
Analysis in Theory and Applications
Anal. Theory Appl., Vol. 37, No. 1 (2021), pp. 59-73

DOI: 10.4208/ata.2021.pr80.10
March 2021

Completion of R2 with a Conformal Metric as a Closed
Surface

Changfeng Gui1,∗ and Qinfeng Li2

1 Department of Mathematics, The University of Texas at San Antonio, San Antonio,
Texas 78249, USA
2 School of Mathematics, Hunan University, Changsha, Hunan 410082, China

Received 30 August 2020; Accepted (in revised version) 12 October 2020

Dedicated to Prof. Paul H. Rabinowitz with admiration on the occasion of his 80th birthday

Abstract. In this paper, we obtain some asymptotic behavior results for solutions to
the prescribed Gaussian curvature equation. Moreover, we prove that under a con-
formal metric in R2, if the total Gaussian curvature is 4π, the conformal area of R2 is
finite and the Gaussian curvature is bounded, then R2 is a compact C1,α surface after
completion at ∞, for any α ∈ (0, 1). If the Gaussian curvature has a Hölder decay at in-
finity, then the completed surface is C2. For radial solutions, the same regularity holds
if the Gaussian curvature has a limit at infinity.
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1 Introduction

In this paper, we consider the prescribed Gaussian curvature equation

∆u + K(x)e2u = 0 in R2, (1.1)

where K satisfies ∫
R2

K(x)e2u(x) dx < ∞. (1.2)

(1.1) is equivalent to that K is the Gaussian curvature of (R2, e2uδ), where δ is the Eu-
clidean metric, and hence (1.2) means that the total Gaussian curvature is finite. A natural
question is the following:
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Question 1.1. If u is an entire C2 solution to (1.1), then by assuming what conditions on
K(x) can (R2, e2uδ) be a C2 closed Riemannian surface after completion at ∞?

Note that necessary conditions for this to be true include that∫
R2

K(x)e2u(x)dx = 4π (Gauss-Bonnet Theorem), (1.3a)

e2u ∈ L1(R2) (finite conformal area), (1.3b)
lim
|x|→∞

K(x) = K∞ uniformly, for some K∞ ∈ R. (1.3c)

A natural question is the following:

Question 1.2. Are (1.3a)-(1.3c) sufficient to guarantee that (R2, e2uδ) is a C2 closed Rie-
mannian surface after completion at ∞?

This question is related to a more general question in [6] (Question 8.3) regarding the
total area of R2 equipped with a conformal metric e2uδ with its Gaussian curvature bigger
than 1, i.e., with u being a super solution of (1.1).

Notice that (1.3c) implies that

K ∈ L∞(R2). (1.4)

For the convenience of later discussion, we define

λ :=
1

2π

∫
R2

K(x)e2u(x)dx.

In the following, (1.3b) and (1.4) will serve as fundamental assumptions.
Using the stereographic projection, we can identify conformally R2 with the unit

sphere in R3 without the north pole. To complete the manifold, we need to find a co-
ordinate system near the north pole so the metric is C2 there. It is natural to use the
Kelvin transform x 7→ x

|x|2 to convert the infinity of R2 to the origin when R2 is identi-
fied with the complex plane, and hence obtain the local coordinate system near the north
pole. From analytic point of view, the completion of (R2, e2uδ) is a closed C2 Riemannian
surface, if and only if

h(x) := e
2u( x

|x|2
) 1
|x|4 (1.5)

is a C2 function near x = 0, and lim|x|→0 h(x) > 0, which means the metric at ∞ is
nondegenerate. Hence we need to closely study the asymptotic behavior of u at ∞.

We are mostly interested in the case λ = 2 since it corresponds to (1.3a).
Our first result concerns the asymptotic behavior of u and its partial derivatives when

|x| is large.
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Theorem 1.1. Let u be a solution to (1.1). We assume that (1.3b) and (1.4) hold. Then we have,
if λ > 3

2 , then

u(x) = −λ ln |x|+ C0 +
C1x1 + C2x2

|x|2 +O
( 1
|x|1+α

)
, (1.6)

where C0 is a constant, 0 < α < 1∧ (2λ− 3), and Ci are constants given by

Ci =
∫

R2
yiK(y)e2u(y)dy. (1.7)

For general λ > 1, we have

u(x) = −λ ln |x|+ C0 +O
( 1
|x|α

)
(1.8)

for any α ∈ (0, 1∧ (2λ− 2)), and

Diu(x) =



− λxi

|x|2 +O
( 1
|x|2λ−1

)
, if λ ∈

(
1,

3
2

)
,

− λxi

|x|2 +O
( ln |x|
|x|2

)
, if λ =

3
2

,

− λxi

|x|2 +O
( 1
|x|2

)
, if λ >

3
2

.

(1.9)

In addition, if we further assume that for i = 1, 2,∫
R2

yiK(y)e2u(y) dx = 0, (1.10)

then we have better estimates for λ > 3
2 as follows,

Diu(x) =



− λxi

|x|2 +O
( 1
|x|2λ−1

)
, if λ ∈

(3
2

, 2
)

,

− λxi

|x|2 +O
( ln |x|
|x|3

)
, if λ = 2,

− λxi

|x|2 +O
( 1
|x|3

)
, if λ > 2.

(1.11)

Remark 1.1. (1.8) is already proved in [3] under essentially weaker conditions, and the
proof is very technical. The new ingredient in our theorem above is that under more
convenient but natural assumptions (1.3b) and (1.4), we have established more precise
asymptotic behaviors of u and Diu for various ranges of λ.

As a consequence of Theorem 1.1, we state an answer to Questions 1.1, 1.2 as follows.
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Theorem 1.2. Assume u and K satisfy (1.1), (1.3a) and (1.3b), and we also assume that K is a
Hölder continuous function and satisfies

K(x) = C +O(|x|−β) for some β ∈ (0, 1). (1.12)

Then (R2, e2uδ) can be completed as a C2,α closed (compact) surface.

We also study radial solutions to (1.1). First, we show that

Theorem 1.3. Let u be a radial solution to (1.1), and we also assume (1.3b) and (1.4), then for
any λ > 1, when r = |x| is large, we have that

ur +
λ

r
= O

( 1
r2λ−1

)
, (1.13)

and that

urr −
λ

r2 = O
( 1

r2λ

)
. (1.14)

If K further satisfies (1.3c), then

lim
r→∞

r2λ−1
(

ur +
λ

r

)
exists and is finite, (1.15a)

lim
r→∞

r2λ
(

urr −
λ

r2

)
exists and is finite. (1.15b)

As a consequence of Theorem 1.3, it turns out that the answer to Question 1.2 for
radial solutions is positive, without (1.12) being assumed.

Corollary 1.1. If u is a radial solution to (1.1), then (R2, e2uδ) can be completed at ∞ such that
it becomes a C2 compact Riemannian surface, if and only if (1.3a)-(1.3c) are satisfied.

We organize the notes as follows. In Section 2, we prove Theorem 1.1 and Theorem
1.2. In Section 3, we prove Theorem 1.3 and Corollary 1.1.

2 Asymptotic behavior of general solutions to (1.1)

In this section, we study asymptotic behavior of solutions to (1.1), and we will prove
Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Let

w(x) =
1

2π

∫
R2
(ln |x− y| − ln |y|)K(y)e2u(y) dy. (2.1)



C. F. Gui and Q. F. Li / Anal. Theory Appl., 37 (2021), pp. 59-73 63

Then as in [2], ∆w(x) = K(x)e2u(x), and

w(x)
ln |x| →

1
2π

∫
R2

K(y)e2u(y) dy = λ uniformly as |x| → ∞.

By [1], (1.3b) and (1.4) imply that u is bounded from above. Then by the argument of [2],
we have that u + w ≡ C for some constant C.

Let
v(x) := u

( x
|x|2

)
− λ ln |x|,

then v(x) satisfies

∆v + K̃(x)e2v = 0 in B1(0) \ {0}, (2.2)

where
K̃(x) = K

( x
|x|2

) 1
|x|4−2λ

.

Since u + w ≡ C, and by the asymptotic behavior of w, we have that for any ε > 0,

e2v = O
( 1
|x|2ε

)
in some ball Bδ, where δ = δ(ε) > 0. Hence if ε < λ− 3

2 , we have

K̃e2v = O
( 1
|x|4−2λ+2ε

)
∈ Lq(Bδ),

where q ∈
(

2,
1

2− λ

)
, if

3
2
< λ < 2,

q = ∞, if λ ≥ 2.

A standard argument as in the proof of [3, Theorem 1.1] implies that v ∈ L∞(B1(0)),
and hence 0 is a removable singularity of v. Hence by the theory of second order elliptic
equations, v ∈ C1,α for any α ∈ (0, 1∧ (2λ− 3)) if λ > 3

2 .
In particular, if λ > 3

2 , then near 0 we have

v(x) = C0 + A · x +O(|x|1+α), (2.3)

where C0 is a constant, A is a constant vector, and α ∈ (0, 1 ∧ (2λ− 3)). Hence if |x| is
large, we have

u(x) = −λ ln |x|+ C +
A · x
|x|2 +O

( 1
|x|1+α

)
. (2.4)
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Similarly, for general λ > 1, we have v ∈ Cα(B1(0)) for any α ∈ (0, 1 ∧ (2λ − 2)) if
λ ∈ (1, 3

2 ], and thus (1.8) is immediate.
Next, we will prove (1.6). Let

x̃ =
x
|x|2 =

x
r2

and in the following, we will use C to denote various constants, possibly depending on
λ and ‖K‖∞.

By the differential property of Newtonian potential, we have

Diw(x̃) =
1

2π

∫
R2

x̃i − yi

|x̃− y|2 K(y)e2u(y) dy.

Since u + w is a constant, for i = 1, 2, by the definition of λ we have

Diu(x̃) = −Diw(x̃) = −λxi + Ai(x̃), (2.5)

where Ai is given by

Ai(x̃) =
∫

R2

(
x̃i

|x̃|2 −
x̃i − yi

|x̃− y|2

)
K(y)e2u(y)dy.

Now in order to figure out the constant vector A in (2.3), we compute

vx1(x) =(−λx1 + A1(x̃))
x2

2 − x2
1

|x|4 + (−λx2 + A2(x̃))
−2x1x2

|x|4 − λx1

|x|2

=A1(x̃)
x2

2 − x2
1

r4 + A2(x̃)
−2x1x2

r4

=
∫

R2

((
r2 x̃1 −

x̃1 − y1

|x̃− y|2

)
(x̃2

2 − x̃2
1) +

(
r2 x̃2 −

x̃2 − y2

|x̃− y|2

)
(−2x̃1 x̃2)

)
K(y)e2u(y)dy

=
∫

R2

(
−x̃1 −

x̃1 − y1

|x̃− y|2 (x̃2
2 − x̃2

1) +
x̃2 − y2

|x̃− y|2 (2x̃1 x̃2)

)
K(y)e2u(y)dy

=
∫

R2

y1|x̃|2 − x̃1|y|2
|x̃− y|2 K(y)e2u(y)dy.

Since

y1|x̃|2 − x̃1|y|2
|x̃− y|2 =

x̃1y1(x̃1 − y1) + y1(x̃2 + y2)(x̃2 − y2) + y2
2(y1 − x̃1)

|x̃− y|2 ,

it follows that

y1|x̃|2 − x̃1|y|2
|x̃− y|2 ≤ C

|x̃||y|+ |y|2
|x̃− y| . (2.6)
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By (2.6), and since from (2.4) we have

K(y)e2u(y) ≤ C
|y|2λ

≤ C
|x̃|2λ

when y ∈ B |x̃|
2
(x̃),

it follows that∫
B |x̃|

2
(x̃)

y1|x̃|2 − x̃1|y|2
|x̃− y|2 K(y)e2u(y)dy = O

( 1
|x̃|2λ−3 ) = O(r2λ−3). (2.7)

Since

y1|x̃|2 − x̃1|y|2
|x̃− y|2 =

|x̃|2(y1 − x̃1) + x̃1(|x̃|+ |y|)(|x̃| − |y|)
|x̃− y|2 ≤ C

|x̃||y|+ |x̃|2
|x̃− y| ,

we have ∫
Bc
|x̃|
2

(x̃)∩Bc
|x̃|
2

(0)

y1|x̃|2 − x̃1|y|2
|x̃− y|2 K(y)e2u(y)dy ≤ C|x̃|

∫
Bc
|x̃|
2

(0)
K(y)e2u(y)dy

=O
( 1
|x̃|2λ−3

)
= O(r2λ−3), (2.8)

where we have used

|x̃|
2

< |x̃− y| and
|y|
3
≤ |x̃− y| if y ∈ Bc

|x̃|
2
(x̃) ∩ Bc

|x̃|
2
(0).

Also, since as λ > 3
2 ,∣∣∣χB |x̃|

2
(0)

y1|x̃|2
|x̃− y|2 K(y)e2u(y)

∣∣∣ ≤ 4|y||K(y)|e2u(y) ∈ L1(R2), (2.9a)∣∣∣χB |x̃|
2
(0)

x̃1|y|2
|x̃− y|2 K(y)e2u(y)

∣∣∣ ≤ 2|y||K(y)|e2u(y) ∈ L1(R2), (2.9b)

lim
|x̃|→∞

χB |x̃|
2
(0)

y1|x̃|2 − x̃1|y|2
|x̃− y|2 K(y)e2u(y) = y1K(y)e2u(y), (2.9c)

by Dominated Convergence Theorem we have

lim
|x|→0

vx1(x) = lim
|x̃|→∞

∫
B |x̃|

2
(0)

y1|x̃|2 − x̃1|y|2
|x̃− y|2 K(y)e2u(y)dy =

∫
R2

y1K(y)e2u(y)dy. (2.10)

Hence

vx1(0) =
∫

R2
y1K(y)e2u(y)dy. (2.11)
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Similarly,

vx2(0) =
∫

R2
y2K(y)e2u(y)dy. (2.12)

Therefore, we have explicitly computed the constant vector A in (2.3) and (2.4), namely

A = (C1, C2) :=
( ∫

R2
y1K(y)e2u(y)dy,

∫
R2

y2K(y)e2u(y)dy
)

. (2.13)

This proves (1.6). Now we consider

Diw(x)− λxi

|x|2 =
1

2π

∫
R2

(
xi − yi

|x− y|2 −
xi

|x|2

)
K(y)e2u(y)dy

=
1

2π

∫
B |x|

2
(0)

+
∫

B |x|
2
(x)

+
∫

Bc
|x|
2 (0)
∩Bc
|x|
2

(x)

( xi − yi

|x− y|2 −
xi

|x|2

)
K(y)e2u(y)dy

= : I + I I + I I I.

Since
|K(y)|e2u(y) ≤ C

(
1∧ 1
|y|2λ

)
,

and when y ∈ B |x|
2
(x), |y| > |x|

2 , we have

|I I| ≤ C
∫

B |x|
2
(x)

(
1

|x− y||x|2λ
+

1
|x||x|2λ

)
dy ≤ C

|x|2λ−1 .

Also, since when

y ∈ Bc
|x|
2 (0)
∩ Bc

|x|
2
(x), |y− x| > |x|

2
and |y| ≥ |x|

2
,

we have

|I I I| ≤ C
∫
|y|≥ |x|2

1
|x|K(y)e

2u(y)dy ≤ C
∫
|y|≥ |x|2

1
|x||y|2λ

dy ≤ C
|x|2λ−1 .

It remains to estimate

I =
1

2π

∫
B |x|

2
(0)

(
2x · y

|x− y|2|x|2 xi −
|y|2

|x− y|2|x|2 xi −
yi

|x− y|2

)
K(y)e2u(y)dy

= : I1 − I2 − I3.

Since
|y|2|K(y)|e2u(y) ≤ C

(
1∧ 1
|y|2λ−2

)
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and that when y ∈ B |x|
2
(0), |x− y| > |x|

2 , we have

|I2| ≤
C
|x|3

∫
B |x|

2
(0)
|y|2|K(y)|e2u(y)dy

≤ C
|x|3

1 +
∫

B |x|
2
(0)\B1

1
|y|2λ−2 dy



≤


C
(

1
|x|3 +

1
|x|2λ−1

)
, if λ 6= 2,

C
(

1
|x|3 +

ln |x|
|x|3

)
, if λ = 2.

Using that |x · y| ≤ |x||y|, we similarly have that

|I1| ≤
C
|x|2

∫
B |x|

2
(0)
|y||K(y)|e2u(y)dy

≤ 1
|x|2

1 +
∫

B |x|
2
(0)\B1

1
|y|2λ−1 dy



≤


C
(

1
|x|2 +

1
|x|2λ−1

)
, if λ 6= 3

2
,

C
(

1
|x|2 +

ln |x|
|x|2

)
, if λ =

3
2

.

Similarly,

|I3| ≤
C
|x|2

∫
B |x|

2
(0)
|y||K(y)|e2u(y)dy ≤


C
(

1
|x|2 +

1
|x|2λ−1

)
, if λ 6= 3

2
,

C
(

1
|x|2 +

ln |x|
|x|2

)
, if λ =

3
2

.

Based on the estimates on I I, I I I, I1, I2, I3 above, we therefore have

Diw(x) =



λxi

|x|2 +O
( 1
|x|2λ−1

)
, if λ ∈

(
1,

3
2

)
,

λxi

|x|2 +O
( ln |x|
|x|2

)
, if λ =

3
2

,

λxi

|x|2 +O
( 1
|x|2

)
, if λ >

3
2

.

This proves (1.9).
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Next, if K further satisfies (1.10), then I I, I I I and I2 still bear the same estimates as
above, while I1 and I3 can enjoy better estimates when λ > 3

2 . In fact,

|I3| =
1

2π

∫
B |x|

2
(0)

yi

|x− y|2 K(y)e2u(y)dy

=
1

2π

∫
B |x|

2
(0)

(
yi

|x− y|2 −
yi

|x|2

)
K(y)e2u(y)dy− 1

2π

∫
Bc
|x|
2

(0)

yi

|x|2 K(y)e2u(y)dy

=
1

2π

∫
B |x|

2
(0)

2x · y− |y|2
|x|2|x− y|2 yiK(y)e2u(y)dy +O

( 1
|x|2λ−1

)
.

Using |x · y| ≤ |x||y|, |x− y| ≥ |x|
2 and |y| ≤ |x|

2 for y ∈ B |x|
2
(0), we have

|I3| ≤
∫

B |x|
2
(0)

C
|x|3 |y|

2|K(y)|e2u(y)dy +O
( 1
|x|2λ−1

)
.

Using the exact estimate of |I2| above, we have

|I3| ≤


C
(

1
|x|3 +

1
|x|2λ−1

)
, if λ >

3
2

and λ 6= 2,

C
(

1
|x|3 +

ln |x|
|x|3

)
, if λ = 2.

Also, since

I1 =
2

∑
j=1

2xjxi

2π|x|2
∫

B |x|
2
(0)

yj

|x− y|2 K(y)e2u(y)dy,

by the same estimate of I3 as above, we have

|I1| ≤


C
(

1
|x|3 +

1
|x|2λ−1

)
, if λ >

3
2

and λ 6= 2,

C
(

1
|x|3 +

ln |x|
|x|3

)
, if λ = 2.

Therefore, combing above, we have∣∣∣Diw(x)− λxi

|x|2
∣∣∣ ≤ |I1|+ |I2|+ |I3|+ |I I|+ |I I I|

≤


C
(

1
|x|3 +

1
|x|2λ−1

)
, if λ >

3
2

and λ 6= 2,

C
(

1
|x|3 +

ln |x|
|x|3

)
, if λ = 2.
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=



O
( 1
|x|2λ−1

)
, if λ ∈

(3
2

, 2
)

,

O
( ln |x|
|x|3

)
, if λ = 2,

O
( 1
|x|3

)
, if λ > 2.

This implies (1.11).

Proof of Theorem 1.2. We rewrite (1.5) as

h(x) = e
2u( x

|x|2
)−λ ln |x||x|2λ−4 = e2v(x)|x|2λ−4,

where v(x) is defined in the proof of Theorem 1.1. In Theorem 1.1, we have shown that
v is C1,α(B1(0)) if λ > 3

2 . If we further assume (1.12), then by Hölder estimates, v ∈
C2,α(B1(0)). Hence

h ∈ C2,α(B1(0)) when λ = 2.

Since h(0) > 0, the proof is completed.

Remark 2.1. From the proof above one can see that h is not C1 if λ ∈ ( 3
2 , 2) ∪ (2, 5

2 ), and
h is C1 but not C2 when λ ∈ ( 5

2 , 3), and h is C2 when λ ≥ 3 or λ = 2.

Also from Theorem 1.1, we have

Corollary 2.1. Let u be a solution to (1.1), λ ≥ 2 and (1.3b) holds. Moreover, if K is Hölder
continuous and satisfies (1.12), then

u(x) = −λ ln |x|+ C0 +
C1x1 + C2x2

|x|2 +
2

∑
i=1

Cijxixj

|x|4 +O
( 1
|x|2+β

)
, (2.14)

where Ci, i = 1, 2 are constants given by (1.7) and Cij are also constants.

Remark 2.2. One can see from above that under the assumptions of Corollary 2.1, and if
(1.10) is assumed, then

u(x) = −λ ln |x|+ C0 +O
( 1
|x|2

)
, (2.15)

which is sharp in the sense that standard bubble solutions do have such asymptotic be-
havior.
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3 Radial solutions to (1.1)

In this section, we study radial solutions to (1.1) and we will prove Theorem 1.3 and
Corollary 1.1.

When K(x) is radially symmetric, under certain conditions it can be shown that a
solution to (1.1) is also radially symmetric (see, e.g., [3] Theorem 1.7 and [7] Theorem
5.2).

Before giving the proofs, we remark that by [4, Corollary 1.4 and Corollary 1.5], there
always exists a C2 radial solution to (1.1) if K(x) is Hölder continuous, radial, nonpositive
near 0, and nonpositive near infinity (this last condition can be dropped if K further
satisfies (1.12)). Therefore, one should not worry about the existence of solutions to (1.1)
within our assumptions.

Proof of Theorem 1.3. If u is a radial solution to (1.1), then integrating (1.1) over Br, and by
the divergence theorem, we have∫

Br

Ke2udx =
∫

∂Br

−urds = −2πrur.

Hence

ur +
λ

r
=

1
2πr

(∫
Br

−Ke2udx +
∫

R2
Ke2udx

)
=

1
2πr

∫
R2\Br

Ke2udx

≤ 1
2πr

∫
R2\Br

C
|x|2λ

dx ≤ C
r2λ−1 .

This proves (1.13). Moreover, (1.14) follows from (1.13) and Eq. (1.1), since

urr = −Ke2u − ur

r
=

λ

r2 +O
( 1

r2λ

)
.

If (1.3c) is further satisfied, then it is easy to see from the above computations that (1.15a)
and (1.15b) hold, since

lim
r→∞

r2λ−2

2π

∫
R2\Br

Ke2udx =
K∞e2C0

2λ− 2
,

where C0 is the coefficient in (1.8).

Proof of Corollary 1.1. We simply write u(x) = u(|x|). The corollary follows from the
better regularity theory for radial functions. Here we show the assertion directly. Note
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that by checking the proof of Theorem 1.1, we know that (1.15a) and (1.15b) are true if K
satisfies (1.3a) and (1.3c). Hence as r → 0,

e2u( 1
r ) = A0r4 + o(r4), (3.1a)

u′
(1

r

)
= −2r + A1r3 + o(r3), (3.1b)

u
′′
(1

r

)
= 2r2 + A2r4 + o(r4), (3.1c)[

u′
(1

r

)]2
= 4r2 + A3r4 + o(r4), (3.1d)

where Ai, i = 0, 1, 2, 3 are constants. Since u is radial,

h(z) = h(r) := e2u( 1
r )

1
r4 .

Hence
h(0) := lim

r→0
h(r) = A0 > 0.

By direct computation,

h′(r) =e2u( 1
r )

(
2u′
(1

r

)(
− 1

r2

) 1
r4 −

4
r5

)
=e2u( 1

r )

(
4r− 2A1r3 + o(r3)

r6 − 4
r5

)
=
−2(A1r3 + o(r3))e2u( 1

r )

r6 = O(r).

Hence limr→0 h′(r) = 0, and thus L-Hospital’s Rule implies

h′(0) := lim
r→0

h(r)− h(0)
r

= lim
r→0

h′(r) = 0.

Hence h(r) is C1 at r = 0. Also, applying (3.1a)-(3.1d), we have

h
′′
(r) =e2u( 1

r )

(
4
[
u′
(1

r

)]2 1
r8 + 8u′

(1
r

) 1
r7 + 2u

′′
(1

r

) 1
r8 + 12u′

(1
r

) 1
r7 +

20
r6

)
=
(

A0r4 + o(r4)
)(4A3r4 + 8rA1r3 + 2A2r4 + 12rA1r3 + o(r4)

r8

)
=A0(4A3 + 20A1 + 2A2) + o(1).

Hence
lim
r→0

h
′′
(r) = A0(4A3 + 20A1 + 2A2).
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Again, L-Hospital’s rule implies that

h
′′
(0) = lim

r→0

h′(r)− h′(0)
r

= lim
r→0

h
′′
(0) = A0(4A3 + 20A1 + 2A2).

Hence h(r) is C2 at r = 0.

Example 3.1. Let u = ln 2
1+r2 be the standard bubble solution to (1.1) with K ≡ 1, then by

direct computation,

e2u =
4

(1 + r2)2 = e2u( 1
r )

1
r4 = h(r),

h′(0) = 0, h
′′
(0) = −16.

Also, one can check that A0 = 4, A1 = 2, A2 = −6, A3 = −8, and hence A0(4A3 + 20A1 +
2A2) = −16 = h

′′
(0).

Example 3.2. Let u = ln λ
1+rλ , λ > 1, λ 6= 2. Then u is a solution to (1.1) with K = rλ−2.

In this case,

h(r) = e2u( 1
r )

1
r4 =

λ2r2λ−4

(1 + rλ)2

has a singularity at r = 0. Indeed, h(r) → ∞ as r → 0+ when λ < 2, while h(0) = 0
is degenerate when λ > 2. Furthermore, h(r) is not C1 if 2 < λ < 5/2 and is not C2

if 2 < λ < 3. The metrics correspond to the so-called conformal metrics with conical
singularities on S2.

The reader is referred to [8, 9] for detailed discussions about surfaces with conical
singularities.

Remark 3.1. Recently Dong Ye informed the authors that the answer to Question 1.2
should be negative, and a counter example can be constructed using the classic example
of the nonexistence of a C2 solution of the Poisson equation in the unit disc for a contin-
uous but not Cα data (see, e.g., [5, Exercise 4.9]). Indeed, one can choose a solution v to
∆v = f in C2(B1 \ {0})∩C1,α(B1), 0 < α < 1 but v 6∈ C2(B1), and extend v to C2(R2 \ {0})
so that v(x) = −2 ln |x| for |x| sufficiently large. Define

u(x) = v(x/|x|2)− 2 ln |x|,

then u ∈ C2(R2). Let
K(x) = −e−2u∆u,

it can be verified that (1.3a)-(1.3c) hold. However, the completion of the surface is only
C1,α but not C2.
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