-up of gradient can only occur in the narrow region between D1 and D2,
we will focus on the following problem near the origin:{

−∂i(aij∂ju) = 0 in Ω0,R0 ,
aij∂juνi = 0 on Γ+ ∪ Γ−,

(1.9)

where ν = (ν1, · · · , νn) denotes the unit normal vector on Γ+ and Γ−, pointing upward
and downward respectively.

Theorem 1.1. Let m, Γ+, Γ−, a, α be as above, and let u ∈ H1(Ω0,R0) be a solution of (1.9).
There exist positive constants r0, β and C depending only on n, m, λ, Λ, R0, α, λ1, λ2, λ3,
‖ f ‖C2({|x′|≤R0}), ‖g‖C2({|x′|≤R0}) and ‖a‖Cα(Ω0,R0 )

, such that

|∇u(x0)| ≤

 C‖u‖L∞(Ω0,R0 )
(ε + |x′0|m)

−1/m , when n = 2,

C‖u‖L∞(Ω0,R0 )
(ε + |x′0|m)

−1/m+β , when n ≥ 3,
(1.10)

for all x0 ∈ Ω0,r0 and ε ∈ (0, 1).

Remark 1.1. For m = 2, (1.10) was proved in [4] and [12] for n = 2 and n ≥ 3, respectively.

Let u ∈ H1(Ω̃) be a weak solution of (1.7). By the maximum principle and the gradi-
ent estimates of solutions of elliptic equations,

‖u‖L∞(Ω̃) ≤ ‖ϕ‖L∞(∂Ω), (1.11a)

‖∇u‖L∞(Ω̃\Ω0,r0 )
≤ C‖ϕ‖C2(∂Ω). (1.11b)

Therefore, a corollary of Theorem 1.1 is as follows.
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Corollary 1.1. Let u ∈ H1(Ω̃) be a weak solution of (1.7). There exist positive constants β and
C depending only on n, m, λ, Λ, R0, α, λ1, λ2, λ3, ‖∂D1‖C2 , ‖∂D2‖C2 , ‖∂Ω‖C2 , and ‖a‖

Cα(Ω̃)
,

such that

‖∇u‖L∞(Ω̃) ≤
{

C‖ϕ‖C2(∂Ω)ε
− 1

m , when n = 2,

C‖ϕ‖C2(∂Ω)ε
− 1

m+β, when n ≥ 3.
(1.12)

2 Proof of Theorem 1.1

Our proof of Theorem 1.1 is an adaption of the arguments in our earlier paper [12] for
m = 2, and follows closely the arguments there.

We fix a γ ∈ (0, 1), and let r0 > 0 denote a constant depending only on n, m, γ, R0, λ1,
λ2, ‖ f ‖C2 and ‖g‖C2 , whose value will be fixed in the proof. For any x0 ∈ Ω0,r0 , we define

δ :=
(
ε + |x′0|m

) 1
m . (2.1)

We will always consider 0 < ε ≤ rm
0 . First, we require r0 small so that for |x′0| < r0,

10δ < δ1−γ <
R0

4
.

Lemma 2.1. For n ≥ 3, there exists a small r0, depending only on n, m, γ, and R0, such that
for any x0 ∈ Ω0,r0 , 5|x′0| < r < δ1−γ, if u ∈ H1(Ωx0,2r \Ωx0,r/4) is a positive solution to the
equation {

−∂i(aij(x)∂ju(x)) = 0 in Ωx0,2r \Ωx0,r/4,

aij(x)∂ju(x)νi(x) = 0 on (Γ+ ∪ Γ−) ∩Ωx0,2r \Ωx0,r/4,

then
sup

Ωx0,r\Ωx0,r/2

u ≤ C inf
Ωx0,r\Ωx0,r/2

u, (2.2)

for some constant C > 0 depending only on n, m, λ, Λ, R0, λ1, λ2, ‖ f ‖C2 and ‖g‖C2 but
independent of r and u.

Proof. We only need to prove (2.2) for |x′0| > 0, since the |x′0| = 0 case follows from the
result for |x′0| > 0 and then sending |x′0| to 0. We denote

hr := ε + f
(

x′0 −
r
4

x′0
|x′0|

)
− g

(
x′0 −

r
4

x′0
|x′0|

)
,

and perform a change of variables by setting
y′ = x′ − x′0,

yn = 2hr

(
xn − g(x′) + ε/2
ε + f (x′)− g(x′)

− 1
2

)
,

(x′, xn) ∈ Ωx0,2r \Ωx0,r/4. (2.3)
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This change of variables maps the domain Ωx0,2r \Ωx0,r/4 to an annular cylinder of height
hr, denoted by Q2r,hr \Qr/4,hr , where

Qs,t := {y = (y′, yn) ∈ Rn ∣∣ |y′| < s, |yn| < t}, (2.4)

for s, t > 0. We will show that the Jacobian matrix of the change of variables (2.3), denoted
by ∂xy, and its inverse matrix ∂yx satisfy

|(∂xy)ij| ≤ C, |(∂yx)ij| ≤ C for y ∈ Q2r,hr \Qr/4,hr , (2.5)

where C > 0 depends only on n, m, R0, λ1, λ2, ‖ f ‖C2 and ‖g‖C2 .
Let v(y) = u(x), then v satisfies{

−∂i(bij(y)∂jv(y)) = 0 in Q2r,hr \Qr/4,hr ,
bnj(y)∂jv(y) = 0 on {yn = −hr} ∪ {yn = hr},

(2.6)

where the matrix (bij(y)) is given by

(bij(y)) =
(∂xy)(aij)(∂xy)t

det(∂xy)
, (2.7)

(∂xy)t is the transpose of ∂xy.
It is easy to see that (2.5) implies, using λ ≤ (aij) ≤ Λ,

λ

C
≤ (bij(y)) ≤ CΛ for y ∈ Q2r,hr \Qr/4,hr , (2.8)

for some constant C > 0 depending only on n, m, R0, λ1, λ2, ‖ f ‖C2 and ‖g‖C2 .
In the following and throughout this section, we will denote A ∼ B, if there exists a

positive universal constant C, which might depend on n, m, λ, Λ, R0, λ1, λ2, ‖ f ‖C2 and
‖g‖C2 , but not depend on ε, such that C−1B ≤ A ≤ CB.

From (2.3), one can compute that

(∂xy)ii = 1 for 1 ≤ i ≤ n− 1,

(∂xy)nn =
2hr

ε + f (x′0 + y′)− g(x′0 + y′)
,

(∂xy)ni = −2hr∂ig(x′0 + y′) + 2yn[∂i f (x′0 + y′)− ∂ig(x′0 + y′)]
ε + f (x′0 + y′)− g(x′0 + y′)

for 1 ≤ i ≤ n− 1,

(∂xy)ij = 0 for 1 ≤ i ≤ n− 1, j 6= i.

By (1.6b), one can see that

hr ∼ ε +

∣∣∣∣x′0 − r
4

x′0
|x′0|

∣∣∣∣m .
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Since |yn| ≤ hr, by using (1.6a) and (1.6b), we have that, for 1 ≤ i ≤ n− 1,∣∣∣(∂xy)ni
∣∣∣ ≤C

hr|∂ig(x′0 + y′)|+ hr[|∂i f (x′0 + y′)|+ |∂ig(x′0 + y′)|]
ε + f (x′0 + y′)− g(x′0 + y′)

≤C
hr

ε + f (x′0 + y′)− g(x′0 + y′)
[
|∂i f (x′0 + y′)|+ |∂ig(x′0 + y′)|

]
≤C

ε +
∣∣∣x′0 − r

4
x′0
|x′0|

∣∣∣m
ε + |x′0 + y′|m |x′0 + y′|.

Since r/4 < |y′| < 2r < 2δ1−γ and |x′0| < δ, we can estimate∣∣∣(∂xy)ni
∣∣∣ ≤ C|x′0 + y′| ≤ C(|x′0|+ |y′|) ≤ Cδ1−γ.

Next, we will show that

(∂xy)nn ∼ 1 for y ∈ Q2r,hr \Qr/4,hr . (2.9)

Indeed, by (1.6b), we have

(∂xy)nn =
2hr

ε + f (x′0 + y′)− g(x′0 + y′)
∼

ε +
∣∣∣x′0 − r

4
x′0
|x′0|

∣∣∣m
ε + |x′0 + y′|m .

Since |y′| > r/4, it is easy to see

(∂xy)nn ≤ C
ε +

∣∣∣x′0 − r
4

x′0
|x′0|

∣∣∣m
ε + |x′0 + y′|m ≤ C.

On the other hand, since |y′| < 2r and |x′0| < r/5, we have

ε +

∣∣∣∣x′0 − r
4

x′0
|x′0|

∣∣∣∣m ≥ ε +

(∣∣∣∣ r4 x′0
|x′0|

∣∣∣∣− |x′0|)m

≥ ε +
( r

4
− r

5

)m
≥ 1

C
(ε + rm) ,

ε + |x′0 + y′|m ≤ ε + m|x′0|m + m|y′|m ≤ C (ε + rm) .

Therefore,

(∂xy)nn ≥ 1
C

ε +
∣∣∣x′0 − r

4
x′0
|x′0|

∣∣∣m
ε + |x′0 + y′|m ≥ 1

C

and (2.9) is verified.
We have shown (∂xy)ii ∼ 1 for all i = 1, · · · , n, and |(∂xy)ij| ≤ Cδ(1−γ) for i 6= j.

We further require r0 to be small enough so that off-diagonal entries of ∂xy are small.
Therefore (2.5) follows. As mentioned earlier, (2.8) follows from (2.5).
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Now we define, for any integer l,

Al :=
{

y ∈ Rn
∣∣∣ r

4
< |y′| < 2r, (l − 1)hr < zn < (l + 1)hr

}
.

Note that A0 = Q2r,hr \Qr/4,hr . For any l ∈ Z, we define a new function ṽ by

ṽ(y) := v
(

y′, (−1)l (yn − 2lhr)
)

, ∀y ∈ Al .

We also define the corresponding coefficients, for k = 1, 2, · · · , n− 1,

b̃nk(y) = b̃kn(y) := (−1)lbnk
(

y′, (−1)l (yn − 2lhr)
)

, ∀y ∈ Al ,

and for other indices,

b̃ij(y) := bij
(

y′, (−1)l (yn − 2lhr)
)

, ∀y ∈ Al .

Therefore, ṽ(y) and b̃ij(y) are defined in the infinite cylinder shell Q2r,∞ \Qr/4,∞. By (2.6),
ṽ ∈ H1(Q2r,∞ \Qr/4,∞) satisfies

−∂i(b̃ij(y)∂jṽ(y)) = 0 in Q2r,∞ \Qr/4,∞.

Note that for any l ∈ Z and y ∈ Al , b̃(y) = (b̃ij(y)) is orthogonally conjugated to
b
(
y′, (−1)l (yn − 2lhr)

)
. Hence, by (2.8), we have

λ

C
≤ b̃(y) ≤ CΛ for y ∈ Q2r,∞ \Qr/4,∞.

We restrict the domain to be Q2r,r \Qr/4,r, and make the change of variables z = y/r. Set
v̄(z) = ṽ(y), b̄ij(z) = b̃ij(y), we have

− ∂i(b̄ij(z)∂jv̄(z)) = 0 in Q2,1 \Q1/4,1,
λ

C
≤ b̄(z) ≤ CΛ for z ∈ Q2,1 \Q1/4,1.

Then by the Harnack inequality for uniformly elliptic equations of divergence form, see
e.g., [8, Theorem 8.20], there exists a constant C depending only on n, m, λ, Λ, R0, λ1, λ2,
‖ f ‖C2 and ‖g‖C2 , such that

sup
Q1,1/2\Q1/2,1/2

v̄ ≤ C inf
Q1,1/2\Q1/2,1/2

v̄.

In particular, we have
sup

Q1,hr/r\Q1/2,hr/r

v̄ ≤ C inf
Q1,hr/r\Q1/2,hr/r

v̄,

which is (2.2) after reversing the change of variables.
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Remark 2.1. Lemma 2.1 does not hold for dimension n = 2, since Q2,1 \Q1/4,1 ⊂ R2 is the
union of two disjoint rectangular domains, and the Harnack inequality cannot be applied
on it. Therefore, we will separate the cases n = 2 and n ≥ 3 in our proof of Theorem 1.1.

For any domain A ⊂ Ω̃, we denote the oscillation of u in A by oscAu := supA u −
infA u. Using Lemma 2.1, we obtain a decay of oscΩx0,δ u in δ as follows.

Lemma 2.2. For n ≥ 3, let u be a solution of (1.9). For any x0 ∈ Ω0,r0 , where r0 is as in Lemma
2.1, there exist positive constants σ and C, depending only on n, m, λ, Λ, R0, λ1, λ2, ‖ f ‖C2 and
‖g‖C2 such that

oscΩx0,δ u ≤ C‖u‖L∞(Ωx0,δ1−γ )δ
γσ. (2.10)

Proof. For simplicity, we drop the x0 subscript and denote Ωr = Ωx0,r in this proof. Let
5|x′0| < r < δ1−γ and u1 = supΩ2r

u− u, u2 = u− infΩ2r u. By Lemma 2.1, we have

sup
Ωr\Ωr/2

u1 ≤ C1 inf
Ωr\Ωr/2

u1, sup
Ωr\Ωr/2

u2 ≤ C1 inf
Ωr\Ωr/2

u2,

where C1 > 1 is a constant independent of r. Since both u1 and u2 satisfy Eq. (1.9), by the
maximum principle,

sup
Ωr\Ωr/2

ui = sup
Ωr

ui, inf
Ωr\Ωr/2

ui = inf
Ωr

ui,

for i = 1, 2. Therefore,

sup
Ωr

u1 ≤ C1 inf
Ωr

u1, sup
Ωr

u2 ≤ C1 inf
Ωr

u2.

Adding up the above two inequalities, we have

oscΩr u ≤
(

C1 − 1
C1 + 1

)
oscΩ2r u.

Now we take σ > 0 such that 2−σ = C1−1
C1+1 , then

oscΩr u ≤ 2−σoscΩ2r u. (2.11)

We start with r = r0 = δ1−γ/2, and set ri+1 = ri/2. Keep iterating (2.11) k + 1 times,
where k satisfies 5δ ≤ rk < 10δ, we will have

oscΩδ
u ≤ oscΩrk

u ≤ 2−(k+1)σoscΩ2r0
u ≤ 21−(k+1)σ‖u‖L∞(Ω

δ1−γ ).

Since
10δ > rk = 2−kr0 = 2−(k+1)δ1−γ,

we have
2−(k+1) < 10δγ

and hence (2.10) follows immediately.
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Proof of Theorem 1.1. First we consider the case when n ≥ 3. Let u ∈ H1(Ω0,R0) be a
solution of (1.9). For x0 ∈ Ω0,r0 , we have, using Lemma 2.2,

‖u− u0‖L∞(Ωx0,δ) ≤ C‖u‖L∞(Ωx0,δ1−γ )δ
γσ (2.12)

for some constant u0. We denote v := u− u0, and v satisfies the same equation (1.9). We
work on the domain Ωx0,δ/4, and perform a change of variables by setting{

y′ = δ−1(x′ − x′0),

yn = δ−1xn.
(2.13)

The domain Ωx0,δ/4 becomes{
y ∈ Rn

∣∣∣ |y′| ≤ 1
4

, δ−1
(
−1

2
ε + g(x′0 + δy′)

)
< yn < δ−1

(
1
2

ε + f (x′0 + δy′)
)}

.

We make a change of variables again by
z′ = 4y′,

zn = 2δm−1
(

δyn − g(x′0 + δy′) + ε/2
ε + f (x′0 + δy′)− g(x′0 + δy′)

− 1
2

)
.

(2.14)

Now the domain in z-variables becomes a thin plate Q1,δm−1 , where Qs,t is defined as in
(2.4). Let w(z) = v(x), then w satisfies{

−∂i(bij(z)∂jw(z)) = 0 in Q1,δm−1 ,
bnj(z)∂jw(z) = 0 on {zn = −δ} ∪ {zn = δ},

(2.15)

where the matrix b(z) = (bij(z)) is given by

(bij(z)) =
(∂yz)(aij)(∂yz)t

det(∂yz)
. (2.16)

Similar to the proof of Lemma 2.1, we will show that the Jacobian matrix of the change of
variables (2.14), denoted by ∂yz, and its inverse matrix ∂zy satisfy

|(∂yz)ij| ≤ C, |(∂zy)ij| ≤ C for z ∈ Q1,δm−1 , (2.17)

where C > 0 depends only on n, κ, R0, λ1, λ2, ‖ f ‖C2 and ‖g‖C2 . This leads to

λ

C
≤ b(z) ≤ CΛ for z ∈ Q1,δm−1 . (2.18)
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From (2.14), one can compute that

(∂yz)ii = 4 for 1 ≤ i ≤ n− 1,

(∂yz)nn =
2δm

ε + f (x′0 + δz′/4)− g(x′0 + δz′/4)
,

(∂yz)ni = −2δm∂ig(x′0 + δz′/4) + (zn + δm−1)δ[∂i f (x′0 + δz′/4)− ∂ig(x′0 + δz′/4)]
ε + f (x′0 + δz′/4)− g(x′0 + δz′/4)

for 1 ≤ i ≤ n− 1,

(∂yz)ij = 0 for 1 ≤ i ≤ n− 1, j 6= i.

First we will show that
(∂yz)nn ∼ 1 for z ∈ Q1,δm−1 . (2.19)

Since |z′| < 1 and |x′0| < δ, it is easy to see that

(∂yz)nn ≥ 1
C

δm

ε + |x′0 + δz′/4|m ≥
1
C

δm

ε + Cδm ≥
1
C

for z ∈ Q1,δm−1 .

On the other hand, when |x′0| ≤ ε
1
m , we have δ ≤ (2ε)

1
m , and hence

(∂yz)nn ≤ Cδm

ε + |x′0 + δz′/4|m ≤
Cε

ε + |x′0 + δz′/4|m ≤ C for z ∈ Q1,δm−1 .

When |x′0| ≥ ε
1
m , we have |δz′/4| ≤ |x′0|/2, and hence

(∂yz)nn ≤ Cδm

ε + |x′0 + δz′/4|m ≤
Cδm

ε + (|x′0| − |δz′/4|)m

≤ 2δm

ε + (|x′0|/2)m ≤ C for z ∈ Q1,δm−1 .

Therefore, (2.19) is verified. Since |zn| < δm−1, |z′| < 1 and |x′0| < δ, by (1.6a) and (1.6b),
for 1 ≤ i ≤ n− 1,

|(∂yz)ni| ≤2δm|∂ig(x′0 + δz′/4)|+ 2δm[|∂i f (x′0 + δz′/4)|+ |∂ig(x′0 + δz′/4)|]
ε + f (x′0 + δz′/4)− g(x′0 + δz′/4)

≤ Cδm

ε + f (x′0 + δz′/4)− g(x′0 + δz′/4)
[|∂i f (x′0 + δz′/4)|+ |∂ig(x′0 + δz′/4)|]

≤C
δm

ε + |x′0 + δz′/4|m |x
′
0 + δz′/4|

≤C(|x′0|+ δ|z′|) ≤ Cδ,

where in the last line, we have used the same arguments in showing (∂yz)nn ≤ C earlier.
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We have shown (∂yz)ii ∼ 1 for all i = 1, · · · , n, and |(∂yz)ij| ≤ Cδ for i 6= j. We
further require r0 to be small enough so that off-diagonal entries are small. Therefore
(2.17) follows. As mentioned earlier, (2.18) follows from (2.17).

Next, we will show
‖b‖Cα(Q1,δm−1 )

≤ C (2.20)

for some C > 0 depending only on n, m, R0, λ1, λ2, λ3, ‖ f ‖C2 , ‖g‖C2 and ‖a‖Cα , by
showing

|∇z(∂yz)ij(z)| ≤ C,
∣∣∣∣∇z

1
det(∂yz)

∣∣∣∣ ≤ C for z ∈ Q1,δm−1 . (2.21)

Then (2.20) follows from (2.21), (2.16), and ‖a‖Cα ≤ C.
By a straightforward computation, we have, for any i = 1, · · · , n− 1,∣∣∣∣∂zi

1
det(∂yz)

∣∣∣∣ = ∣∣∣∣∂zi

(
ε + f (x′0 + δz′/4)− g(x′0 + δz′/4)

2 · 4n−1δm

)∣∣∣∣
=

∣∣∣∣δ[∂i f (x′0 + δz′/4)− ∂ig(x′0 + δz′/4)]
2 · 4n−1δm

∣∣∣∣
≤ C

δm−1 |x
′
0 + δz′/4|m−1 ≤ C for z ∈ Q1,δ,

where in the last line, (1.6b) and (1.6c) have been used. For any i = 1, · · · , n− 1, by (1.6b)
and (1.6c),

|∂zi(∂yz)nn| =
∣∣∣∣2δm+1[∂i f (x′0 + δz′/4)− ∂ig(x′0 + δz′/4)]

(ε + f (x′0 + δz′/4)− g(x′0 + δz′/4))2

∣∣∣∣
≤ Cδm+1

(ε + |x′0 + δz′/4|m)2 |x
′
0 + δz′/4|m−1

≤Cδm+1|x′0 + δz′/4|m−1

δ2m ≤ C for z ∈ Q1,δ,

where in the last line, we have used the same arguments in showing (∂yz)nn ≤ C earlier.
Similar computations apply to ∂zi(∂yz)ni for i = 1, · · · , n− 1, and we have

|∂zi(∂yz)ni| ≤ C for z ∈ Q1,δm−1 .

Finally, we compute, for i = 1, · · · , n− 1,

|∂zn(∂yz)ni| =
∣∣∣∣2δ[∂i f (x′0 + δz′/4)− ∂ig(x′0 + δz′/4)]

ε + f (x′0 + δz′/4)− g(x′0 + δz′/4)

∣∣∣∣
≤Cδ|x′0 + δz′/4|m−1

ε + |x′0 + δz′/4|m ≤ C for z ∈ Q1,δ.

Therefore, (2.21) is verified, and hence (2.20) follows as mentioned above.
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Now we define

Sl :=
{

z ∈ Rn
∣∣∣ |z′| < 1, (l − 1)δm−1 < zn < (l + 1)δm−1

}
for any integer l, and

S :=
{

z ∈ Rn ∣∣ |z′| < 1, |zn| < 1
}

.

Note that Q1,δm−1 = S0. As in the proof of Lemma 2.1, we define, for any l ∈ Z, a new
function w̃ by setting

w̃(z) := w
(

z′, (−1)l
(

zn − 2lδm−1
))

, ∀z ∈ Sl .

We also define the corresponding coefficients, for k = 1, 2, · · · , n− 1,

b̃nk(z) = b̃kn(z) := (−1)lbnk
(

z′, (−1)l
(

zn − 2lδm−1
))

, ∀z ∈ Sl ,

and for other indices,

b̃ij(z) := bij
(

z′, (−1)l
(

zn − 2lδm−1
))

, ∀y ∈ Sl .

Then w̃ and b̃ij are defined in the infinite cylinder Q1,∞. By (2.15), w̃ satisfies the equation

−∂i(b̃ij∂jw̃) = 0 in Q1,∞.

Note that for any l ∈ Z, b̃(z) is orthogonally conjugated to b
(
z′, (−1)l (zn − 2lδm−1)) ,

for z ∈ Sl . Hence, by (2.18), we have

λ

C
≤ b̃(z) ≤ CΛ for z ∈ Q1,∞,

and, by (2.20),
‖b̃‖Cα(Sl)

≤ C, ∀l ∈ Z.

Apply Lemma 2.1 in [12] on S with N = 1, we have

‖∇w̃‖L∞( 1
2 S) ≤ C‖w̃‖L2(S).

It follows that

‖∇w‖L∞(Q1/2,δm−1 ) ≤
C

δ(m−1)/2
‖w‖L2(Q1,δm−1 ) ≤ C‖w‖L∞(Q1,δm−1 )

for some positive constant C, depending only on n, α, R0, m, λ, Λ, λ1, λ2, λ3, ‖ f ‖C2 , ‖g‖C2

and ‖a‖Cα .
By (2.17), we have ‖(∂zy)‖L∞(Q1,δm−1 ) ≤ C, where C is independent of ε and δ. Revers-

ing the change of variables (2.14) and (2.13), we have, by (2.12)

δ‖∇v‖L∞(Ωx0,δ/8) ≤ C‖v‖L∞(Ωx0,δ/4) ≤ C‖u‖L∞(Ωx0,δ1−γ )δ
γσ. (2.22)
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In particular, this implies

|∇u(x0)| ≤ C‖u‖L∞(Ωx0,δ1−γ )δ
−1+γσ,

and it concludes the proof of Theorem 1.1 for the case n ≥ 3 after taking β = γσ/2.
For the case n = 2, we work with u instead of v, and repeat the argument in deriving

the first inequality in (2.22), we have

δ‖∇u‖L∞(Ωx0,δ/8) ≤ C‖u‖L∞(Ωx0,δ/4).

In particular,
|∇u(x0)| ≤ C‖u‖L∞(Ωx0,δ/4)δ

−1.

This concludes the proof of Theorem 1.1 for the case n = 2.
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