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Abstract. In this paper we introduce a method to construct periodic solutions for the
n-body problem with only boundary and topological constraints. Our approach is
based on some novel features of the Keplerian action functional, constraint convex
optimization techniques, and variational methods. We demonstrate the strength of this
method by constructing relative periodic solutions for the planar four-body problem
within a special topological class, and our results hold for an open set of masses.
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1 Introduction

The Newtonian n-body body problem concerns the motion of n masses m1, · · · , mn ≥ 0
moving in Rd, d ∈ {1, 2, 3}, in accordance with Newton’s law of universal gravitation:

mk ẍk =
∂

∂xk
U(x), k = 1, · · · , n, (1.1)

where xk ∈ Rd is the position of mk, x = (x1, · · · , xn), and

U(x) = ∑
i<j

mimj

|xi − xj|

is the (self-)potential energy. Let

K(ẋ) =
1
2

n

∑
k=1

mk|ẋk|2
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be the kinetic energy and L(x, ẋ) = U(x) + K(ẋ) be the Lagrangian. Eq. (1.1) are Euler-
Lagrange equations for the action functional

At0,t1(x) =
∫ t1

t0

L(x, ẋ)dt, x ∈ H1
loc(R, Cn). (1.2)

The case A0,T will be denoted by AT. Unless specified otherwise, throughout this paper
a “solution” of (1.1) is referred to a “classical solution” of (1.1).

Analytic construction for periodic solutions of (1.1) is an old school, while variational
approach has become a fashion since the discovery of the hip-hop orbit with four bod-
ies [16] and the figure-8 orbit [15] with three bodies. Their idea of imposing symmetry
constraints on solution curves was subsequently applied to many other examples, some
notable successes been choreographic solutions [3,7,13,14,21,22,25,28,29], multiple chore-
ographic solutions (such as the parallelogram four-body problem) [5–7], generalized hip-
hops [12, Section 4.2] and [30], and many other orbits with miscellaneous types of sym-
metries (such as symmetries with rotating circle property) [4, 17–19]. Most applications
rely on manipulations of some equal masses. There are some examples without restric-
tion on equal masses: the generalized hip-hops with the Italian symmetry [12, Section
4.2], some Hill type orbits [2], retrograde orbits for the three-body problem [9, 10], and
certain orbits with n-bodies extending Euler-Moulton relative equilibria [11]. In some
of these examples, simple order-two spatial symmetry were imposed without involving
permutation of masses. Apart from them, to our knowledge there seems to be no sub-
stantial progress on variational constructions for periodic solutions of (1.1) with totally
distinct masses.

Numerical experiments suggest that, however, many highly symmetric orbits with
identical masses persist as one perturb the masses, with the only expense being the lose
of some symmetry. The persistence is in fact observed in many examples for a fairly
large range of masses. Some curious experiments on perturbing masses for orbits in [5]
and [7, Section 5] are major incentives of our present work. Fig. 1 is a very small list of
motivating examples. With totally distinct masses, manipulations with symmetries are
not helpful. Direct applications of global estimates in [9, 10] are also not quite useful for
n-body problems with n ≥ 4, as to be explained later in this paper (Section 4). These so-
lutions fall in certain topological families, and it is in general a difficult task to rigorously
prove the existence of a real solution within a given topological family of curves. There
must be some insights and artifices missing.

The purpose of this paper is to introduce a method to construct periodic solutions
for the n-body problem with only boundary and topological constraints (Section 3). Our
approach is based on some novel features of the Keplerian action functional (Section 2),
some properties of the action functional (Section 4), and some constraint convex opti-
mization techniques (Section 5). Our approach is a substantial improvement of methods
in [9,10], and has no restriction on equal masses. We illustrate the strength of this method
by constructing relative periodic solutions for the planar four-body problem within a spe-
cial topological class (Section 6).
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Figure 1: From left to right: The orbit in [5] with masses (m1, m2, m3, m4) = (1, 1, 1, 1), a small perturbation
with masses (0.8, 0.9, 1.1, 1), and two large perturbation with masses (1, 2, 3, 4) and (1,3,4,2).

2 The Kepler problem revisited

The Newtonian two-body problem, also called the Kepler problem, is one of the most
classic problem in mechanics. Quoting Albouy [1],

“... the founding discoveries of Kepler and Newton remain strikingly beauti-
ful, and indeed are so familiar to us that we sometimes forget that they contain
surprising features.”

We revisit this ancient problem to explore some simple features of the Keplerian action
functional that were not found in literature, but we find fascinating and useful in our
applications.

Consider the problem with masses m1, m2 > 0 and positions x1, x2 ∈ R2. Let r =
x2 − x1 be the relative position, λ > 0 be the total mass multiplied by the gravitational
constant, then the equation of motion is

r̈ = − λr
|r|3 . (2.1)

A solution curve r(t) for the Kepler problem either traces out a conic with the origin as
one of its foci, or composed of rectilinear motions with zero angular momentum. We
shall identify the space containing the conic by R2 or C and write r in polar form

r = reiθ , r(θ) =
p

1 + e cos(θ − θ0)
, where e ≥ 0, p > 0, θ0 ∈ [0, 2π).

For elliptical orbits (i.e., e ∈ [0, 1)) and hyperbolic orbits (i.e., e ∈ (1, ∞)), the semi-latus
rectum p, eccentricity e, and semi-major axis a are related by p = a(1− e2). The constant
θ0 is the phase angle between the major axis and the real line.

Eq. (2.1) is the Euler-Lagrange equation of the Keplerian action functional Iλ,T defined
by

Iλ,T(r) =
∫ T

0

1
2
|ṙ|2 + λ

|r|dt =
∫ T

0

1
2
(
ṙ2 + r2θ̇2)+ λ

r
dt, r ∈ H1([0, T], C). (2.2)
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This functional is well-known to be weakly lower semi-continuous [20], and is coercive
(i.e., Iλ,T(r)→ ∞ as ‖r‖H1 → ∞) on various subspaces.

It is often preferred to normalize relevant coefficients by suitable change of variables.
For example, setting r̃(t) =

(
µT2)−1/3 r(tT), then r solves (2.1) with λ = µ if and only if

r̃ solves (2.1) with λ = 1. Their action values are related by

Iµ,T(r) =
(
µ2T

) 1
3 I1,1(r̃). (2.3)

From the perspective of the classical theory of variational calculus, one of the most natu-
ral and typical questions is to answer the minimization problem for the Keplerian action
functional confined to the space

ΓT(Ω0, Ω1) = {r ∈ H1([0, T], C) : r(0) ∈ Ω0, r(T) ∈ Ω1}, (2.4)

where boundary constraints Ω0, Ω1 are closed subsets of C. For various boundary con-
straints, coercivity of Iλ,T often follows easily from simple variants of Poincaré’s inequal-
ity. Typical examples are: one or both of Ω0 and Ω1 are bounded, Ω0 and Ω1 are transver-
sal lines, and so forth. Minimizers in such spaces are bound to exist. The question of
our interest is therefore not about existence of minimizers, but about qualitative features
of action minimizers and minimal action values. In particular, we would like to know
whether or not minimizers fall inside the singular subspace; i.e., the subset of curves
with collisions.

The major purpose of this section is to analyze the minimization problem

inf
ΓT(Ω0,Ω1)

Iλ,T (2.5)

for cases where Ω0 and Ω1 are either singletons or rays emanating from the origin. The
most critical property for our purpose is the Theorem 2.1 in Subsection 2.3 concerning
convexity and monotonicity of infimum action values.

2.1 Minimization with two variable endpoints

The ray and line generated by ξ 6= 0 are denoted respectively by

R+ξ = {rξ : r ∈ [0, ∞)}, Rξ = {rξ : r ∈ R}.

For the special case ξ ∈ R, ξ > 0, the ray it generates is simply the positive real axis R+.
Given ξ0, ξ1 6= 0. The Keplerian action functional Iλ,T attains its infimum on

ΓT(R+ξ0, R+ξ1) if and only if the angle φ = ∠ξ0ξ1 between R+ξ0 and R+ξ1 is in (0, π]
(see [8, Proposition 1] for a more general statement and its proof). Union of such spaces
and their singular subspaces can be characterized by

ΓT,φ := {r ∈ H1([0, T], C) : 〈r(0), r(T)〉 = |r(0)||r(T)| cos φ},
Γ∗T,φ := {r ∈ ΓT,φ : r(t) = 0 for some t ∈ [0, T]}.
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The symbol 〈·, ·〉 stands for the standard scalar product in R2 ∼= C. Clearly, minimization
over ΓT,φ is the same as minimization over ΓT(R+, R+eiφ).

The following proposition summarizes some discussions in [9, Section 5.1].

Proposition 2.1. Let φ ∈ (0, π], T > 0, λ > 0 be constants. Let

r]λ,T,φ =

(
λT2

φ2

) 1
3

.

Then

inf
ΓT,φ

Iλ,T =
3
2
(λφ)

2
3 T

1
3 =

3λT

2r]λ,T,φ

, (2.6a)

inf
Γ∗T,φ

Iλ,T =
3
2
(λπ)

2
3 T

1
3 =

3λT

2r]λ,T,π

. (2.6b)

On ΓT,φ, minimizers are congruent to

r]λ,T,φ = r]λ,T,φe
t
T φi.

On Γ∗T,φ, minimizer is either collision or ejection orbit with zero velocity at one end and zero
position at the other end.

2.2 Minimization with two fixed endpoints

The problem of transferring from one point to another in a given time is the objective of
the Lambert theorem [23]. Here we are given initial position ξ0, final position ξ1, and
transfer time T. The Lambert theorem provides functional equations, which express T
in terms of |ξ0| + |ξ1|, |ξ0 − ξ1|, and the energy h. With all possible values of h thus
determined, the action minimizer can be selected by direct evaluation of hT + 2

∫ T
0

1
r dt.

Explicit formulae without the integrand can be obtained, for instance, by using eccentric
anomaly for elliptical orbits, or hyperbolic eccentric anomaly for hyperbolic orbits. The
proof of the Lambert theorem by Lagrange [24] is much shorter and more direct. Readers
are referred to [1] for a conceptual proof and more complete bibliography.

To be consistent with Eqs. (2.1) and (2.2), kinetic energy for the Kepler problem (2.1)
is referred to the term 1

2 |ṙ|2 and the total energy h is referred to

h =
1
2
|ṙ|2 − λ

|r| .

This term multiplied by the reduced mass m1m2/(m1 + m2) is the more standard defini-
tion of total energy.

One remarkable thing Lambert’s theorem tells us is that the relation between the
transfer time T and energy h can be completely characterized by rectilinear motions–for
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a Keplerian arc with nonzero angular moment which connects ξ0 and ξ1, transfer time T
and energy h are related in exactly the same way if we replace (ξ0, ξ1) by (ξ ′0, ξ ′1) ∈ R2

+

as long as |ξ0| + |ξ1| = |ξ ′0| + |ξ ′1| and |ξ0 − ξ1| = |ξ ′0 − ξ ′1|. This can be extended to
several other parameters. Following Albouy [1], we call real analytic functions Lambert
parameters if they are defined on an open set in the space of arcs and if they satisfy three
axioms:

(i) A Lambert parameter is not constant on a family of arcs with the same configura-
tion.

(ii) If f and g are two Lambert parameters, then |ξ0|+ |ξ1|, |ξ0 − ξ1|, f , and g are func-
tionally dependent.

(iii) The energy h is a Lambert parameter.

There are several Lambert parameters identified in [1, Proposition 31]. Apart from the
transfer time, as identified by the classical Lambert theorem, what we need is just one:

Proposition 2.2 (Albouy [1]). The action integral is a Lambert parameter.

In light of this, let us focus on rectilinear paths which begin and/or end with collision.
For convenience we focus on paths ejecting from the origin at t = 0 and moving along
the positive real axis R+. Let Tλ(x0, x1, h) be the transfer time from x0 to x1, 0 ≤ x0 ≤ x1,
without passing through collision, and with prescribed energy h. Let v1 be the velocity
of the path at time Tλ(x0, x1, h). Then by direct integration we have

Tλ(x0, x1, h) = Tλ(0, x1, h)− Tλ(0, x0, h), (2.7a)

where

Tλ(0, x, h) =



−λ√−2hh

{
sin−1

(√
−hx

λ

)
−
√
−hx

λ

(
1 +

hx
λ

)}
, if h < 0, v1 ≥ 0,

−λ√−2hh

{
π − sin−1

(√
−hx

λ

)
+

√
−hx

λ

(
1 +

hx
λ

)}
, if h < 0, v1 < 0,

λ√
2hh

{
− sinh−1

(√
hx
λ

)
+

√
hx
λ

(
1 +

hx
λ

)}
, if h > 0,

√
2

3
√

λ
x

3
2 , if h = 0.

(2.7b)

When h < 0, the second formula of Tλ(0, x, h) in (2.7b) represents the transfer time with
non-monotonic rectilinear motion. In this case, in the first equation (2.7a) showing for-
mula for Tλ(x0, x1, h), we shall use the first formula in (2.7b) for Tλ(0, x0, h). See the first
graph in Fig. 2 for a typical case–the graph of T1(0, 2, h) as a function of h.

The energy h of the Keplerian action minimizer on ΓT(0, ξ) with a prescribed transfer
time T is implicitly given by formulae above. The minimum action value can be cal-
culated accordingly via direct integration. For a monotonic rectilinear motion r ejecting
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from the origin at t = 0, ending with position x > 0, its action value is given by

Iλ,T(r) =



λ√−2h

{√
−hx

λ

(
1 +

hx
λ

)
+ 3 sin−1

(√
−hx

λ

)}
, if h < 0,

λ√
2h

{√
hx
λ

(
1 +

hx
λ

)
+ 3 sinh−1

(√
hx
λ

)}
, if h > 0,

2
√

2λx, if h = 0.

(2.8)

Other cases can be easily derived from these formulae.
When a boundary constraint is a singleton, say Ω0 = {ξ}, we shall denote the space

ΓT({ξ}, Ω1) by ΓT(ξ, Ω1) for simplicity, and likewise for other cases. Some special cases
were summarized in the following proposition.

Proposition 2.3. Let T > 0, λ > 0 be constants, and let

ω0 = 2
(

λ

π2

) 1
3

, ω =

(
9λ

2

) 1
3

.

Then

inf
ΓT(0,0)

Iλ,T =
3

21/3 (λπ)
2
3 T

1
3 , (2.9a)

inf
ΓT(0,ω0T2/3)

Iλ,T =
3
2
(λπ)

2
3 T

1
3 = inf

ΓT(0,R+)
Iλ,T, (2.9b)

inf
ΓT(0,ωT2/3)

Iλ,T = 2
(

6
π2

) 1
3

(λπ)
2
3 T

1
3 . (2.9c)

Proof. The second identity is achieved at the ejection orbit with zero velocity at the ending
point, a case included in Proposition 2.1. It also minimizes Iλ,T on ΓT(0, R+) since it is
the unique monotonic ejection orbit along R+ with zero velocity when t = T. The first
identity is a simple corollary of the second. The third identity is the action value of the
unique parabolic ejection orbit along the real line given by x(t) = ωt2/3. Details are
simple calculations left to the reader.

For general ending point x > 0 and prescribed transfer time T, the energy h can ap-
proximated by finding roots of Tλ(0, x, h)− T, where Tλ(0, x, h) is given by (2.7b). Find-
ing roots with any desired precision can be easily carried out by Newton’s method, so
the action value can be also calculated with any desired precision. The second graph in
Fig. 2 is the graph of 1

2 infΓ2(0,2x) I1,2 as a function of half final position x ∈ R+. That is,
we consider ejection orbit with final position 2x at time 2, and consider half of its action
value. This function is selected because it is exactly what we shall use in the proof of
Theorem 6.1.
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Figure 2: Left: Transfer time T1(0, 2, h) versus energy h. Right: Half of action value of ejection Keplerian orbit
with final position 2x and prescribed transfer time T = 2.

2.3 Minimization with one fixed and one variable endpoint

Here we assume one fixed endpoint is ξ 6= 0 and the other endpoint varies along a ray
emanating from the origin. It is sufficient to consider minimization over ΓT(ξ, R+) or,
equivalently, ΓT(R+, ξ). Define the infimum Keplerian action Iλ,T : R+ × [0, π] → R+

by

Iλ,T(ρ, φ) = inf{Iλ,T(r) : r ∈ ΓT(ρeiφ, R+)}.

Or equivalently,

Iλ,T(ρ, φ) = inf{Iλ,T(r) : r ∈ ΓT(ρ, R+eiφ)}
= inf{Iλ,T(r) : r ∈ ΓT(R+, ρeiφ)}.

Proposition 2.4. Given ξ 6= 0, let φ = Arg(ξ). Consider the Keplerian action functional Iλ,T
restricted to ΓT(R+, ξ).

(a) If φ ∈ [0, π/2], then for any action minimizer r of Iλ,T, r is free from collisions on [0, T]
and ṙ(0) ⊥ R+.

(b) If φ ∈ (π/2, π], then

inf
ΓT(R+,ξ)

Iλ,T > inf
ΓT(R+,−ξ̄)

Iλ,T.

Proof. The first part follows from a standard blow-up and deformation arguments (see
for instances [8, Section 5], [18, Sections 7,9] and [31, Section 4.1]), outlined as follows.

Suppose an action minimizer on ΓT(R+, ξ) has a collision, then there is a parabolic
ejection orbit y along the ray R+ξ such that it minimizes Iλ,T′ on ΓT′(R+, y(T′)) for any
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T′ > 0. This orbit y is given by y(t) = ωt
2
3 eiφ, where ω = (9λ/2)

1
3 is as in Proposition 2.3.

Now we prove by contradiction via a suitable deformation ỹ from y that reduces the
action value.

Suppose φ ∈ [0, π/2). Let the deformation ỹ be given by

ỹ(t) =

{
ω
(

cos φ + it
2
3 sin φ

)
for t ∈ [0, 1],

y(t) for t ∈ (1, ∞).

Then clearly ỹ ∈ Γ1(R+, y(1)) has lower action value on [0, 1] than y. Suppose φ = π/2.
Given an arbitrary τ > 1. Let ỹ be given by

ỹ(t) =


(ω + 1)t

2
3 eiφ for t ∈ [0, 1],

y(t) +
(
ỹ(1)− y(1)

) ( τ − t
τ − 1

)
for t ∈ (1, τ],

y(t) for t ∈ (τ, ∞).

Then ỹ ∈ Γτ(R+, y(τ)) and∫ τ

0
|ẏ|2 − | ˙̃y|2dt =

∫ τ

1
|ẏ|2 − | ˙̃y|2dt = O

(
τ−

1
3

)
as τ → ∞,

whereas ∫ 1

0

λ

|y(t)| −
λ

|ỹ(t)|dt

is a positive constant independent of τ. This implies that Iλ,τ(y) > Iλ,τ(ỹ) for τ suffi-
ciently large, which is again a contradiction. The perpendicular condition ṙ(0) ⊥ R+ at
t = 0 is simply the natural boundary condition for regular extremals.

For the second part of the proposition, observe that Arg(−ξ̄) = π − φ ∈ [0, π/2).
Given a minimizer r = reiθ on ΓT(R+, ξ). Consider the path r̃ = r̃eiθ̃ given by

r̃ ≡ r, θ̃ =
π − φ

φ
θ.

Then r̃ ∈ ΓT(R+,−ξ̄). It is obvious from the polar form of the Keplerian action functional
(2.2) that Iλ,T(r̃) < Iλ,T(r).

As a preparation for the main theorem in this subsection, we recall that in classical
theory of variational calculus, the first and second variations for a functional of the form

I(x) =
∫ t1

t0

L(x, ẋ)dt, x ∈ C1([t0, t1], Rd),
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are, assuming smoothness of the Lagrangian L, obtained by evaluating

d
ds

I(x + sh) =
∫ t1

t0

∂

∂x
L(x + sh, ẋ + sḣ)h +

∂

∂ẋ
L(x + sh, ẋ + sḣ)ḣdt,

d2

ds2 I(x + sh) =
∫ t1

t0

∂2

∂x2 L(x + sh, ẋ + sḣ)(h, h) + 2
∂2

∂x∂ẋ
L(x + sh, ẋ + sḣ)(h, ḣ)

+
∂2

∂ẋ2 L(x + sh, ẋ + sḣ)(ḣ, ḣ)dt.

Second derivatives of the Lagrangian in above are bilinear forms on the space of admis-
sible variations. One may replace the variation x + sh from x by a one-parameter family
of curves {xs}−ε<s<ε which depends differently on s with x0 = x. Namely,

d
ds

I(xs) =
∫ t1

t0

∂

∂x
L(xs, ẋs)

dxs

ds
+

∂

∂ẋ
L(xs, ẋs)

dẋs

ds
dt,

d2

ds2 I(xs) =
∫ t1

t0

∂2

∂x2 L(xs, ẋs)

(
dxs

ds
,

dxs

ds

)
+ 2

∂2

∂x∂ẋ
L(xs, ẋs)

(
dxs

ds
,

dẋs

ds

)
+

∂2

∂ẋ2 L(xs, ẋs)

(
dẋs

ds
,

dẋs

ds

)
+

∂

∂x
L(xs, ẋs)

d2xs

ds2 +
∂

∂ẋ
L(xs, ẋs)

d2 ẋs

ds2 dt.

Putting the second derivative in a more familiar form, via integration by parts, one has

d2

ds2 I(xs) =
∫ t1

t0

∂

∂x

{
∂

∂x
L(xs, ẋs)−

d
dt

∂

∂ẋ
L(xs, ẋs)

}(
dxs

ds
,

dxs

ds

)
+

{
∂

∂x
L(xs, ẋs)−

d
dt

∂

∂ẋ
L(xs, ẋs)

}
d2xs

ds2 +
∂2

∂ẋ2 L(xs, ẋs)

(
dẋs

ds
,

dẋs

ds

)
dt

+

[
∂2

∂x∂ẋ
L(xs, ẋs)

(
dxs

ds
,

dxs

ds

)
+

∂

∂ẋ
L(xs, ẋs)

d2xs

ds2

]t1

t0

. (2.10)

Terms inside braces {·} vanish if the curve xs happens to be an extremal of the functional
I.

Theorem 2.1. Given λ > 0, T > 0. The infimum Keplerian action Iλ,T(ρ, φ) defined on
R+ × (0, π/2] is convex in ρ and monotone increasing in φ. Moreover, for fixed ρ the function
Iλ,T(ρ, φ) is increasing in φ ∈ [0, π], and for fixed φ the function has unique global minimum at

r]λ,T,φ =
(
λT2/φ2) 1

3 .

Proof. The proof for monotonicity in φ is similar to Proposition 2.4(b). Fix ρ > 0, 0 ≤ φ̃ <
φ ≤ π, and let ξ = ρeiφ, ξ̃ = ρeiφ̃. Given a minimizer r = reiθ on ΓT(R+, ξ). Consider the
path r̃ = r̃eiθ̃ given by

r̃ ≡ r, θ̃ =
φ̃

φ
θ.
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Then r̃ ∈ ΓT(R+, ξ̃). It follows from the polar form of the Keplerian action functional
(2.2) that

Iλ,T(ρ, φ̃) ≤ Iλ,T(r̃) ≤ Iλ,T(r) = Iλ,T(ρ, φ).

Thus Iλ,T(ρ, φ) is increasing in φ.
Fix ρ > 0, φ ∈ (0, π/2). Let r̃ = r̃ρ,φ be a minimizer of Iλ,T on ΓT(ρ, R+eiφ)}. Being

an action minimizer, it is a Keplerian orbit. Since φ ∈ (0, π/2), by Proposition 2.4 the
minimizer r̃ has no collision and so the natural boundary condition resulting from the
first variation of Iλ,T is ˙̃r(T) ⊥ R+eiφ. This implies that r̃ is a conic with pericentre (peri-
apsis) distance |r̃(T)|, and this uniquely determines the action minimizer. For s ∈ (−ε, ε)
with small ε > 0, let rs be the minimizer with rs(0) = ρ + s, which is also uniquely deter-
mined. By Proposition 2.4(a) it is collision-free, and so rs(t) depends smoothly on s and
t provided ε is sufficiently small. Then r0 = r̃ρ,φ and rs(T) = r0(T) + g(s)eiφ for some
smooth function g satisfying g(0) = 0. Minimality of rs ensures validity of the same
natural boundary condition ṙs(T) ⊥ R+eiφ.

Since each rs is an extremal of the functional Iλ,T, we deduce from (2.10) that

∂2

∂ρ2Iλ,T(ρ, φ) =
d2

ds2

∣∣∣∣
s=0

Iλ,T(rs),

d2

ds2 Iλ,T(rs) =
∫ T

0

∣∣∣∣dṙs

ds

∣∣∣∣2 dt +
[

ṙs ·
d2rs

ds2

]T

0
.

In the second identity, the second term on the right-side equals zero because

ṙs(T) ·
d2rs

ds2 (T) = 0,

due to the natural boundary condition, and

ṙs(0) ·
d2rs

ds2 (0) = 0,

from the construction of rs. The first term on the right-side is clearly nonnegative. We
claim that it is strictly positive. If it were zero, we would have dṙs

ds = 0 for (Lebesgue)
almost every t, and then drs

ds (t) would be independent of t. But drs
ds (0) = 1, implying that

drs
ds (T) = 1 and

g(s)eiφ = rs(T)− r0(T) = s.

This is impossible whenever s 6= 0 since the term on the left is purely imaginary but the
term on the right is real. This shows that Iλ(ρ, θ) is strictly convex in ρ. The case φ = π/2
follows by continuity of Iλ(ρ, φ).
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Figure 3: Graphs of I1,1(ρ, φ) as a function of ρ.

Notation 2.1. Define Eλ,T : R+ × (0, π)→ R+ by

Eλ,T(ρ, φ) = Iλ,T(ρ, φ)− 3
2
(λφ)

2
3 T

1
3 . (2.11)

The special case E1,1 is denoted by E.

By suitable scaling as did (2.3) we find

Eλ,T(ρ, φ) = (λ2T)
1
3E((λT2)−

1
3 ρ, φ). (2.12)

As a simple corollary of Theorem 2.1 and Proposition 2.4, we have

Corollary 2.1. The function Eλ,T(ρ, φ) defined on R+ × (0, π/2] is nonnegative and convex in
ρ. Moreover, for fixed φ it has unique global minimum at

ρ = r]λ,T,φ = (λT2/φ2)
1
3 and Eλ,T(r

]
λ,T,φ, φ) = 0.

3 Algebraic and topological classifications of planar motions

Given n mass points moving on the complex plane. Consider the boundary constraints
that all mass points are confined to move from one line L0 to another line L1 in a given
time T. Without loss of generality we let L0 be the real axis and let L1 = Reφi, φ ∈ [0, π).
The class of such paths is denoted by

Pφ,T,n := {x ∈ C([0, T], Cn) : xk(0) ∈ R, e−iφxk(T) ∈ R, ∀k}.
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Let ∆ := {x ∈ Cn : xi = xj for some i 6= j} be the variety of collision configurations. The
subset

P×φ,T,n := {x ∈ Pφ,T,n : x(t) ∈ Cn \ ∆ for any t ∈ [0, T]}

of Pφ,T,n consists of collision-free paths. In below we classify planar motions of n bodies
in P×φ,T,n by the symmetric group Sn on n symbols and the braid group Bn on n strands.
Classifications using braids have been applied to planar motions in [26, 27].

3.1 Classification by the symmetric group Sn

By relabeling indices if necessary, we may confine our path space to only those which
begin with a prescribed ordering. Given σ ∈ Sn. Let

Pσ
φ,T,n :=

{
x ∈ P×φ,T,n :

xn(0) < · · · < x2(0) < x1(0)
e−iφxσn(T) < · · · < e−iφxσ2(T) < e−iφxσ1(T)

}
.

In above σk = σ(k). This provides an algebraic classification for planar motions in P×φ,T,n
by Sn.

Some people may prefer to replace σ by σ−1. We prefer our definition because it looks
more natural to us and it is more compatible with multiplications of braid classes (see
the next subsection). To make it more intuitive, one may interpret σk as “where k-th mass
comes from” and σ−1

k as “where k-th mass goes to”. For example, σ1 = 2 or σ−1
2 = 1

means the second mass point goes to the first place, counting from right to left.
There are well-known solutions for the n-body problem passing through various

collinear configurations, thereby providing examples of solutions within Pσ
φ,T,n for var-

ious φ and σ. What we are interested in here are those which perpendicular to their
boundary lines, so that solution arcs can be extended indefinitely to globally defined
relative periodic solutions by repeated reflections with respect to boundary lines. Such
perpendicular conditions are exactly the natural boundary conditions for typical varia-
tional problems with varying endpoints. Whether or not an action minimizing solution
exist in a given class Pσ

φ,T,n is our major task:

minimize AT over Pσ
φ,T,n . (3.1)

When the two boundary lines are transversal (i.e., φ ∈ (0, π)), the action functional AT
is coercive on Pφ,T,n, action minimizing orbits on Pφ,T,n exist and are free from collisions [8,
Theorem 2.2]. Consequently, the action functional AT attains its infimum on the weak
closure of Pσ

φ,T,n for any σ ∈ Sn. When φ = 0, coercivity of AT depends on the choice of σ.

Example 3.1. The simplest examples are the Euler-Moulton (collinear) relative equilibria
with n arbitrary masses. Given an arbitrary ordering of these masses. Let xEM be such
a relative equilibrium with period 1 and with mass center at the origin. Suppose xEM
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rotates counterclockwise about the origin, then it belongs to Pe
φ,φ/2π,n for any φ ∈ (0, π],

where e = () is the identity element of Sn. Let σ be the order reversing permutation (i.e.,
σ = (1n)(2n− 1) · · · ). Then xEM also belongs to Pσ

φ−π,φ/2π,n for φ ∈ [π, 2π]. However, it
is action minimizing on Pe

φ,φ/2π,n for small φ but not on Pσ
φ−π,φ/2π,n for small φ− π (see

the next example).

Example 3.2. For fixed T > 0, many retrograde orbits of the three-body problem are
action minimizing on Pσ

φ,T,3 for σ = (12) and for a large range of φ (see [9, 10]). These
are orbits with one pair of masses revolving around each other in one direction, their
mass center and the other mass revolving around each other in the other direction. There
is a critical angle φc ∈ (0, π) such that action minimizers are Euler-Moulton relative
equilibria when φ ∈ (0, φc] but not for φ ∈ (φc, π] (see [11, Theorem 2.2]). Numerical
evidences in [9, 10] suggest that such absolute minimizers usually change from Euler-
Moulton relative equilibria to retrograde orbits with relative period T.

Example 3.3. The Figure-8 orbit [15] of the three-body problem passes across every
collinear configuration but it is not action minimizing in our function space since it is
never perpendicular to the line when its configuration turns collinear.

We remark here that the classification by Sn applies to non-planar motions as well.
One may include paths moving in R3 ∼= C×R from the subspace R×{0} to the subspace
Reφi × {0}. It would be interesting to determine, with congruent boundary constraints,
whether action minimizers in the spatial problem are actually planar orbits.

3.2 Classification by the braid group Bn

The braid group Bn on n strands generalizes the symmetric group Sn on n symbols in the
sense that Sn is isomorphic to the quotient group Bn/Pn, where Pn is the normal subgroup
of Bn consisting of pure braids (i.e., braids with the same starting and ending positions).
Elements in Bn have simple geometric interpretations that are ideal for descriptions of
periodic planar n-body motions without collision, as the trajectory of mass points over
one period in the three-dimensional space-time looks like a pure braid on n strands. In
contrast, elements in Sn “forget” how these braids twist and wind, only keeping track of
the final ordering.

Fix T > 0, φ ∈ [0, π), and consider the rotating frame which rotates the inertial frame
about the origin with angular velocity φ/T. Then any path in P×φ,T,n traces out a braid
in the three-dimensional space-time. Two braids are considered equivalent if they are
homotopic; i.e. one can be continuously deformed to the other among the set P×φ,T,n. This
defines an equivalence relation on P×φ,T,n, and equivalence classes are called braid classes.

Within any two braid classes γ0, γ1 we may pick representatives c0 in γ0, c1 in γ1 such
that c0(T) = c1(0). The standard definition of braids multiplication

(c0 · c1)(t) =

{
c0(2t), t ∈ [0, T/2],
c1(2t− T), t ∈ (T/2, T],
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induces a well-defined multiplication γ0 · γ1 and group structure for braid classes. The
multiplicative identity is called the trivial braid class belonging to, which there is a Euler-
Moulton’s relative equilibrium. The group of braid classes is exactly the braid group Bn
on n strands. Due to its geometric nature, we refer the classification by Bn a topological
classification for planar motions.

For any σ ∈ Sn, the space Pσ
φ,T,n has infinitely many components, each of which is

a braid class. Confining to any of these braid classes, we may ask whether an action
minimizing solution exist in there. Minimizing properties of collision-ejection Keplerian
orbits [20] suggests that we should consider elementary braids without much twist. Let
bσ be a braid class in Pσ

φ,T,n, the minimization problem of our interests is:

minimize AT over bσ . (3.2)

Note that if γ is a component of Pσ
φ,T,n and γ′ is a component of Pσ′

φ,T,n, then γ · γ′ is the

component of Pσσ′
φ,T,n consisting of paths that follow the braid γ for t ∈ [0, T/2] and follow

γ′ for t ∈ (T/2, T].
Elementary braid types for the case of three bodies include trivial (Euler), retrograde,

and prograde (direct) braids, for which we refer readers to [9, 10] and references therein.
Several elementary braids for the case of four bodies were listed in Fig. 4. We exclude
braids which are identical to some braids on the list after 180◦ rotation about the time
axis.

4 The action functional for the n-body problem

In this section we provide some lower bound estimates for the action functional AT and
show how they can be associated with certain constraint convex optimization problems.

Definition 4.1. Given x = (x1, · · · , xn) ∈ Pφ,T,n. Denote the relative position xi − xj by xij.
We classify subscript pairs {(i, j) : 1 ≤ i 6= j ≤ n}, (i, j) and (j, i) been considered equivalent,
according to the behavior of xij = xi − xj:

N0,1(x) = {(i, j) : i < j, xij ∈ Γ∗T,φ}, (4.1a)

N0,2(x) = {(i, j) : i < j, xij ∈ Γ∗T,π−φ}, (4.1b)

N0(x) = N0,1(x) ∪N0,2(x), (4.1c)
N1(x) = {(i, j) : i < j, xij ∈ ΓT,φ \ Γ∗T,φ}, (4.1d)

N2(x) = {(i, j) : i < j, xij ∈ ΓT,π−φ \ Γ∗T,π−φ}. (4.1e)

For simplicity we use Nk to denote Nk(x) when the path x is fixed. We call elements in N0 col-
liding pairs, elements in N1 ∪N0,1 order-preserving pairs, and elements in N2 ∪N0,2 order-
reversing pairs. The intersection N0,1 ∩N0,2 is not necessarily empty since xij may begin or end
at 0.
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n σ ∈ Sn γ ∈ Bn

3 ()

Euler

3 (1 2)
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4 ()

Euler-Moulton

4 (1 2)

type 1 retrograde type 1 prograde

4 (2 3)

type 2 retrograde type 2 prograde

4 (1 3)

type 3 retrograde type 3 prograde

4 (1 2)(3 4)

double retrograde retro-prograde double prograde

4 (1 2 4 3)

triple retrograde

Figure 4. Some elements of Sn and Bn.
Figure 4: Some elements of Sn and Bn.
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Clearly {N0,N1,N2} is a partition of subscript pairs. A partition {N′0,N′1,N′2} of subscript
pairs is called an ordered partition if

N′0 ⊂ N0, N′1 ⊂ N1 ∪N0,1, N′2 ⊂ N2 ∪N0,2.

That is, N′0 consists of colliding pairs, N′1 consists of order-preserving pairs, and N′2 consists of
order-reversing pairs. The special case {N0,N1,N2} is called the standard ordered partition of
subscript pairs.

Here is the main theorem of this section.

Theorem 4.1. Given x ∈ Pφ,T,n, φ ∈ (0, π/2]. Let M be the total mass, {N′0,N′1,N′2} be any
ordered partition of subscript pairs, and E be as in (2.11). Then

AT(x) ≥
(

T
M

) 1
3

max{A0,AT,B0,BT}, (4.2)

where Aτ and Bτ, τ ∈ {0, T}, are given by

Aτ =
3
2

 ∑
(i,j)∈N′0

mimjπ
2
3 + ∑

(i,j)∈N′1
mimjφ

2
3 + ∑

(i,j)∈N′2
mimj(π − φ)

2
3


+ ∑

(i,j)∈N′1
mimjE

(
(MT2)−

1
3 |xij(τ)|, φ

)
+ ∑

(i,j)∈N′2
mimjE

(
(MT2)−

1
3 |xij(τ)|, π − φ

)
,

Bτ =
3
2

 ∑
(i,j)∈N′0

mimjπ
2
3 + ∑

(i,j)∈N′1∪N′2
mimjφ

2
3

+ ∑
(i,j)∈N′1∪N′2

mimjE
(
(MT2)−

1
3 |xij(τ)|, φ

)
.

Proof. Let x̂ = 1
M ∑N

k=1 mkxk be the mass center. The kinetic energy can be written

K(ẋ) =
1

2M ∑
i<j

mimj|ẋi − ẋj|2 +
M
2
| ˙̂x|2.

Therefore, given x ∈ Pφ,T,n,

AT(x) ≥ 1
M ∑

i<j
mimj

∫ T

0

1
2
|ẋi − ẋj|2 +

M
|xi − xj|

dt

=
1
M ∑

i<j
mimj IM,T(xij)

=
1
M

 ∑
(i,j)∈N′0

+ ∑
(i,j)∈N′1

+ ∑
(i,j)∈N′2

mimj IM,T(xij)

 .
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If (i, j) ∈ N′0, then by Proposition 2.1,

IM,T(xij) ≥
3
2
(Mπ)

2
3 T

1
3 .

If (i, j) ∈ N′1, then

IM,T(xij) ≥ IM,T(|xij(0)|, φ)

=
3
2
(Mφ)

2
3 T

1
3 + EM,T(|xij(0)|, φ).

If (i, j) ∈ N′2, then

IM,T(xij) ≥ IM,T(|xij(0)|, π − φ)

=
3
2
(M(π − φ))

2
3 T

1
3 + EM,T(|xij(0)|, π − φ).

Summing up, we find

AT(x) ≥3
2

(
T
M

) 1
3

 ∑
(i,j)∈N′0

mimjπ
2
3 + ∑

(i,j)∈N′1
mimjφ

2
3 + ∑

(i,j)∈N′2
mimj(π − φ)

2
3


+

1
M

 ∑
(i,j)∈N′1

mimjEM,T(|xij(0)|, φ). + ∑
(i,j)∈N′2

mimjEM,T(|xij(0)|, π − φ)

 .

By the homogeneity property (2.12) of EM,T(ρ, φ), we conclude that

AT(x) ≥
(

T
M

) 1
3

A0.

The proof for

AT(x) ≥
(

T
M

) 1
3

AT

is similar. Using an alternative definition for IM,T (see Subsection 2.3), the only observa-
tions needed here are

IM,T(xij) ≥ IM,T(|xij(T)|, φ) if (i, j) ∈ N′1,

IM,T(xij) ≥ IM,T(|xij(T)|, π − φ) if (i, j) ∈ N′2.

The rest of the proof for this case is the same as the case τ = 0.
By Theorem 2.1 (or Proposition 2.4(b)), when (i, j) ∈ N′2, the Keplerian action IM,T(xij)

can be estimated differently:

IM,T(xij) ≥IM,T(|xij(0)|, π − φ)

≥IM,T(|xij(0)|, φ)

=
3
2
(Mφ)

2
3 T

1
3 + EM,T(|xij(0)|, φ).
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With this estimate instead, one easily obtains

AT(x) ≥
(

T
M

) 1
3

B0.

The proof for AT(x) ≥
( T

M

) 1
3 BT is similar.

Now we briefly explain how Theorem 4.1 is associated with convex optimization
problems and how it works for n-body problems. Details are to be carried out in later
sections.

Given positive masses (m1, · · · , mn), φ ∈ (0, π/2], T > 0, and σ ∈ Sn. There exist
classical solutions for (1.1) in Pσ

φ,T,n as soon as we prove

inf
Pσ

φ,T,n

AT < inf
∂Pσ

φ,T,n

AT.

Furthermore, if bσ is a component of Pσ
φ,T,n, then there exist classical solutions for (1.1) in

the braid class bσ if we have

inf
bσ

AT < inf
∂Pσ

φ,T,n

AT.

The main difficulty is to provide good lower bound estimates for the right-hand side; i.e.,
action value of paths with collisions.

Note that for x ∈ Pσ
φ,T,n (which must be collision-free), order-preserving pairs and

order reversing pairs are easily determined by σ:

{(i, j) : i < j, σ−1
i < σ−1

j } = N1,

{(i, j) : i < j, σ−1
i > σ−1

j } = N2.

If x ∈ ∂Pσ
φ,T,n, (k, `) ∈ N0, we may select an ordered partition {N′0,N′1,N′2} by setting

N′0 = {(k, `)}, (4.3a)

N′1 = {(i, j) : i < j, σ−1
i < σ−1

j , (i, j) 6= (k, `)}, (4.3b)

N′2 = {(i, j) : i < j, σ−1
i > σ−1

j , (i, j) 6= (k, `)}. (4.3c)

Then summations in Aτ and Bτ can be expressed in terms σ.
Taking the standard ordered partition for subscript pairs and dropping terms involv-

ing E, the inequality (4.2) clearly implies

AT(x) ≥ 3
2

(
T
M

) 1
3

 ∑
(i,j)∈N0

mimjπ
2
3 + ∑

(i,j)∈N1

mimjφ
2
3 + ∑

(i,j)∈N2

mimj(π − φ)
2
3

 .
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This is the lower bound estimate for the action functional one would obtained by follow-
ing ideas in [9,10]. However, this lower bound estimate is not sufficient to extend results
in [9, 10] to n-body problems with n ≥ 4 and with general masses.

Theorem 4.1 is a very substantial improvement, especially when n ≥ 4, since the
contribution of summations involving E can be quite considerable. While estimating
either Aτ or Bτ, we wish to find a definite lower bound for summations involving E that
is valid for all possible values of mutual distances |xij(τ)|, which are therefore treated
as variables over which the summation is minimized. Apparently, mutual distances are
not independent variables. Minimizing summations involving E with respect to mutual
distances is a problem of convex optimization subject to constraints on the initial and
final configurations. Simple techniques of convex analysis can be used to provide good
lower bound estimates for this summation, as to be illustrated in the next section.

5 Some constraint convex optimization problems

Throughout this section we let f : R+ → R+ be a nonnegative convex function with a
global minimum at u0 > 0. Consider the convex optimization problem of the form: minimize

m

∑
k=1

αk f (uk), α1, · · · , αm are positive constants,

subject to Au = 0, A ∈ Rp×m.
(5.1)

Here u = (u1, · · · , um)T.
A variant of this convex optimization problem considers an additional nonnegative

convex function g : R+ → R+ with a global minimum at v0 ≤ u0. The second type of
optimization problem is of the form: minimize

`

∑
k=1

αk f (uk) +
m

∑
k=`

αkg(uk), α1, · · · , αm are positive constants,

subject to Au ≤ 0, A ∈ Rp×m.

(5.2)

Here Au ≤ 0 means each of its components is non-positive.
The optimization problem of the form (5.1) will be applied to estimation of Bτ, and

(5.2) will be applied to estimation of Aτ in Theorem 4.1.

5.1 The constraint convex optimization problem (5.1)

The propositions below provide examples of lower bound estimates for such constraint
convex optimization problems.
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Proposition 5.1. Consider the convex optimization problem (5.1) with m = 3, A = (1, 1,−1).
Then

3

∑
k=1

αk f (uk) ≥ min {α1 f (ū1), α2 f (ū2), α3 f (ū1 + ū2)} ,

where

ū1 =
α1(α2 + α3)u0

α1α2 + α1α3 + α2α3
, ū2 =

α2(α1 + α3)u0

α1α2 + α1α3 + α2α3
.

Proof. When u1 ≤ ū1, it follows from the convexity of f and ū1 < u0 that α1 f (ū1) is a
lower bound for the sum α1 f (u1) + α2 f (u2) + α3 f (u3). Likewise, when u2 ≤ ū2, α2 f (ū2)
is a lower bound for the sum. When neither conditions hold, u3 = u1 + u2 > ū1 + ū2,
then by the convexity of f and ū1 + ū2 > u0, the summation is bounded from below by
α3 f (ū1 + ū2).

Proposition 5.2. Consider the convex optimization problem (5.1) with m = 5. Suppose α1α4 =
α2α3.

(a) If

A =

(
1 0 −1 0 1
0 1 0 −1 1

)
,

then
5

∑
k=1

αk f (uk) ≥ min {(α1 + α2) f (ū1), α5 f (ū2), (α3 + α4) f (ū1 + ū2)} ,

where

ū1 =
(α1 + α2)(α3 + α4 + α5)u0

(α1 + α2)(α3 + α4 + α5) + (α3 + α4)α5
,

ū2 =
(α1 + α2 + α3 + α4)α5u0

(α1 + α2 + α3 + α4)α5 + (α1 + α2)(α3 + α4)
.

(b) If

A =

(
1 0 1 0 −1
0 1 0 1 −1

)
,

then
5

∑
k=1

αk f (uk) ≥ min {(α1 + α2) f (ū1), (α3 + α4) f (ū2), α5 f (ū1 + ū2)} ,

where

ū1 =
(α1 + α2)(α3 + α4 + α5)u0

(α1 + α2)(α3 + α4 + α5) + (α3 + α4)α5
,

ū2 =
(α3 + α4)(α1 + α2 + α5)u0

(α3 + α4)(α1 + α2 + α5) + (α1 + α2)α5
.
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Proof. By convexity,

5

∑
k=1

αk f (uk) ≥ (α1 + α2) f
(

α1u1 + α2u2

α1 + α2

)
+ (α3 + α4) f

(
α3u3 + α4u4

α3 + α4

)
+ α5 f (u5).

Since α1α4 = α2α3, the choice of A implies

α1u1 + α2u2

α1 + α2
+ u5 =

α3u3 + α4u4

α3 + α4
.

Now part (a) follows easily from Proposition 5.1(a), with (α1, α2, α3) and
(u1, u2, u3) in Proposition 5.1(a) replaced respectively by (α1 + α2, α5, α3 + α4) and( α1u1+α2u2

α1+α2
, u5, α3u3+α4u4

α3+α4

)
.

Part (b) is similar to (a). The difference is that now we have

α1u1 + α2u2

α1 + α2
− u5 =

α3u3 + α4u4

α3 + α4
.

All we need is to replace (α1, α2, α3) in Proposition 5.1 by (α1 + α2, α3 + α4, α5), and replace
(u1, u2, u3) in Proposition 5.1 by

( α1u1+α2u2
α1+α2

, α3u3+α4u4
α3+α4

, u5
)
.

Now we apply Propositions 5.1, 5.2 to estimate B0 in (4.2) for the four-body problem.

Proposition 5.3. Given φ ∈ (0, π/2] and x ∈ Pφ,T,4. Suppose

x4(0) ≤ x3(0) ≤ x2(0) ≤ x1(0).

Let E be as in (2.11), {N′0,N′1,N′2} be an ordered partition of subscript pairs. Given positive
masses mi, i ∈ {1, 2, 3, 4}. Let M be the total mass, and

E0 = ∑
(i,j)∈N′1∪N′2

mimjE
(
(MT2)−

1
3 |xij(0)|, φ

)
.

Then E0 has lower bounds given as follows.

(a) If N′0 = {(1, 2)}, then

E0 ≥ (m1 + m2)min

{
m3E

(
M−m4

Mφ
2
3

, φ

)
,

m3m4

m1 + m2
E

(
m3 + m4

Mφ
2
3

, φ

)
, m4E

(
M + m3

Mφ
2
3

, φ

)}
.

(b) If N′0 = {(3, 4)}, then

E0 ≥ (m3 + m4)min

{
m2E

(
M−m1

Mφ
2
3

, φ

)
,

m1m2

m3 + m4
E

(
m1 + m2

Mφ
2
3

, φ

)
, m1E

(
M + m2

Mφ
2
3

, φ

)}
.
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(c) If N′0 = {(2, 3)}, then

E0 ≥ (m2 + m3)min

{
m1E

(
M−m4

Mφ
2
3

, φ

)
, m4E

(
M−m1

Mφ
2
3

, φ

)
,

m1m4
m2 + m3

E

(
M + m2 + m3

Mφ
2
3

, φ

)}
.

Proof. Fix φ ∈ (0, π/2] and let

f (u) = E
(
(MT2)−

1
3 u, φ

)
.

Then
f (u) = (M2T)−

1
3EM,T (u, φ) ,

which has global minimum value 0 at u0 = (MT2/φ2)1/3, by Corollary 2.1.

When N′0 = {(1, 2)}, the lower bound in (a) is obtained by Proposition 5.2(a) with

(u1, u2, u3, u4, u5) = (x13(0), x23(0), x14(0), x24(0), x34(0)) ,
(α1, α2, α3, α4, α5) = (m1m3, m2m3, m1m4, m2m4, m3m4) .

When N′0 = {(3, 4)}, the lower bound in (b) is obtained by Proposition 5.2(a) with

(u1, u2, u3, u4, u5) = (x23(0), x24(0), x13(0), x14(0), x12(0)) ,
(α1, α2, α3, α4, α5) = (m2m3, m2m4, m1m3, m1m4, m1m2) .

When N′0 = {(2, 3)}, the lower bound in (c) is obtained by Proposition 5.2(b) with

(u1, u2, u3, u4, u5) = (x12(0), x13(0), x24(0), x34(0), x14(0)) ,
(α1, α2, α3, α4, α5) = (m1m2, m1m3, m2m4, m3m4, m1m4) .

We complete the proof.

Remark 5.1. There are three cases involving single colliding pair that are missing in
Proposition 5.3; i.e., the cases N′0 = {(1, 3)}, {(2, 4)}, and {(1, 4)}. An estimate for the
case {(1, 4)} can be easily obtained by applying Proposition 5.1 twice with

(u1, u2, u3) = (x12(0), x23(0), x13(0)) ,

(α1, α2, α3) =

(
m1m2,

m1m2
2m3

m1m2 + m3m4
, m1m3

)
,

(u1, u2, u3) = (x34(0), x23(0), x24(0)) ,

(α1, α2, α3) =

(
m3m4,

m2m2
3m4

m1m2 + m3m4
, m2m4

)
.

The other two cases can be estimated by imitating the proof for Proposition 5.1. We skip
details here because they are not used in our applications.
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Similarly, one can obtain lower bound estimates for BT in (4.2):

Proposition 5.4. Given φ ∈ (0, π/2], x ∈ Pφ,T,4, and σ ∈ S4. Suppose

e−iφxσ4(T) ≤ e−iφxσ3(T) ≤ e−iφxσ2(T) ≤ e−iφxσ1(T).

Let E be as in (2.11), {N′0,N′1,N′2} be an ordered partition of subscript pairs. Given positive
masses mi, i ∈ {1, 2, 3, 4}. Let M be the total mass, and

ET = ∑
(i,j)∈N′1∪N′2

mimjE
(
(MT2)−

1
3 |xij(T)|, φ

)
.

Then ET has lower bounds given as follows.

(a) If N′0 = {(σ1, σ2)}, then

ET ≥ (mσ1 + mσ2)min

{
mσ3E

(
M−mσ4

Mφ
2
3

, φ

)
,

mσ3 mσ4

mσ1 + mσ2

E

(
mσ3 + mσ4

Mφ
2
3

, φ

)
,

mσ4E

(
M + mσ3

Mφ
2
3

, φ

)}
.

(b) If N′0 = {(σ3, σ4)}, then

ET ≥ (mσ3 + mσ4)min

{
mσ2E

(
M−mσ1

Mφ
2
3

, φ

)
,

mσ1 mσ2

mσ3 + mσ4

E

(
mσ1 + mσ2

Mφ
2
3

, φ

)
,

mσ1E

(
M + mσ2

Mφ
2
3

, φ

)}
.

(c) If N′0 = {(σ2, σ3)}, then

ET ≥ (mσ2 + mσ3)min

{
mσ1E

(
M−mσ4

Mφ
2
3

, φ

)
, mσ4E

(
M−mσ1

Mφ
2
3

, φ

)
,

mσ1 mσ4

mσ2 + mσ3

E

(
M + mσ2 + mσ3

Mφ
2
3

, φ

)}
.

With each mk replaced by mσk , the proof is exactly the same as the proof for Proposi-
tion 5.3.

For brevity, we introduce some notations to shorten expressions in Propositions 5.3
and 5.4. Given four positive masses (m1, m2, m3, m4) and a fixed angle φ ∈ (0, π/2]. Let
M be the total mass and let {i, j, k, `} = {1, 2, 3, 4}. Define

Eijk` = (mi + mj)min

{
mkE

(
M−m`

Mφ
2
3

, φ

)
,

mkm`

mi + mj
E

(
mk + m`

Mφ
2
3

, φ

)
, m`E

(
M + mk

Mφ
2
3

, φ

)}
, (5.3a)

Fijk` = (mi + mj)min

{
mkE

(
M−m`

Mφ
2
3

, φ

)
, m`E

(
M−mk

Mφ
2
3

, φ

)
,

mkm`

mi + mj
E

(
M + mi + mj

Mφ
2
3

, φ

)}
. (5.3b)
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Note that Eijk` = Ejik`, Fijk` = Fjik` = Fij`k = Fji`k. Under assumptions of Propositions 5.3
and 5.4, these two propositions state that

N′0 = {(1, 2)} implies E0 ≥ E1234,
N′0 = {(3, 4)} implies E0 ≥ E4321,
N′0 = {(2, 3)} implies E0 ≥ F2314,
N′0 = {(σ1, σ2)} implies ET ≥ Eσ1σ2σ3σ4 ,
N′0 = {(σ3, σ4)} implies ET ≥ Eσ4σ3σ2σ1 ,
N′0 = {(σ2, σ3)} implies ET ≥ Fσ2σ3σ1σ4 .

We end this subsection with further improvements of Proposition 5.1, with which Propo-
sitions 5.2, 5.3, 5.4 can be improved accordingly.

Proposition 5.5. Consider the convex optimization problem (5.1) with m = 3, A = (1, 1,−1).
Fix N ≥ 3. Let

wi =


(i + 1)u0

N
, if i < N,

iu0

N
, if i ≥ N.

Then ∑3
i=1 αi f (ui) is bounded from below by

min
{

min
j+k<N

{
α1 f (wj) + α2 f (wk) + α3 f (wj+k+1)

}
,

min
j+k≥N

{
α1 f (wj) + α2 f (wk) + α3 f (wj+k)

}}
.

Proof. Given u1, u2 > 0, there exists some j, k ∈ {0, 1, 2, · · · } such that

ju0

N
< u1 ≤

(j + 1)u0

N
,

ku0

N
< u2 ≤

(k + 1)u0

N
.

By convexity of f and the assumption that f has minimum at u0 > 0, we always have

f (u1) ≥ f (wj), f (u2) ≥ f (wk).

If j + k < N, then 0 < j, k < N and

f (u1 + u2) ≥

 f
(
(j + k + 2)u0

N

)
, if j + k + 1 < N,

f (u0) , if j + k + 1 = N.

In either case, the right side can be written f (wj+k+1). Thus

α1 f (u1) + α2 f (u2) + α3 f (u1 + u2) ≥ α1 f (wj) + α2 f (wk) + α3 f (wj+k+1).
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If j + k ≥ N, then the convexity assumption on f ensures that

f (u1 + u2) ≥ f
(
(j + k)u0

N

)
= f (wj+k).

This implies the asserted inequality for the case j + k ≥ N.

5.2 The constraint convex optimization problem (5.2) with two convex
functions

We only consider a few cases related to our applications. Arguments in here are similar
to those in the previous subsection. We begin with some analogues of Proposition 5.1.

Proposition 5.6. Consider the convex optimization problem (5.2) with m = 3, A = (1, 1,−1).

(a) If ` = 2, then

α1 f (u1) + α2 f (u2) + α3g(u3) ≥ min {α1 f (ū1), α2 f (ū2), α3g(ū1 + ū2)} ,

where

ū1 =
α1(α2u0 + α3v0)

α1α2 + α1α3 + α2α3
, ū2 =

α2(α1u0 + α3v0)

α1α2 + α1α3 + α2α3
.

(b) If ` = 1, then

α1 f (u1) + α2g(u2) + α3g(u3) ≥ min {α1 f (ū1), α2g(ū2), α3g(ū1 + ū2)} ,

where

ū1 =
α1(α2u0 + α3v0)

α1α2 + α1α3 + α2α3
, ū2 =

α2(α1 + α3)v0

α1α2 + α1α3 + α2α3
.

Proof. The proof for part (a) is almost identical to Proposition 5.1. The constraint is simply
u1 + u2 ≤ u3. When u1 ≤ ū1, it follows from the convexity of f and ū1 < u0 that α1 f (ū1) is
a lower bound for the sum α1 f (u1)+ α2 f (u2)+ α3g(u3). Likewise, when u2 ≤ ū2, α2 f (ū2)
is a lower bound for the sum. When neither conditions hold, u3 ≥ u1 + u2 > ū1 + ū2,
then by the convexity of g and ū1 + ū2 > v0, the summation is bounded from below by
α3g(ū1 + ū2). This proves (a).

In part (b) we have ū2 < v0. When u1 ≤ ū1, as in part (a) we see that α1 f (ū1) is
a lower bound for the sum α1 f (u1) + α2g(u2) + α3g(u3). When u2 ≤ ū2, α2g(ū2) is a
lower bound for the sum since g is convex and ū2 < v0. When neither conditions hold,
u3 ≥ u1 + u2 > ū1 + ū2, then by the convexity of g and ū1 + ū2 > v0, the summation is
bounded from below by α3g(ū1 + ū2).
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Proposition 5.7. Consider the convex optimization problem (5.2) with m = 3, ` = 2, A =
(−1, 1, 1). Then

α1 f (u1) + α2 f (u2) + α3g(u3) ≥ min {α1 f (ū2 + ū3), α2 f (ū2), α3g(ū3)} ,

where

ū2 = u0 −
α1α3αv0

α1α2 + α1α3 + α2α3
, ū3 =

α3(α1 + α2)v0

α1α2 + α1α3 + α2α3
.

Proof. Now the constraint is u1 ≥ u2 + u3. When u2 ≤ ū2, it follows from the convexity
of f and ū2 < u0 that α2 f (ū2) is a lower bound for the sum α1 f (u1) + α2 f (u2) + α3g(u3).
Similarly, when u3 ≤ ū3, α3g(ū3) is a lower bound for the sum since g is convex, ū3 < v0.
When neither conditions hold, u1 ≥ u2 + u3 > ū2 + ū3 > u0, then the summation is
bounded from below by α1 f (ū2 + ū3).

For convenience, define

Gijk = min

{
mimjE

(
mjφ

− 2
3 + mi(π − φ)−

2
3

mi + mj + mk
, φ

)
, mjmkE

(
(mj + mk)(π − φ)−

2
3

mi + mj + mk
, π − φ

)
,

mimkE

(
(π − φ)−

2
3 +

mjφ
− 2

3

mi + mj + mk
, π − φ

)}
, (5.4a)

Hijk = min

{
mimkE

(
φ−

2
3 +

mj(π − φ)−
2
3

mi + mj + mk
, φ

)
, mimjE

(
φ−

2
3 − mk(π − φ)−

2
3

mi + mj + mk
, φ

)
,

mjmkE

(
(mj + mk)(π − φ)−

2
3

mi + mj + mk
, π − φ

)}
, (5.4b)

Jijk = min

{
mimjE

(
(mi + mj)(π − φ)−

2
3

mi + mj + mk
, π − φ

)
, mjmkE

(
(mj + mk)(π − φ)−

2
3

mi + mj + mk
, π − φ

)
,

mimkE

((
1 +

mj

mi + mj + mk

)
(π − φ)−

2
3 , π − φ

)}
. (5.4c)

Now we apply Propositions 5.6, 5.7 to estimate A0 in (4.2) for the four-body problem.

Proposition 5.8. Given φ ∈ (0, π/2] and x ∈ Pφ,T,4. Suppose

x4(0) ≤ x3(0) ≤ x2(0) ≤ x1(0).

Let E be as in (2.11), {N′0,N′1,N′2} be an ordered partition of subscript pairs. Given positive
masses mi, i ∈ {1, 2, 3, 4}. Let M be the total mass, and

E0 = ∑
(i,j)∈N′1

mimjE
(
(MT2)−

1
3 |xij(0)|, φ

)
+ ∑

(i,j)∈N′2
mimjE

(
(MT2)−

1
3 |xij(0)|, π − φ

)
.

Suppose 1 ≤ i < j < k ≤ 4. Then E0 has lower bounds given as follows:



K.-C. Chen / Anal. Theory Appl., 37 (2021), pp. 24-58 51

(a) If (i, j) ∈ N′1, (j, k), (i, k) ∈ N′2, then E0 ≥ Gijk.

(b) If (j, k) ∈ N′1, (i, j), (i, k) ∈ N′2, then E0 ≥ Gkji.

(c) If (i, j), (i, k) ∈ N′1, (j, k) ∈ N′2, then E0 ≥ Hijk.

(d) If (j, k), (i, k) ∈ N′1, (i, j) ∈ N′2, then E0 ≥ Hkji.

(e) If (i, j), (j, k), (i, k) ∈ N′2, then E0 ≥ Jijk.

Proof. Fix φ ∈ (0, π/2]. Let

f (u) = E
(
(MT2)−

1
3 u, φ

)
, g(u) = E

(
(MT2)−

1
3 u, π − φ

)
.

Then by Corollary 2.1,

f (u) = (M2T)−
1
3EM,T (u, φ) , g(u) = (M2T)−

1
3EM,T (u, π − φ) ,

and f has global minimum value 0 at u0 = (MT2)1/3φ−2/3, g has global minimum value 0
at v0 = (MT2)1/3(π−φ)−2/3, which is less than or equal to u0. Note that xij(0)+ xjk(0) =
xik(0).

The lower bound in (a) is obtained by Proposition 5.6(b) with

(u1, u2, u3) =
(
xij(0), xjk(0), xik(0)

)
,

(α1, α2, α3) =
(
mimj, mjmk, mimk

)
.

The lower bound in (b) is obtained by Proposition 5.6(b) with

(u1, u2, u3) =
(
xjk(0), xij(0), xik(0)

)
,

(α1, α2, α3) =
(
mjmk, mimj, mimk

)
.

The lower bound in (c) is obtained by Proposition 5.7 with

(u1, u2, u3) =
(
xik(0), xij(0), xjk(0)

)
,

(α1, α2, α3) =
(
mimk, mimj, mjmk

)
.

The lower bound in (d) is obtained by Proposition 5.7 with

(u1, u2, u3) =
(
xik(0), xjk(0), xij(0)

)
,

(α1, α2, α3) =
(
mimk, mjmk, mimj

)
.

The lower bound in (e) is obtained by Proposition 5.1 with

(u1, u2, u3) =
(
xij(0), xjk(0), xik(0)

)
,

(α1, α2, α3) =
(
mimj, mjmk, mimk

)
.

Thus, we complete the proof.
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Following the proof for Proposition 5.8, one immediately obtains the following esti-
mate for BT in (4.2) by replacing xi by xσi .

Proposition 5.9. Given φ ∈ (0, π/2], x ∈ Pφ,T,4, and σ ∈ S4. Suppose

e−iφxσ4(T) ≤ e−iφxσ3(T) ≤ e−iφxσ2(T) ≤ e−iφxσ1(T).

Let E be as in (2.11), {N′0,N′1,N′2} be an ordered partition of subscript pairs. Given positive
masses mi, i ∈ {1, 2, 3, 4}. Let M be the total mass, and

ET = ∑
(i,j)∈N′1

mimjE
(
(MT2)−

1
3 |xij(T)|, φ

)
+ ∑

(i,j)∈N′2
mimjE

(
(MT2)−

1
3 |xij(T)|, π − φ

)
.

Suppose 1 ≤ i < j < k ≤ 4. Then E0 has lower bounds given as follows.

(a) If (σi, σj) ∈ N′1, (σj, σk), (σi, σk) ∈ N′2, then ET ≥ Gσiσjσk .

(b) If (σj, σk) ∈ N′1, (σi, σj), (σi, σk) ∈ N′2, then ET ≥ Gσkσjσi .

(c) If (σi, σj), (σi, σk) ∈ N′1, (σj, σk) ∈ N′2, then ET ≥ Hσiσjσk .

(d) If (σj, σk), (σi, σk) ∈ N′1, (σi, σj) ∈ N′2, then ET ≥ Hσkσjσi .

(e) If (σi, σj), (σj, σk), (σi, σk) ∈ N′2, then E0 ≥ Jσiσjσk .

6 Application to the four-body problem

Although we only focus on the four-body problem here, our estimates, which are based
on Theorem 4.1 and properties of the Keplerian action functional, can be easily applied
to general n-body problems. We wish that the application shown in this section will
motivate many further applications.

As mentioned in Section 4, given positive masses (m1, · · · , mn), turning angle φ ∈
(0, π/2], transfer time T > 0, and σ ∈ Sn, there exist classical solutions for (1.1) in a
component bσ of Pσ

φ,T,n as soon as we prove

inf
bσ

AT < inf
∂Pσ

φ,T,n

AT.

If we are able to find a suitable collision-free test path in bσ that has even lower action
value, then the inequality holds for an open set of masses and turning angles.

For the four-body problem, there are 6 pairs of (i, j) with i < j and 26 combinations
of N0. If we classify collision paths according to the set N0 of collision pairs, then there is
a total of 63 cases, so an obtuse and thoughtless lower bound estimate for the right-hand
side of the above inequality could be obtained by providing estimate for each individual
case and then taking their minimum value. This manifests the merit of using ordered
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partitions in place of standard ordered partition for subscript pairs in Theorem 4.1. By
choosing ordered partition for subscript pairs, it is sufficient to check the 6 cases with
single colliding pair. This will be illustrated in the Theorem 6.1.

In order to shorten our expressions, we fix positive masses (m1, m2, m3, m4), the turn-
ing angle φ, and use notations Eijk`, Fijk`, Gijk, Hijk defined in (5.3), (5.4). Given σ ∈ S4,
1 ≤ k < ` ≤ 4. Define

Cσ
k`

=



mkm`

(
π

2
3 − φ

2
3

)
+ ∑

i<j

σ−1
i <σ−1

j

mimjφ
2
3 + ∑

i<j

σ−1
i >σ−1

j

mimj(π − φ)
2
3 , if σ−1

k < σ−1
` ,

mkm`

(
π

2
3 − (π − φ)

2
3

)
+ ∑

i<j

σ−1
i <σ−1

j

mimjφ
2
3 + ∑

i<j

σ−1
i >σ−1

j

mimj(π − φ)
2
3 , if σ−1

k > σ−1
` ,

(6.1a)

Dk` = mkm`

(
π

2
3 − φ

2
3

)
+ ∑

i<j
mimjφ

2
3 . (6.1b)

If x ∈ ∂Pσ
φ,T,4 and the ordered partition {N′0,N′1,N′2} is as (4.3), then 3

2 Cσ
12 is exactly the

first line of Aτ defined in Theorem 4.1.
Here is our application to the four-body problem:

Theorem 6.1. Given T > 0. Consider σ = (1243) and the triple retrograde braid bσ as shown
in Fig. 4. There exist an open set M of positive masses (m1, m2, m3, m4) containing (1, 1, 1, 1)
and an open set Φ of turning angles φ ∈ (0, π/2] containing π/2 such that there exist classical
solutions for the four-body problem which minimizes the action functional on the component bσ

of bσ ⊂ Pφ,T,4.
In particular, if Cσ

k`, Dk`, Eijk`, Fijk`, Gijk, Hijk are as in (6.1a), (5.3), (5.4), then such solutions
exist provided

inf
∂Pσ

φ,T,4

AT ≥
(

T
M

) 1
3

min
{

max{Aij, Bij} : 1 ≤ i < j ≤ 4
}

, (6.2)

where

A12 =
3
2

Cσ
12 + G134, A34 =

3
2

Cσ
34 + G421, A23 =

3
2

Cσ
23 + G134,

A13 =
3
2

Cσ
13 + H243, A24 =

3
2

Cσ
24 + H213, A14 =

3
2

Cσ
14 + H243,

B12 =
3
2

D12 + E1234, B34 =
3
2

D34 + E4321, B23 =
3
2

D23 + F2314,

B13 =
3
2

D13 + E1342, B24 =
3
2

D24 + E2413, B14 =
3
2

D14 + F1423.

Proof. Given x ∈ Pσ
φ,T,4, the weak closure of Pσ

φ,T,4, we have

{(1, 3), (2, 3), (2, 4)} ⊂ N1 ∪N0,1, {(1, 2), (1, 4), (3, 4)} ⊂ N2 ∪N0,2.
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Note that a subscript pair (k, `), k < `, belongs to the set N1 ∪ N0,1 of order-preserving
pairs if and only if σ−1

k < σ−1
` . The constraint by σ implies that

e−iφx3(T) ≤ e−iφx1(T) ≤ e−iφx4(T) ≤ e−iφx2(T).

If x ∈ ∂Pσ
φ,T,4, then x is a collision path; i.e. N0 6= ∅.

The table below lists the six possibilities and our selected ordered partitions for sub-
script pairs.

N0 N′0 N′1 N′2
(1, 2) ∈ N0 {(1, 2)} {(1, 3), (2, 3), (2, 4)} {(1, 4), (3, 4)}
(3, 4) ∈ N0 {(3, 4)} {(1, 3), (2, 3), (2, 4)} {(1, 2), (1, 4)}
(2, 3) ∈ N0 {(2, 3)} {(1, 3), (2, 4)} {(1, 2), (1, 4), (3, 4)}
(1, 3) ∈ N0 {(1, 3)} {(2, 3), (2, 4)} {(1, 2), (1, 4), (3, 4)}

= {(σ3, σ4)} = {(σ1, σ4), (σ1, σ2)} = {(σ1, σ3), (σ2, σ3), (σ2, σ4)}
(2, 4) ∈ N0 {(2, 4)} {(1, 3), (2, 3)} {(1, 2), (1, 4), (3, 4)}

= {(σ1, σ2)} = {(σ3, σ4), (σ1, σ4)} = {(σ1, σ3), (σ2, σ3), (σ2, σ4)}
(1, 4) ∈ N0 {(1, 4)} {(1, 3), (2, 3), (2, 4)} {(1, 2), (3, 4)}

= {(σ2, σ3)} = {(σ3, σ4), (σ1, σ4), (σ1, σ2)} = {(σ1, σ3), (σ2, σ4)}

To estimate A0 or AT in Theorem 4.1, we apply Proposition 5.8 for the first 3 cases,
apply Proposition 5.9 for the last 3 cases. To estimate B0 or BT in Theorem 4.1, we apply
Proposition 5.3 for the first 3 cases, apply Proposition 5.4 for the last 3 cases.

In the first case, (1, 2) ∈ N0, A0 is bounded from below by A12 and B0 is bounded
from below by B12, where

A12 =
3
2

[
m1m2π

2
3 + (m1m3 + m2m3 + m2m4)φ

2
3 + (m1m4 + m3m4)(π − φ)

2
3

]
+ G134,

B12 =
3
2

[
m1m2π

2
3 + (m1m3 + m2m3 + m2m4 + m1m4 + m3m4)φ

2
3

]
+ E1234.

Then max{A12, B12} is a lower bound for (M/T)
1
3AT(x) in this case.

Other cases are similar: max{Aij, Bij} is a lower bound for (M/T)
1
3AT(x) in the case

(i, j) ∈ N0, where

A34 =
3
2

[
m3m4π

2
3 + (m1m3 + m2m3 + m2m4)φ

2
3 + (m1m2 + m1m4)(π − φ)

2
3

]
+ G421,

B34 =
3
2

[
m3m4π

2
3 + (m1m3 + m2m3 + m2m4 + m1m2 + m1m4)φ

2
3

]
+ E4321,

A23 =
3
2

[
m2m3π

2
3 + (m1m3 + m2m4)φ

2
3 + (m1m2 + m1m4 + m3m4)(π − φ)

2
3

]
+ G134,

B23 =
3
2

[
m2m3π

2
3 + (m1m3 + m2m4 + m1m2 + m1m4 + m3m4)φ

2
3

]
+ F2314,

A13 =
3
2

[
m1m3π

2
3 + (m2m3 + m2m4)φ

2
3 + (m1m2 + m1m4 + m3m4)(π − φ)

2
3

]
+ H243,
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B13 =
3
2

[
m1m3π

2
3 + (m2m3 + m2m4 + m1m2 + m1m4 + m3m4)φ

2
3

]
+ E1342,

A24 =
3
2

[
m2m4π

2
3 + (m1m3 + m2m3)φ

2
3 + (m1m2 + m1m4 + m3m4)(π − φ)

2
3

]
+ H213,

B24 =
3
2

[
m2m4π

2
3 + (m1m3 + m2m3 + m1m2 + m1m4 + m3m4)φ

2
3

]
+ E2413,

A14 =
3
2

[
m1m4π

2
3 + (m1m3 + m2m3 + m2m4)φ

2
3 + (m1m2 + m3m4)(π − φ)

2
3

]
+ H243,

B14 =
3
2

[
m1m4π

2
3 + (m1m3 + m2m3 + m2m4 + m1m2 + m3m4)φ

2
3

]
+ F1423.

In terms of Cσ
k,`, Dk` defined in (6.1a), these are exactly the Aij’s, Bij’s defined in the state-

ment of the proposition. At least one of these six cases occur, so the minimum of the six
max{Aij, Bij} is clearly a lower bound for (M/T)

1
3AT(x).

Now, to complete the proof of the theorem, by continuity it is sufficient to prove that
the inequality (6.2) holds for the special choice (m1, m2, m3, m4, φ) = (1, 1, 1, 1, π/2) of
masses and turning angle. We may just pick a suitable test path in bσ for this case and
calculate its action value. For this case we have the following formula for E(ρ, φ):

E
(

ρ,
π

2

)
=I1,1

(
ρ,

π

2

)
− 3

2

(π

2

) 2
3

=
1
2

inf
Γ2(0,2ρ)

I1,2 −
3
2

(π

2

) 2
3

.

The first line is simply the definition of E in (2.11). The second line holds because, for
fixed ρ, the minimizing Keplerian arc for I1,1(ρ, π/2) connects one end of the latus rectum
to the pericentre, and by reflecting the arc with respect to the major axis we obtain a
Keplerian arc connecting two ends of the latus rectum, which has length 2ρ. Since the
action integral is a Lambert parameter (Proposition 2.2), the action value of this extended
Keplerian arc is exactly the same as the rectilinear Keplerian arc ejecting from the origin
and reaches 2ρ at time 2, as they already have three Lambert parameters in common
(using notations in Subsection 2.2, they are |ξ0|+ |ξ1|, |ξ0 − ξ1|, and transfer time). The
action value of this extended Keplerian arc is therefore 2I1,1(ρ, π/2) = infΓ2(0,2ρ) I1,2, and
the original minimizing Keplerian arc has half of this action.

Bearing this in mind, for our particular choice of masses and turning angle, we find
the values of Aij’s and Bij’s are:

A12 = A34 = A23 = A13 = A24 = A14 ≈ 13.4047,
B12 = B34 = B13 = B24 ≈ 13.4122,
B23 = B14 ≈ 13.4201.

With the help of formulae (2.7a), (2.7b), (2.8), these quantities can be obtained at any
desired precision. Now min

{
max{Aij, Bij} : 1 ≤ i < j ≤ 4

}
≈ 13.4122, accurate to the

fourth decimal place.
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Fix T = 1/2. The test path selected is xtest = (x1, x2, x3, x4), where:

x1(t) = (0.6464 cos(πt)− 0.0117 cos(3πt),−0.1824 sin(πt)− 0.0035 sin(3πt)),
x2(t) = (0.1824 cos(πt)− 0.0035 cos(3πt), 0.6464 sin(πt) + 0.0117 sin(3πt)),
x3(t) = −x2(t),
x4(t) = −x1(t).

Its action value, accurate to the fourth decimal place, is 6.7001, which is less than(
T
M

) 1
3

min
{

max{Aij, Bij} : 1 ≤ i < j ≤ 4
}
≈ 6.7061.

This completes our proof.

Remark 6.1. We remark that the open sets M and Φ depends on the choice of braids, and
the values of Aij’s and Bij’s are independent of the transfer time T.

It is often possible to find multiple ways of choosing lower bounds Aij, Bij for Aτ, Bτ

by using Propositions 5.3, 5.4, 5.8, and 5.9. For example, in Theorem 6.1 we may choose

A23 =
3
2

Cσ
23 + G421, A14 =

3
2

Cσ
14 + H421.

One may find all applicable combinations and choose the largest one. In fact, such lower
bound estimates can be further improved using Proposition 5.5. In order to make it sim-
ple and clear, we do not pursuit for optimal bounds here.

Remark 6.2. In the proof we have used the fact that the action integral is a Lambert
parameter to deduce

I1,1

(
ρ,

π

2

)
=

1
2

inf
Γ2(0,2ρ)

I1,2.

Following the same argument, one can easily generalize it to more general φ ∈ (0, π
2 ]:

I1,1 (ρ, φ) =
1
2

inf
Γ2(x0,x1)

I1,2 =
1
2

(
inf

Γ2(0,x1)
I1,2 − inf

Γ2(0,x0)
I1,2

)
,

where x0 = ρ(1− sin φ), x1 = ρ(1 + sin φ). The last equation can be calculated easily by
using (2.8).

Remark 6.3. Collecting numerical data, including the action value Atest of our test path,
lower bound Acoll for inf∂Pσ

φ,T,n
AT obtained from Section 6, numerical value of Ainf =

infPσ
φ,T,n

AT, and initial data of the action minimizer. In the proof we set T = 1/2 so that
the action minimizer has relative period 1.
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(m1, m2, m3, m4, φ) Ainf Atest Acoll initial data
(

x1,x2,x3,x4
v1,v2,v3,v4

)
(1, 1, 1, 1, π/2) 6.68209 6.70013 6.70610

(
0.639533,0.181359,−0.181359,−0.639533
−0.661797i,2.333714i,−2.333714i,0.661797i

)
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