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Abstract. In the presence of closely located inclusions of the extreme material prop-
erty, the physical fields, such as the electric field and the stress tensor, may be con-
centrated and arbitrarily large in the narrow region between two inclusions. Recently
there has been significant progress on the quantitative characterization of the field con-
centration in the contexts of electrostatics (Laplace equation), linear elasticity (Lamé
system), and viscous flow (Stokes system). This paper is to review such progress in a
coherent way.

Key Words: Field concentration, gradient blow-up, closely spaced inclusions, extreme inclusions,
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1 Introduction

When two inclusions of the extreme material property are located closely to each other,
the physical field may be concentrated and arbitrarily large in the narrow region between
the inclusions. An inclusion of the extreme material property means a perfectly conduct-
ing or insulating inclusion (the conductivity being ∞ or 0) in the electrostatic case and a
hard inclusion and a hole in the elastostatic case, and the corresponding physical fields
are the electric field and the stress tensor. Such field concentration may occur in fiber-
reinforced composites causing failure of the composites [6], and the electric field can
be greatly enhanced and utilized to achieve subwavelength imaging and sensitive spec-
troscopy [35]. In this respect it is quite important to understand the field concentration
in a quantitatively precise manner. It is also quite important to come up with an efficient
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numerical scheme to compute the fields in such cases since numerical computation of the
field is known to be very hard in the presence of closely located inclusions.

In response to such importance and mathematical challenges involved in this prob-
lem, there has been much progress in understanding the field concentration in the last 20
years or more. In the context of electrostatics (or anti-plane elasticity in two dimensions),
the field is the gradient of a solution to the Laplace equation and the precise estimates
of the gradient were obtained when the conductivity of the inclusions is ∞: the blow-up
rate of the gradient is ε−1/2 in two dimensions [5,37], where ε is the distance between two
inclusions, and it is |ε ln ε|−1 in three dimensions [7]. There is a long list of literature in
this direction of research among which we mention [3,4,9,13,21,27,28,33,34,38]. We also
mention for related works [10, 12, 14, 22–24]. If the conductivity of the inclusions is 0 (the
insulating case), the two-dimensional problem is dual to the perfectly conducting case
(by means of the harmonic conjugation), and hence the blow-up rate of the insulating
case is also ε−1/2. But the three-dimensional case requires further investigation. In this
respect, we mention the paper of Yun [39] where a rather unexpected blow-up rate of the
gradient has been found when the inclusions are balls. If the conductivity is away from
∞ and 0, then the gradient stays bounded no matter how closely located the inclusions
are [11, 30, 31].

While most of the work mentioned above focus on the estimates from above and be-
low of the blow-up rate of the gradient, there is another important direction of research
which is to characterize the singular behavior of the gradient. The characterization of the
singular behavior means, roughly speaking, the decomposition of the solution u into the
form u = s + b where s carries the information of singularity of the gradient ∇u and b
is a regular function in the sense that ∇b is bounded (or less singular) regardless of the
distance between two inclusions. One important feature of such decompositions is that
the singular part s is explicitly given and satisfies the governing equation, e.g., the con-
ductivity equation, the elasticity equation, and so on. It has a significant implication on
the numerical computation of the solution in presence of closely located inclusions. Such
a computation is known to be a difficult problem because very fine meshes are required
since the gradient becomes arbitrarily large in the narrow region. The decomposition en-
ables us to compute the solution u numerically using standard meshes, not refined ones
since s is explicit and b is regular. Such a characterization is reminiscent of that related
to the corner singularity of elliptic equations which are utilized for computation of the
solution to the (interior or exterior) boundary value problem when the domain has a
corner [15, 25, 26].

Characterizations of the field concentration are obtained for the conductivity equa-
tion in [1, 16–18, 32] and for the Lamé system of the linear elasticity in two dimensions
in [19] when inclusions are locally strictly convex. These result has been further extended
to the two-dimensional Stokes system for circular inclusions [2]. The singular parts of
the decomposition are represented by explicit building blocks, which we call singular
functions. It is the purpose of this paper to summarize these results on the singularity
characterization in a coherent way.
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2 Geometry of two inclusions

Let D1 and D2 be two disjoint simply connected bounded domains in R2 with smooth
boundaries. The smoothness assumptions are slightly different depending on the prob-
lem, but we assume in this paper that they are C∞ smooth just for simplicity. The do-
mains D1 and D2 are inclusions. Let De be the outside of the inclusions, namely, De :=
R2 \ D1 ∪ D2, and let

ε := dist(D1, D2). (2.1)

Suppose that there are unique points z1 ∈ ∂D1 and z2 ∈ ∂D2 such that

|z1 − z2| = dist(D1, D2). (2.2)

We assume that Dj is strictly convex near zj, namely, there is a common neighborhood U
of z1 and z2 such that Dj ∩U is strictly convex for j = 1, 2. Moreover, we assume that

dist(D1, D2 \U) ≥ C and dist(D2, D1 \U) ≥ C

for some positive constant C independent of ε. This assumption says that points in D1
and D2 other than neighborhoods of z1 and z2 are at some distance to each other. Note
that strictly convex domains satisfy all the assumptions.

Let κj be the curvature of ∂Dj at zj. Let Bj be the disk osculating to Dj at zj (j = 1, 2).
Then the radius rj of Bj is given by rj = 1/κj. Let Rj be the inversion with respect to
∂Bj and let p1 and p2 be the unique fixed points of the combined reflections R1 ◦ R2 and
R2 ◦ R1, respectively. We emphasize that ∂B1 and ∂B2 are circles of Apollonius of p1 and
p2.

After rotation and translation, we assume that p = (p1 + p2)/2 is at the origin and
the x-axis is parallel to the vector p2 − p1. Then one can see (cf. [5]) that p1 and p2 are
written as

p1 = (−a, 0) and p2 = (a, 0), (2.3)

where the constant a satisfies

a =

√
2

κ1 + κ2

√
ε +O(ε3/2).

The geometry of D1 and D2 is depicted in Fig. 1 which is taken from [19].

3 Conductivity equation

The conductivity problem with two conducting inclusions is modelled as follows:
∆u = 0 in De,

u = λj (constant) on ∂Dj, j = 1, 2,

u(x)− h(x) = O(|x|−1) as |x| → ∞,

(3.1)
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Figure 1: Geometry of the two inclusions and osculating circles [19].

where h is a given function harmonic in R2. The fact that the solution u takes a constant
value on ∂Dj indicates that Dj is a perfect conductor meaning that its conductivity is
∞. The constants λj are not prescribed and the problem (3.1) is not an exterior Dirichlet
problem. The constants are rather determined by the conditions∫

∂Dj

∇u · n dσ = 0, j = 1, 2. (3.2)

Here and throughout this paper, n denotes the outward normal on ∂Dj (j = 1, 2). It is
worth emphasizing that the constants λ1 and λ2 may or may not be the same depending
on the given h; When they are different, there occurs a sharp gradient if the distance
between D1 and D2 is short.

The singular function for the conductivity problem is given by

q(x) =
1

2π
(ln |x− p1| − ln |x− p2|), (3.3)

where pj (j = 1, 2) are the fixed points of the combined reflections as defined in section 2.
The function q has important properties including the following:

(i) It is harmonic in R2 except at p1 and p2.

(ii) It takes constant values on osculating circles ∂Bj. It is because ∂B1 and ∂B2 are circles
of Apollonius of p1 and p2.

(ii) It holds that ∫
∂D1

∇q · n dσ = −1,
∫

∂D2

∇q · n dσ = 1. (3.4)
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This function appears in the bipolar coordinate system for ∂B1 and ∂B2 as will be seen in
section 5. It was used for analysis of the field concentration for the first time in [37].

The singular behaviour of the solution u to (3.1) can be characterized in terms of the
function q. In fact, the following decomposition formula is obtained in [16], which is an
improvement upon the corresponding decomposition in [1]:

u = C0q + b, (3.5)

where C0 is a constant independent of ε and b is a function which depends on ε (q also
depends on ε), but whose gradient is bounded on any bounded subset of De. To explain
what the constant C0 is, let D0

j (j = 1, 2) be the domain obtained from Dj by the trans-
lation which moves the point zj to the origin. The domains D0

1 and D0
2 are touching to

each other at the origin. Let u0 be the solution to (3.1) with Dj replaced with D0
j , j = 1, 2,

namely, the solution for the touching case. In this case, the constant values of ∂D0
j are the

same and u0 is regular even if the exterior domain has cusps. The constant C0 is given by

C0 :=
∫

∂D0
1

∇u0 · n dσ. (3.6)

A way to compute C0 numerically is proposed in [16].
The decomposition formula (3.5) has some important consequences. Since ∇q is

bounded from below and above by ε−1/2 (up to constant multiples), the blow-up esti-
mates for∇u can be obtained from (3.5). As mentioned before, it can be used to compute
u numerically. Since (3.5) extracts the major singular term in an explicit way, it suffices
to compute the residual term b for which only regular meshes are required. This idea
appeared and was exploited in [17] in the special case when Dj’s are disks. There the de-
composition formula was derived when Dj’s are disks (of the radius rj) with the constant
C0 replace with

4πr1r2

r1 + r2

(z2 − z1) · ∇h(p)
|z2 − z1|

. (3.7)

The formula (3.5) has another very interesting implication. The quantity ∇u · n rep-
resents the charge density on ∂D1 ∪ ∂D2 induced by the field −∇h, and∇u0 · n does that
on ∂D0

1 ∪ ∂D0
2. Note that the charge densities on the separating inclusions have a singular

part C0∇q ·n and a regular part∇b ·n. It is proved in [16] that∇b ·n converges to∇u0 ·n
as ε → 0, or as the separating inclusions approach to the touching ones. So the singular
part suddenly disappears when two inclusions become touching. It is reminiscent of the
electrical spark between two separated conductors which suddenly disappears when the
conductors are touching.

The decomposition formula of the kind (3.5) when D1 and D2 are three-dimensional
balls of the same radii has been derived in [18] (see [29] for the case of different radii). In
this case the singular function is given as an infinite sum of point charges.
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4 Lamé system

To describe the elasticity problem with two hard inclusions, let (λ, µ) be the pair of Lamé
constants of De which satisfies the strong ellipticity conditions: µ > 0 and λ + µ > 0 (we
only consider the two-dimensional case). Then the problem is given as follows in terms
of the Lamé system of equations

Lλ,µu := µ∆u + (λ + µ)∇∇ · u,

here, u = (u1, u2)T is a vector-valued function:
Lλ,µu = 0 in De,

u =
3

∑
j=1

cijΨj on ∂Di, i = 1, 2,

u(x)−H(x) = O(|x|−1) as |x| → ∞,

(4.1)

where H = (h1, h2)T is a given function satisfying Lλ,µH = 0 in R2. Here, Ψj are the
displacement fields of the rigid motions defined by

Ψ1(x) =
[

1
0

]
, Ψ2(x) =

[
0
1

]
, Ψ3(x) =

[−y
x

]
. (4.2)

The boundary conditions to be satisfied by the displacement u on ∂Dj (the second line in
(4.1)) indicate that D1 and D2 are hard inclusions, and the constants cij are not given but
determined by the conditions∫

∂Di

Ψj · σ[u]n dσ = 0, i = 1, 2, j = 1, 2, 3. (4.3)

Here σ[u] denotes the stress tensor corresponding to the displacement vector u defined
by

σ[u] := λ(∇ · u) + 2µ(∇̂u),

where ∇̂u = 1
2

(
∇u +∇uT) (T for transpose).

To present singular function for the elasticity problem, let Γ =
(
Γij
)2

i,j=1 be the Kelvin
matrix of fundamental solutions to the Lamé operator Lλ,µ, namely,

Γij(x) =
α1

2π
δij ln |x| − α2

2π

xixj

|x|2 , (4.4)

where

α1 =
1
2

(
1
µ
+

1
λ + 2µ

)
and α2 =

1
2

(
1
µ
− 1

λ + 2µ

)
. (4.5)
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The singular functions for the problem (4.1) are obtained in [19] as linear combinations
of point source functions in linear elasticity called nuclei of strain. The following nuclei
of strain are used

Γ(x)e1, Γ(x)e2,
x
|x|2 ,

x⊥

|x|2 . (4.6)

where
e1 = (1, 0)T, e2 = (0, 1)T and (x, y)⊥ = (−y, x).

It turns out that those singular functions can be expressed in the simple forms using the
function ζ:

q1 = α1

[
q
0

]
− α2x1∇q, (4.7a)

q2 = α1

[
0
q

]
+ α2x1(∇q)⊥, (4.7b)

where q is the singular function for the conductivity problem given in (3.3). One can
easily see that qj are solutions to the Lamé system, namely,

Lµ,λqj = 0 in R2 \ {p1, p2}. (4.8)

It is shown in [19] that qj takes ‘almost’ constant values on the osculating circles ∂Bi
(i = 1, 2). In fact, there are constant αij and βij (which depends on ε) such that

qj(x) = αijΨj(x) + βijx, x ∈ ∂Bi, i, j = 1, 2. (4.9)

Another function related with the boundary value Ψ3 on ∂B1 and ∂B2 is constructed in
the same paper. But this function has nothing to do with the singular behavior of the
field, so we omit it here. It is worth mentioning that the singular functions q1 and q2
are effectively utilized to prove the Flaherty-Keller formula on the effective property of
densely packed elastic composites [20].

Using the singular functions q1 and q2, it is proved that the solution u to (4.1) admits
the following decomposition:

u = C1q1 + C2q2 + b, (4.10)

where C1 and C2 are constants depending on ε, but bounded independently of ε, and b is
a function whose gradient is bounded on any bounded subset of De. This decomposition
formula enables us to prove that ε−1/2 is an upper bound of ∇u, and it is also a lower
bound in some cases. The fact that ε−1/2 is an upper bound of ∇u was proved in [8].

We mention that the constants C1 and C2 appearing in the formula (4.10) are not ex-
plicit. Thus further investigation on how to determine them (or compute them numeri-
cally) is desired.
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5 Stokes system

We also consider the Stokes system in the exterior domain De. Let (U, P) is a given
background solution to the homogeneous Stokes system in R2, namely,

µ∆U = ∇P in R2. (5.1)

We consider the following problem of the Stokes system:
µ∆u = ∇p in De,

∇ · u = 0 in De,

u =
3

∑
j=1

dijΨj on ∂Di, i = 1, 2,

(5.2)

with the conditions

(u−U)(x) = O(|x|−1), ∇(u−U)(x) = O(|x|−2), (p− P)(x) = O(|x|−2),

as |x| → ∞. Here µ represents the constant viscosity of the fluid, Ψj are the functions
given in (4.2), and dij are constants to be determined from the equilibrium conditions∫

∂Di

Ψj · σ[u, p]n dσ = 0, i = 1, 2, j = 1, 2, 3. (5.3)

Here, σ[u, p] is the stress field induced by the velocity-pressure pair (u, p), namely,

σ[u, p] = −pI + 2µ∇̂u, (5.4)

where I is the identity matrix.
The singular functions (hj, pj), j = 1, 2, for the problem (5.2) is the solution to the

following problem: 
µ∆hj = ∇pj in R2 \ {p1, p2},
∇ · hj = 0 in R2 \ {p1, p2},

hj =
(−1)i

2
Ψj ∂Bi, i = 1, 2,

(5.5)

with the conditions

hj(x) = Cj +O(|x|−1), ∇hj(x) = O(|x|−2), pj(x) = O(|x|−2),

for some constant Cj as |x| → ∞.
In [2] singular functions (hj, pj) are constructed using the stream function formula-

tion for which the bipolar coordinate system is used. The bipolar coordinates (ζ, θ) are
defined by

ζ = log

√
(x + a)2 + y2√
(x− a)2 + y2

, θ = arg(x− a, y)− arg(x + a, y), (5.6)
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where a is the number appeared in (2.3). It is worth mentioning that the singular function
q in (3.3) is nothing but q = ζ/2π.

Suppose that ∂B1 and ∂B2 have the same radius R for convenience. Let

s = sinh−1(a/R), (5.7)

and
eζ =

∇ζ

|∇ζ| , eθ =
∇θ

|∇θ| .

Define two constants A1 and B1 by

A1 :=
1

2s− tanh 2s
, B1 := − 1

2 cosh 2s
A1. (5.8)

Then, the velocity h1 is given by h1 = h1ζeζ + h1θeθ where

h1ζ = (A1ζ + B1 sinh 2ζ)
1− cosh ζ cos θ

cosh ζ − cos θ
, (5.9a)

h1θ = sin θ

(
A1 + 2B1 cosh 2ζ − sinh ζ(A1ζ + B1 sinh 2ζ)

cosh ζ − cos θ

)
, (5.9b)

and the pressure p1 is given by

p1 =
2µ

a
((A1 − 2B1) cosh ζ cos θ + B1 cosh 2ζ cos 2θ)− 2µ

a
(A1 − B1). (5.10)

The formulas for (h2, p2) are quite involved. But it is proved in [2] that

h2 = −A2ζey + A2x(∇ζ)⊥ + h2o, (5.11a)

p2 = −2µ

a
A2 sinh ζ sin θ + p2o, (5.11b)

where (h2o, p2o) is a solution whose gradient is bounded regardless of ε, and A2 is the
constant defined by

A2 = − 1
2s + sinh 2s

. (5.12)

It is proved in the same paper that if the background velocity field U is given by

U(x, y) =
[

α β
γ −α

] [
x
y

]
, (α2 + (β + γ)2 6= 0) (5.13)

for some constants α, β and γ and the background pressure P = 0, and if D1 and D2 are
disks of the same radius R (so that Dj = Bj for j = 1, 2), then the solution (u, p) admits a
decomposition of the following form:

(u, p) = α
2√
R

ε3/2(h1, p1) +
β + γ

2

√
Rε(h2, p2) + (u0, p0), (5.14)
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where (u0, p0) is a solution to the Stokes problem whose stress tensor is bounded. Thus
we have

σ[u, p] = α
2√
R

ε3/2σ[h1, p1] +
β + γ

2

√
Rεσ[h2, p2] + σ[u0, p0]. (5.15)

Since
‖σ[h1, p1]‖L∞(De) ≈ ε−2 and ‖σ[h2, p2]‖L∞(De) ≈ ε−1

as proved in [2], we have
‖σ[u, p]‖L∞(De) ≈ ε−1/2, (5.16)

which says that the stress always blows up at the rate of ε−1/2 provided that U is linear as
given in (5.13) and inclusions are circular. It is quite interesting and challenging to extend
this result to the non-circular case.
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