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Abstract. We prove the existence of trajectories shadowing chains of heteroclinic or-
bits to a symplectic normally hyperbolic critical manifold of a Hamiltonian system.
The results are quite different for real and complex eigenvalues. General results are
applied to Hamiltonian systems depending on a parameter which slowly changes with
rate ε. If the frozen autonomous system has a hyperbolic equilibrium possessing trans-
verse homoclinic orbits, we construct trajectories shadowing homoclinic chains with
energy having quasirandom jumps of order ε and changing with average rate of order
ε| ln ε|. This provides a partial multidimensional extension of the results of A. Neish-
tadt on the destruction of adiabatic invariants for systems with one degree of freedom
and a figure 8 separatrix.
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1 Introduction

Consider a smooth Hamiltonian system (M, ω, H) with phase space M, symplectic form
ω and Hamiltonian H. Let v = J∇H be the Hamiltonian vector field and φt the phase
flow. Suppose H has a connected symplectic nondegenerate critical manifold N. Then
any z ∈ N is a critical point of H with rank d2H(z) = dim M− dim N, and the restriction
ω|Tz N is nondegenerate. We also assume that N is normally hyperbolic, i.e., nonzero
eigenvalues of the linearization Λ(z) = Dv(z) have nonzero real parts.

Denote by
Ez = {ξ ∈ Tz M : ω(ξ, η) = 0 for all η ∈ TzN}
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the symplectic complement to TzN. Since N is symplectic, Tz M = TzN ⊕ Ez and ω|Ez

is nondegenerate. Hence Ez = E+
z ⊕ E−z , where E±z are Λ(z)-invariant Lagrangian sta-

ble and unstable subspaces of Ez corresponding to the eigenvalues with negative and
positive real parts respectively.

Let
W±(z) = {x ∈ M : lim

t→±∞
φt(x) = z}, TzW±(z) = E±z ,

be the stable and unstable manifolds of z ∈ N and

W±(N) = ∪z∈NW±(z)

the stable and unstable manifolds of N. The intersection W+(N) ∩W−(N) \ N consists
of orbits γ : R→ M homoclinic to N, i.e., heteroclinic from z− = γ(−∞) to z+ = γ(+∞).
The heteroclinic orbit is called transverse if Tγ(t)W−(z−) ∩ Tγ(t)W+(N) = Rγ̇(t).

Define a multivalued partially defined symplectic scattering map F : N → N by
F(z−) = z+ if there is a transverse heteroclinic from z− to z+. We call a sequence σ =
(σi)i∈Z of transverse heteroclinic orbits a heteroclinic chain if σi(+∞) = σi+1(−∞) = zi ∈
N. A heteroclinic chain corresponds to an orbit z = (zi)i∈Z of the scattering map. We call
the chain strongly nondegenerate if the orbit z is hyperbolic.

Without loss of generality let N ⊂ Σ0 = H−1(0). Our goal is to construct, for small
µ, orbits γ : R → Σµ = H−1(µ) shadowing strongly nondegenerate infinite heteroclinic
chains. This requires several assumptions which are different for real and complex eigen-
values. For degenerate heteroclinic chains we get weaker results.

Our research is motivated by two classical problems. The first is Poincaré’s theory
of second species almost collision solutions in celestial mechanics. This application was
already discussed in [6, 7], so we will be brief. Consider the plane 3 body problem with
two small masses of order µ� 1. Let the center of mass be at rest and let qi be the relative
positions of small bodies with respect to the large one. Then we obtain the Hamiltonian

Hµ(q, p) = H0(q, p) +
µ

2
|p1 + p2|2 − µ

α1α2

|q1 − q2|
, q ∈ (R2 \ {0})2,

where

H0 =
2

∑
i=1

(
|pi|2
2αi
− αi

|qi|

)
is the Hamiltonian of two uncoupled Kepler problems with masses αi. For µ > 0 there are
singularities at double collisions ∆ = {q : q1 = q2}. Fixing an energy level H−1

µ (E) and
performing the Levi-Civita regularization at ∆, we obtain the regularized Hamiltonian Ĥ
which has a symplectic normally hyperbolic critical manifold N ⊂ Ĥ−1(0) correspond-
ing to ∆. Trajectories of the 3 body problem on H−1

µ (E) correspond to trajectories of the
regularized Hamiltonian on Σµ = Ĥ−1(µ). Homoclinic trajectories to N correspond to
orbits of the uncoupled Kepler problems with collisions of the small bodies, and trajec-
tories on Σµ shadowing heteroclinic chains correspond to almost collision second species



S. Bolotin / Anal. Theory Appl., 37 (2021), pp. 1-23 3

solutions. This approach was used in [3, 7] to prove the existence of periodic and chaotic
second species solutions of the 3 body problem. In the applications to celestial mechanics
the critical manifold has multiple real eigenvalues. The shadowing theorem in [7] was
proved only in this nongeneric case.

In the second application also complex eigenvalues may appear. Consider a slowly
time dependent Hamiltonian system on a symplectic manifold M:

ż = J∂zH(z, τ), τ̇ = ε� 1. (1.1)

For small ε the energy E(t) = H(z(t), τ(t)) changes slowly: Ė = ε∂τ H. For ε = 0 we
obtain a frozen autonomous system with Hamiltonian Hτ(z) = H(z, τ) depending on a
parameter τ.

If the frozen system has one degree of freedom and the level curves γ = H−1
τ (E) are

closed, then the area inside γ (the Maupertuis action)

I(τ, E) = A(γ) =
∮

γ
p dq, ω = dp ∧ dq,

is an adiabatic invariant [1]. For small ε the change of I(t) = I(τ(t), E(t)) on long time
intervals is small:

|I(t)− I(0)| ≤ Cε, 0 ≤ t ≤ T/ε. (1.2)

Then the energy changes gradually: (τ, E) approximately follow a level curve I(τ, E) =
const.

However, (1.2) fails for trajectories passing near equilibria, since then the frozen dy-
namics is slow, and the averaging method does not work. A. Neishtadt [19] consid-
ered the case when the plane frozen system has a hyperbolic equilibrium with a figure
8 separatrix–union of two homoclinic loops. The separatrix divides the plane in 3 re-
gions. In the interior of each region there is an adiabatic invariant, so (τ, E) follows its
level curves. Neishtadt showed that when a trajectory crosses the separatrix, the adia-
batic invariant, and hence also the energy, have jumps of order ε. Then large measure of
trajectories have quasirandom behavior, and the energy changes with average speed of
order ε| ln ε|.

It turns out that there is a partial analog of Neishtadt’s result for multidimensional
Hamiltonian systems such that the frozen system has a hyperbolic equilibrium z0(τ) pos-
sessing several transverse homoclinic orbits γk

τ : R → M, k ∈ K. Under certain condi-
tions there exist multibump trajectories shadowing homoclinic chains (γki

τi ) with energy
having quasirandom jumps of order ε and growing with average rate ∼ ε| ln ε|. For real
eigenvalues we need #K ≥ 2. For complex eigenvalues, generically #K = ∞, see [10, 15].

Let us show how to reduce the problem to a general theorem on shadowing hetero-
clinic chains to a normally hyperbolic symplectic critical manifold. For simplicity sup-
pose that H(z, τ) is periodic in τ ∈ T. Replacing H by H − H(z0(τ), τ) we may assume
that

H(z0(τ), τ) = 0, ∂zH(z0(τ), τ) = 0. (1.3)
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Consider an autonomous Hamiltonian system

ż = J∂zH(z, τ), τ̇ = ε, ḣ = −∂τ H(z, τ), (1.4)

on the extended phase space M̂ = M×T×R with Hamiltonian

Ĥε(z, τ, h) = H(z, τ) + εh

and symplectic structure
ω̂ = ω + dh ∧ dτ.

For ε > 0 trajectories of the Hamiltonian system (1.1) are in one-to-one correspondence
with trajectories of the extended system (1.4) on the energy level Ĥ−1

ε (0). For ε = 0 the
extended system has a 2-dimensional normally hyperbolic symplectic critical manifold

N̂ = {(z0(τ), τ, h) : τ ∈ T, h ∈ R}.

The Hamiltonian Ĥε depends on ε, so we replace it by the Hamiltonian

H̃(z, τ, h) =
H(z, τ)

h
(1.5)

on M̃ = M̂ ∩ {h > 0}. Since

Σ̃−ε = H̃−1(−ε) = Ĥ−1
ε (0) ∩ {h > 0},

trajectories of the systems with Hamiltonian Ĥε and with Hamiltonian H̃ on Σ̃−ε are the
same. Time parametrizations of trajectories are of course different. The Hamiltonian H̃
has a nondegenerate symplectic critical manifold

Ñ = N̂ ∩ {h > 0},

and homoclinics of the frozen system define families of homoclinics to the manifold N.
After proving general theorems on shadowing heteroclinic chains to a symplectic crit-

ical manifold we will apply them to the system (M̃, ω̂, H̃) and obtain quasirandom tra-
jectories of a slowly time dependent system. Note that for H = o(ε) this approach does
not work since the Hamiltonian (1.5) becomes singular. We briefly discuss this case in the
Appendix.

Our results for slowly time dependent systems are related to the work of V. Gelfreich
and D. Turaev [17]. They constructed quasirandom trajectories under the assumption
that for each (τ, E) in an open set the frozen system has hyperbolic periodic orbits γ1

τ,E
and γ2

τ,E joined by transverse heteroclinics in H−1
τ (E). Then the frozen system has a

uniformly hyperbolic chaotic invariant set consisting of trajectories shadowing chains of
these heteroclinics. For ε small, while a trajectory stays close to γk

τ,E, the Maupertuis
action

Ik(τ, E) = A(γk
τ,E) =

∮
γk

τ,E

p dq
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is a local adiabatic invariant. Gelfreich and Turaev constructed trajectories making many
revolutions near γ1

τ,E, then many revolutions near γ2
τ,E, and so on. For such trajectories

(τ, E) first approximately follow a level curve of I1(τ, E), then a level curve of I2(τ, E),
and so on. Gelfreich and Turaev proved that if I1 and I2 are functionally independent,
there exist trajectories with energy changing in a quasirandom way with average rate
of order ε. However, this result does not work near a homoclinic set of an equilibrium,
where dynamics of the frozen system is slow.

The shadowing theorems we prove have roots in many classical results in dynami-
cal systems and calculus of variations which are too numerous to mention. Maybe the
most important for us were the Turayev–Shilnikov theorem [23] and the works of P. Ra-
binowitz [12], E. Sere [21] and many others on the existence of multibump homoclinics
by variational methods. Some ideas used in this paper were developed over the years in
collaboration with Paul Rabinowitz. In particular [8] was a foundation to the present re-
search. However we do not use global variational methods as in [8], since transversality
of heteroclinics is assumed.

Phenomena similar to the ones studied in this paper appear in the problem of Arnold’s
diffusion for nearly integrable Hamiltonian systems near a multiple resonance [2, 11, 14,
20, 26]. Our research is also closely related to the theory of scattering maps [13] and of
separatrix maps [25].

In this paper we use local variational methods, more precisely generating functions of
symplectic relations and discrete action functionals. For Tonelli Hamiltonians one can use
global methods of Aubry–Mather theory [2, 11, 20]. However for general Hamiltonians
considered in this paper only local variational methods work.

Next we formulate and prove general shadowing theorems for systems with a nor-
mally hyperbolic symplectic critical manifold. In the last section these results are applied
to slowly time dependent systems.

2 Main results

Let N2m be a connected symplectic normally hyperbolic critical manifold of a Hamilto-
nian system (M2m+2k, ω, H). We assume N ⊂ Σ0 = H−1(0). Define projections π± :
W±(N)→ N by π±(x) = z if x ∈W±(z):

π±(x) = lim
t→±∞

φt(x).

Following [13], define a scattering relation R ⊂ N × N setting (z−, z+) ∈ R if there is
an orbit heteroclinic from z− to z+, i.e., there is a ∈ W−(N) ∩W+(N) \ N such that
π±(a) = z±. If R is locally a graph, then it defines a branch of the symplectic scattering
map F : N → N. The general theory of scattering maps was developed in [13]. However,
our case is different because the manifold N is critical and the energy level Σ0 containing
N is not a manifold, so the results in [13] do not apply directly.
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If a heteroclinic orbit γ(t) = φt(a), γ(±∞) = c± ∈ N is transverse, then the following
equivalent conditions hold. Let v be the Hamiltonian vector field.

• TaW−(c−) ∩ TaW+(N) = Rv(a).

• TaW+(c+) ∩ TaW−(N) = Rv(a).

• The symplectic form ω defines a nondegenerate modulo Rv(a) bilinear form on
TaW−(c−)× TaW+(c+).

• There exist Lagrangian submanifolds L± ⊂ N containing c± such that the La-
grangian manifolds W±(L±) = ∪z∈L±W±(z) intersect transversely in Σ0 along
γ(R):

TaW+(L+) ∩ TaW−(L−) = Rv(a).

Then the scattering map F has a well defined smooth branch f : V− → V+, where
V± ⊂ N are neighborhoods of c±. Let (x±, y±) ∈ R2m be local symplectic coordinates in
V± such that ω|V± = dy± ∧ dx± and

L+ = {y+ = b+} = B+ × {b+}, L− = {x− = a−} = {a−} × B−,

where c± = (a±, b±) and B± are small balls in Rm centered at a+ and b− respec-
tively. Then for (x−, y+) in a neighborhood of (a−, b+), the Lagrangian manifolds
W−({x−} × B−) and W+(B+ × {y+}) intersect transversely in Σ0 along a heteroclinic
trajectory σ(x−, y+) joining the points z− = (x−, y−) with f (z−) = z+ = (x+, y+). We
represent f by a generating function S(x−, y+):

f (x−, y−) = (x+, y+) ⇔ dS(x−, y+) = y− dx− + x+ dy+. (2.1)

Introducing local branches of the scattering map near transverse heteroclinic orbits,
we represent F by a collection of symplectic diffeomorphisms fk : V−k → V+

k of open sets
in N. The map fk has a generating function Sk defined on an open set in R2m.

An orbit of F is a pair of sequences k = (ki)i∈Z, z = (zi)i∈Z, where zi ∈ Vi = V+
ki−1
∩

V−ki
and zi+1 = fki(zi). It defines a chain σ = (σi)i∈Z of transverse heteroclinic orbits

σi connecting zi with zi+1. An orbit of F is a critical point of the formal discrete action
functional

A(z) = Ak(z) = ∑
i∈Z

(Ski(xi, yi+1)− 〈xi, yi〉), zi = (xi, yi). (2.2)

Although the functional is formal, its derivative is a well defined sequence in l∞(R2m).
It is well known that the orbit z is hyperbolic (has nonzero Lyapunov exponents) iff the
Hessian A′′(z) has a bounded inverse in l∞. Then we call the chain σ = (σi)i∈Z strongly
nondegenerate. To shadow the chain σ by a trajectory on Σµ = H−1(µ) with small µ 6= 0,
we need more conditions.
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Let Λ(z) = Dv(z) and Λ±(z) = Λ|E±z . Let

α(z) = min{|Re λ| : λ ∈ Spec Λ±(z)} > 0. (2.3)

Then
‖e±tΛ±(z)‖ ≤ Ce−tα(z), t > 0.

We call an eigenvalue λ of Λ±(z) leading if |Re λ| = α(z). Generically leading eigenval-
ues are simple. Then there are 2 cases:

• Real case: ±α(z) are real simple leading eigenvalues.

• Complex case: ±α(z)± iβ(z), β(z) > 0, are complex simple leading eigenvalues.

We assume that one of the cases hold for all z ∈ N.
Recall that the strong stable and unstable manifolds W±strong(z) are invariant manifolds

in W±(z) tangent to the eigenspace E±strong(z) associated to the nonleading eigenvalues
with |Re λ| > α(z). In the real case dim W±strong(z) = dim W±(z)− 1, and in the complex
case dim W±strong(z) = dim W±(z)− 2.

We call a heteroclinic orbit γ : R → W−(z−) ∩W+(z+) leading if it does not lie in
W+

strong(z+) ∪W−strong(z−). Generic heteroclinics are leading.
The results in the real and complex case are different. The real case was studied in [7]

under the assumption that the eigenvalues have maximal multiplicity. For N a single hy-
perbolic equilibrium with real eigenvalues the result was discovered much earlier by Tu-
rayev and Shilnikov [23], and the proofs (with different generality) were given in [8, 24].
For N a hyperbolic equilibrium with complex eigenvalues of a system with two degrees
of freedom the problem was studied by Devaney [15]. In [10], variational methods were
used to extend the results of [15] to the case of nontransverse homoclinics.

First consider the real case. Then the flow on W±(z) looks like a node: for any a ∈
W±(z) there exist the limits

ξ±(a) = α(z)−1 lim
t→±∞

e±tα(z)v(φt(a)), (2.4)

and ξ±(a) = 0 iff a ∈ W±strong(z). For a /∈ W±strong(z), ξ±(a) are eigenvectors associated
to ∓α(z). We fix leading eigenvectors ζ±(z) ∈ E±z , smoothly depending on z, such that
ω(ζ−(z), ζ+(z)) = 1. Then define smooth functions s± on W±(z) by

ξ±(a) = s±(a)ζ±(z). (2.5)

In local symplectic coordinates such that ω|Ez = dp ∧ dq and

H(z, q, p) = −α(z)p1q1 + O2(p2, · · · , pk, q2, · · · , qk) + O3(p, q),

we have s+ = −q1 + O2(q) and s− = p1 + O2(p).
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Remark 2.1. To deal with infinite heteroclinic chains we need some uniformity assump-
tions. In general the collection { fk} is countable, but we single out a finite subcollection
F = { fk}k∈K. We assume that the sets V−k are compact, the maps fk can be extended to
their neighborhoods, and heteroclinics joining z ∈ V−k with fk(z) are leading.

For a leading heteroclinic orbit γ set

ρ±(γ) = sgn s±(γ(0)). (2.6)

Note that ρ±(γ) does not depend on the choice of the point γ(0) on γ(R).
Let σ = (σi)i∈Z be a leading heteroclinic chain corresponding to an orbit (ci)i∈Z of the

scattering map. We call σ positive (negative) if

ρ+(σi)ρ−(σi+1) > 0, (ρ+(σi)ρ−(σi+1) < 0) for all i.

Positive heteroclinic chains can be shadowed by orbits with small positive energy, and
negative chains with small negative energy.

Let π : U → N be a smooth retraction of a tubular neighborhood U of N such that
W±loc(z) ⊂ π−1(z).

Theorem 2.1. Suppose leading eigenvalues are real and simple. There is µ0 > 0 such that for
any µ ∈ (0, µ0] and any strongly nondegenerate positive heteroclinic chain σ = (σi)i∈Z there
exists an orbit γ : R→ Σµ shadowing the chain σ. More precisely:

• There exists a sequence (ti)i∈Z such that† d(γ(t), σi(R)) ≤ C
√

µ for ti ≤ t ≤ ti+1 and

ti+1 − ti =
| ln µ|
α(zi)

+O(1).

• d(γ(t), N) has a local minimum d(γ(ti), N) ≤ C
√

µ at t = ti and the sequence zi =
π(γ(ti)) shadows the orbit (ci)i∈Z of the scattering map: d(ci, zi) ≤ Cµ| ln µ|.

• Except inside the neighborhood U of N, γ is O(µ| ln µ|)-shadowing σ: there exist se-
quences ti−1 < s+i < ti < s−i < ti+1 such that γ(s±i ) ∈ ∂U, γ([s+i , s−i ]) ⊂ U and
d(γ(t), σi(R)) ≤ Cµ| ln µ| for s−i ≤ t ≤ s+i+1. We have

0 < s−i − s+i −
| ln µ|
α(zi)

≤ C, s+i+1 − s−i ≤ C. (2.7)

If the chain σ is negative, then shadowing orbits exist on Σµ with µ ∈ [−µ0, 0). If the
chain is not positive or negative, then in general there are no shadowing orbits satisfying
conditions in the theorem.

Theorem 2.1 is a generalization of the main result in [7]. In [7] it is assumed that
Λ±(z) = ∓α(z)I, and only periodic heteroclinic chains were considered.

For complex leading eigenvalues there are more shadowing trajectories.

†C is a constant independent of µ and the chain σ.
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Theorem 2.2. Suppose the leading eigenvalues are simple and complex. For any integer m0 there
exists µ0 > 0 such that for any strongly nondegenerate leading heteroclinic chain σ = (σi)i∈Z,
any integer sequence 0 ≤ ni ≤ m0, and any µ ∈ [−µ0, µ0] \ {0},

• There exists an orbit γ : R → Σµ shadowing the chain σ: there is a sequence (ti)i∈Z such
that d(γ(t), σi(R)) ≤ C

√
µ for ti ≤ t ≤ ti+1.

• d(γ(t), N) has a local minimum d(γ(ti), N) ≤ C
√

µ at t = ti.

• The sequence zi = π(γ(ti)) shadows the orbit (ci) of the scattering map: d(ci, zi) ≤
Cµ| ln µ|.

• Except inside the neighborhood U, γ is O(µ| ln µ|)-shadowing σ: there exist sequences
ti−1 < s+i < ti < s−i < ti+1 such that γ(s±i ) ∈ ∂U, γ([s+i , s−i ]) ⊂ U and
d(γ(t), σi(R)) ≤ Cµ| ln µ| for s−i ≤ t ≤ s+i+1.

• There is a constant C > 0 independent of m0 such

0 < s−i − s+i −
| ln µ|
α(zi)

+
2πni

β(zi)
≤ C, s+i+1 − s−i ≤ C. (2.8)

Remark 2.2. In the complex case there exist also shadowing orbits on Σ0, including multi-
bump homoclinic orbits. For two degrees of freedom and N a single equilibrium this was
proved in [10]. However we will not discuss this result since it does not apply to slowly
time dependent systems.

It follows from the proof that the orbits in Theorems 2.1 and 2.2 are hyperbolic with
nonzero Lyapunov exponents. Since µ0 is independent of the chain, if F has a compact
hyperbolic invariant set, then shadowing orbits form a compact hyperbolic invariant set
in Σµ. If the heteroclinic chain (and the sequence (ni) in Theorem 2.2) are periodic, then
the shadowing orbits will be periodic.

Unfortunately in our application to slowly time dependent systems the heteroclinic
chains are degenerate. So we need weaker results for finite homoclinic chains.

Theorem 2.3. Suppose the leading eigenvalues are real and simple. Let σ = (σi)
n
i=0 be a positive

heteroclinic chain. Then there is µ0 > 0 such that for any µ ∈ (0, µ0] there exists an orbit
γ : [0, T] → Σµ and a sequence (ti)

n
i=0 such that t0 = 0, tn = T, π(γ(0)) = c0, and all

assertions of Theorem 2.1 hold for i = 0, · · · , n.

In particular,

T =
n−1

∑
i=0

| ln µ|
α(ci)

+O(1).

In the complex case we have
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Theorem 2.4. Suppose the leading eigenvalues are simple and complex. For any integer m0
and any leading heteroclinic chain σ = (σi)

n
i=0 there exists µ0 > 0 such that for any µ ∈

[−µ0, µ0] \ {0} and any integer sequence 0 ≤ ni ≤ m0 there exists an orbit γ : [0, T]→ Σµ and
a sequence (ti)

n
i=0 such that t0 = 0, tn = T, π(γ(0)) = c0, and all assertions of Theorem 2.2

hold for i = 0, · · · , n.

In particular, by (2.8),

T =
n−1

∑
i=0

(
| ln µ|
α(ci)

− 2πni

β(zi)

)
+O(1).

The proofs of Theorems 2.3 and 2.4 are simplified versions of the proofs of Theorems
2.1 and 2.2, so we skip them. These theorems work for finite chains with n independent
of µ. But then one can continue the procedure using a version of the continuation lemma,
see [25, 26] and [17]. The details will be published in another paper.

3 Proofs of the shadowing theorems

3.1 Generating functions of local symplectic relations

First we describe trajectories passing close to the critical manifold N. Take a small domain
V ⊂ N with symplectic coordinates z = (x, y) and identify V with a domain in R2m. If V
is small enough, a tubular neighborhood U of V in M can be identified with

U = V × Br × Br = {(z, q, p) : z ∈ V, q, p ∈ Br}, Br = {q ∈ Rk : |q| ≤ r}, (3.1)

in such a way that

E+
z = {z} ×Rk × {0}, E−z = {z} × {0} ×Rk,

and the coordinates in U are symplectic:

ω|U = dy ∧ dx + dp ∧ dq, z = (x, y) ∈ V.

Then
H(z, q, p) = 〈p, Λ+(z)q〉+ O3(q, p). (3.2)

The local stable and unstable manifolds W±loc(z0) are parameterized by the embeddings
ψ±z0

: Br → U:

ψ+
z0
(q) = (g+(z0, q), q, h+(z0, q)), ψ−z0

(p) = (g−(z0, p), h−(z0, p), p),

where
g+ = O2(q), g− = O2(p), h+ = O2(q), h− = O2(p).

They can be also represented by generating functions.
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Proposition 3.1. There exist smooth functions

S+(y0, x+, q+) = 〈x+, y0〉+ O2(q+), (3.3a)
S−(x0, y−, p−) = 〈x0, y−〉+ O2(p−), (3.3b)

on open sets in Rm × Rm × Rk such that for any z0 = (x0, y0) ∈ V and A± =
(x±, y±, q±, p±) ∈ U,

A+ ∈W+
loc(z0) ⇔ p+ =

∂S+

∂q+
, y+ =

∂S+

∂x+
, x0 =

∂S+

∂y0
, (3.4a)

A− ∈W−loc(z0) ⇔ q− =
∂S−
∂p−

, x− =
∂S−
∂y−

, y0 =
∂S−
∂x0

. (3.4b)

Equivalently,

dS+(y0, x+, q+) = p+ dq+ + y+ dx+ + x0 dy0, (3.5a)
dS−(x0, y−, p−) = q− dp− + x− dy− + y0 dx0. (3.5b)

Define a symplectic relation L ⊂ U × U as follows: (A+, A−) ∈ L if there exists
z0 ∈ V such that A± ∈W±(z0). The relation is represented by the generating function

F(z0, Z) = S+(y0, x+, q+) + S−(x0, y−, p−)− 〈x0, y0〉, Z = (x+, y−, q+, p−),

via the equations

∂F
∂z0

= 0, y+ =
∂F

∂x+
, x− =

∂F
∂y−

, p+ =
∂F

∂q+
, q− =

∂F
∂p−

. (3.6)

Let
L(Z) = Crit z0 F(z0, Z) = F(ζ(Z), Z),

which means taking the critical value at the nondegenerate critical point z0 = ζ(Z) with
respect to z0. We obtain

Proposition 3.2. The generating function L defines the symplectic relation (A+, A−) ∈ L by
the equations

dL(Z) = y+ dx+ + x− dy− + p+ dq+ + q− dp−.

From now on we assume that r > 0 is small enough. The next proposition is a minor
generalization of Shilnikov’s theorem [22], or λ-lemma. The proof is an application of the
contraction principle, see [7, 16].

Proposition 3.3. For any (z0, q+, p−) ∈ V × Br × Br and T ≥ 1:



12 S. Bolotin / Anal. Theory Appl., 37 (2021), pp. 1-23

• There exists a unique solution γ : [−T, T]→ U,

γ(t) = (z(t), q(t), p(t)), (3.7)

satisfying the initial–boundary conditions

z(0) = z0, p(T) = p−, q(−T) = q+. (3.8)

• γ smoothly depends on z0, q+, p−, T.

• Let γ(∓T) = A± = (z±, q±, p±). Then

z+ = g+(z0, q+) +O(Te−2αT), (3.9a)

z− = g−(z0, p−) +O(Te−2αT), (3.9b)

p+ = h+(z+, q+) +O(e−2αT), (3.9c)

q− = h−(z−, p−) +O(e−2αT). (3.9d)

We write for simplicity α = α(z0). Let

B+ = ψ+
z0
(q+) ∈W+(z0), B− = ψ−z0

(p−) ∈W−(z0). (3.10)

Then (3.9a)–(3.9d) imply d(A±, B±) = O(Te−2αT). As T → +∞, the trajectory γ converges
pointwise to the concatenation γ+ · γ− of the asymptotic trajectories γ+(t) = φtB+, t ≥ 0
and γ−(t) = φtB−, t ≤ 0.

The flow on W±loc(z0) satisfies

φtB+ = ψ+
z0
(etΛ+(z0)q+ +O(e−αt|q+|2)), φ−tB− = ψ−z0

(etΛ−(z0)p− +O(e−αt|p−|2)).

Hence for the point γ(0) = (z0, q(0), p(0)), we have

q(0) = eTΛ+(z0)q+ +O(e−αtr2), p(0) = e−TΛ−(z0)p− +O(e−αtr2). (3.11)

If Z = (x+, q+, y−, p−) is given, we can solve Eqs. (3.9a)–(3.9b) for z0 = ζ(Z)+O(Te−2αT).
Then we obtain a symplectic relation (A+, A−) ∈ LT if the points are joined by a trajec-
tory γ : [−T, T]→ U. The relation LT is defined by the generating function

LT(Z) = L(Z) +O(Te−2αT).

To construct trajectories with given energy we need to find H(γ(0)) for the trajectory
γ in Proposition 3.3. Up to now it did not matter if the leading eigenvalues were real or
complex. Now we have to consider these cases separately.

In the real case the manifolds W±strong(z0) divide W±loc(z0) in 2 components. In order
to connect the points A± by a trajectory with positive energy, we need to have the points
(3.10) in the right components of W±loc(z0) \W±strong(z0). Let s± be the function (2.5) and

s+(z0, q+) = s+(ψ+
z0
(q+)), s−(z0, p−) = s−(ψ−z0

(p−)).
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Then W±strong(z0) ⊂ W±loc(z0) are given by the equations s± = 0 respectively. A computa-
tion [7] shows that

H(γ(0)) = αe−2Tαs+(z0, q+)s−(z0, p−) +O(e−(2α+ν)T), ν > 0.

Let Ω be a compact set contained in

{(z0, q+, p−) ∈ V × Br × Br : s+(z0, q+)s−(z0, , p−) > 0}.

Later on we take Ω = V × Q × P, where P, Q ⊂ Br \ Br/2 are small closed balls. Let
µ0 > 0 be small enough and µ ∈ (0, µ0]. Solving the equation H(γ(0)) = µ for T we
obtain:

Proposition 3.4. For any µ ∈ (0, µ0] and (z0, q+, p−) ∈ Ω:

• There exist

T =
| ln µ|
2α(z0)

+O(1)

and a unique solution (3.7) on Σµ ∩U satisfying (3.8).

• γ and T smoothly depend on z0, q+, p−, µ.

• γ converges to the concatenation γ+ · γ− as µ→ 0.

• The boundary points A± of γ satisfy d(A±, B±) ≤ Cµ| ln µ|.

• d(γ(0), N) = O(
√

µ).

Proposition 3.4 was proved in [7] for equal real eigenvalues. In [16] the proof was
extended to the generic real case.

We have a symplectic relation: (A+, A−) ∈ Lµ if there exists z0 such that the points
A± are joined by a trajectory in Proposition 3.4. The generating function of the relation is

Lµ(Z) = L(Z) +O(µ| ln µ|), Z = (x+, y−, q+, p−), (3.12)

where L is the generating function in Proposition 3.2.
In the complex case the formula for the energy is more complicated. Let Π± : Rk →

Rk be the projections to the eigenspaces E±lead associated to the leading eigenvalues ±α±
iβ. Set

p̂ = Π−p− ∈ E−lead, p̃ = p− − p̂ ∈ E−strong,

q̂ = Π+q+ ∈ E+
lead, q̃ = q− q̂ ∈ E+

strong.

Lemma 3.1. We have

H(γ(0)) = e−2αT( f (q̂, p̂) cos(2βT) + g(q̂, p̂) sin(2βT) +O(r3) +O(e−νTr2)), (3.13)

where ν > 0 and f , g are linear functions such that√
f 2 + g2 =

√
α2 + β2| p̂||q̂| = u(z0, q+, p−).
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The proof is a computation similar to the one in [10]. Let Λ+ = Λ+(z0). We have

|eTΛ+ q̃| ≤ Ce−T(α+ν)|q̃|, ν > 0,

eTΛ+ q̂ = e−TαeβTJ q̂,

where J : E+
lead → E+

lead, J2 = −I, is a rotation by π/2. By (3.2) and (3.11),

H(γ(0)) =H(z0, q(0), p(0)) = 〈p(0), Λ+q(0)〉+ O3(p(0), q(0))

=〈p−, eTΛ+Λ+eTΛ+q+〉+O(e−2αTr3)

=〈 p̂, eTΛ+Λ+eTΛ+ q̂〉+ 〈 p̃, eTΛ+Λ+eTΛ+ q̃〉+O(e−2αTr3)

=e−2αT(〈 p̂, e2TβJ(−αI + βJ)q̂〉+O(r3) +O(r2e−νT)).

Here e2TβJ is a rotation in the plane E+
lead by the angle 2βT, and |(−αI + βJ)q̂| =√

α2 + β2|q̂|. This implies (3.13).
Let r > 0 be sufficiently small and let P, Q ⊂ Br \ Br/2 be small closed balls such that

for z0 ∈ V we have

ψ+
z0
(Q) ⊂W+

loc(z0) \W+
strong(z0), ψ−z0

(P) ⊂W−loc(z0) \W−strong(z0).

Then for all (z0, q+, p−) ∈ Ω = V ×Q× P we can write‡

H(γ(0)) = e−2Tα(z0)(u(z0, q+, p−) cos(ψ(z0, q+, p−) + 2β(z0)T) +O(r2e−νT) +O(r3)).

Then for small µ0 < minΩ u and 0 < |µ| < µ0 the equation H(γ(0)) = µ has n(µ)
nondegenerate solutions T = Tk(µ), smoothly depending on µ, and n(µ) → +∞ as
µ → 0. For µ = 0 the number of solutions Tk is infinite, but we don’t consider this case.
For m0 independent of µ there are solutions T0 > T1 > · · · > Tm0 satisfying

Tk − Tk−1 =
π

β(z0)
+ o(1), T0 =

| ln |µ||
α(z0)

+O(1). (3.14)

We obtain:

Proposition 3.5. For any integer m0 there exists µ0 > 0 such that for µ ∈ [−µ0, µ0] \ {0} and
any (z0, q+, p−) ∈ Ω:

• There exists a sequence T0 > T1 > · · · > Tm0 satisfying (3.14) such that for any 0 ≤ k ≤
m0 there is a solution γ : [−Tk, Tk]→ U ∩ Σµ satisfying (3.8).

• γ and Tk smoothly depend on z0, q+, p−, µ.

• γ converges to the concatenation γ+ · γ− as µ→ 0.

‡Without restricting to Ω we get a multivalued ψ.
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• The boundary points satisfy d(A±, B±) ≤ Cµ| ln µ|.

The symplectic relation Lµ = Lk
µ between the points A+ = γ(−Tk) and A− = γ(Tk)

is given by a generating function Lµ = Lk
µ as in (3.12).

The following corollary works both for real and complex cases. Let the sets P and
Q be chosen as above. In the complex case we fix an integer k ∈ [0, m0] and drop the
dependence on k from the notation. Let µ ∈ (0, µ0] in the real case, and µ ∈ [−µ0, 0) ∪
(0, µ0] in the complex case. Let F be the generating function in (3.6).

Corollary 3.1. The symplectic relation Lµ is given by the generating function

Fµ(z0, Z) = Lµ(Z)− L(Z) + F(z0, Z) = F(z0, Z) +O(µ| ln µ|) (3.15)

via the equations

∂Fµ

∂z0
= 0, y+ =

∂Fµ

∂x+
, x− =

∂Fµ

∂y−
, p+ =

∂Fµ

∂q+
, q− =

∂Fµ

∂p−
.

3.2 Discrete variational problem

To formulate a variational problem for shadowing orbits we need to relate the generating
functions of the stable and unstable manifolds W±(N) and of the scattering map F.

Let f : V− → V+ be a local branch of F represented by a generating function S as in
(2.1). Then to any (x0, y1) in a small open set W ⊂ R2k there corresponds the transverse
heteroclinic σ(x0, y1) joining z0 = (x0, y0) ∈ V− with z1 = f (z0) = (x1, y1) ∈ V+. As in
(3.1), let (x±, y±, q±, p±) be symplectic coordinates in a neighborhood

U± ∼= V± × Br × Br.

Let A−(x0, y1) ∈ U− be the first intersection point of σ(x0, y1) with the cross section
|q| = r, and A+(x0, y1) ∈ U+ the last intersection point with the cross section |p| = r. Let
O± be a small neighborhood of A±(W) in U±.

We introduce a symplectic relation R ⊂ O− ×O+ as follows: (B−, B+) ∈ R if there
is a trajectory on the energy level Σ0 joining B− with B+ and close to the heteroclinics
in σ(W). Under certain transversality conditions (nonconjugacy of A− and A+ along σ),
which one can verify as in [7], to any X = (y−, p−, x+, q+) in an open set D ⊂ R2m+2k

there correspond points B± = (x±, y±, q±, p±) ∈ O± such that (B−, B+) ∈ R. We obtain:

Proposition 3.6. The relation R is given by a generating function R(X), X =
(y−, p−, x+, q+) ∈ D, as follows:

(B−, B+) ∈ R ⇔ dR(X) = p+ dq+ + y+ dx+ + x− dy− + q− dp−. (3.16)

We denote by B±(X) the points corresponding to X ∈ D.
Suppose now that µ0 > 0 is sufficiently small and let µ ∈ [−µ0, µ0]. Proposition 3.6

implies
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Corollary 3.2. For any µ ∈ [−µ0, µ0] and X = (y−, p−, x+, q+) ∈ D there exist x−, p−, y+, q+
such that the points B±(X, µ) = (x±, y±, q±, p±) ∈ Σµ are joined by a trajectory in Σµ,
smoothly depending on µ. The symplectic relation Rµ between B± is given by a generating func-
tion Rµ(X) = R(X) +O(µ):

(B−, B+) ∈ Rµ ⇔ dRµ(X) = p+ dq+ + y+ dx+ + x− dy− + q− dp−.

Let S± be the generating functions (3.3) of the local stable and unstable manifolds
W±(V±). Set

Gx0,y1(X) = S−(x0, y−, p−)− R(X) + S+(y1, x+, , q+). (3.17)

Eqs. (3.5a), (3.5b) and (3.16) imply:

Proposition 3.7.

• X ∈ D is a critical point of Gx0,y1 iff B−(X) ∈ W−(x = x0) and B+(X) ∈ W+(y = y1).
Then the points B± lie on a heteroclinic orbit σ(x0, y1) joining (x0, y0) and (x1, y1).

• Let D̂ = {(y−, p−, x+, q+) ∈ D : |p−| = |q+| = r}. For (x0, y1) ∈ W the function
Gx0,y1 on D̂ has a nondegenerate critical point X(x0, y1) ∈ D̂.

• The critical value is the generating function of the scattering map:

S(x0, y1) = Crit X Gx0,y1(X) = Gx0,y1(X(x0, y1)).

Next we introduce a discrete action functional whose critical points correspond to
heteroclinic chains.

Let c = (ci)i∈Z, ci+1 = fki(ci), be an orbit of F and let σ = (σi)i∈Z be the correspond-
ing heteroclinic chain: ci = σi(−∞) and ci+1 = σi(+∞). In the symplectic coordinates
zi = (xi, yi) in a neighborhood Vi ⊂ N of ci = (ai, bi), fki is represented by a generating
function Ski(xi, yi+1). Then c = (ci)i∈Z is a critical point of the action functional (2.2).

In a neighborhood Ui
∼= Vi × Br × Br of Vi in M we will use symplectic coordinates

(xi, yi, qi, pi) as in (3.1). Let

A−i = σi(t−i ) = (x̂−i , ŷ−i , q̂−i , p̂−i ) ∈ ∂Ui, | p̂−i | = r,

be the exit point of σi from Ui, and

A+
i+1 = σi(t+i ) = (x̂+i+1, ŷ+i+1, q̂+i+1, p̂+i+1) ∈ ∂Ui+1, |q̂+i+1| = r,

the entrance point of σi to Ui+1. Take small neighborhoods O−i of A−i and O+
i+1 of

A+
i+1. Let Di be a small neighborhood of X̂i = (ŷ−i , p̂−i , x̂+i+1, q̂+i+1) and Ri(Xi), Xi =

(y−i , p−i , x+i+1, q+i+1) ∈ Di, the generating function in Proposition 3.6. Then for any Xi ∈ Di
the points

B−i (Xi) = (x−i , y−i , q−i , p−i ) ∈ O−i , B+
i+1(Xi) = (x+i+1, y+i+1, q+i+1, p+i+1) ∈ O+

i+1,
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given by the generating function Ri(Xi) via

dRi(Xi) = p+i+1 dq+i+1 + y+i+1 dx+i+1 + x−i dy−i + q−i dp−i ,

are joined by a trajectory on Σ0 close to σi.
Let S±i be the generating functions of W±loc(Vi). As in (3.17), let

Gi(xi, yi+1, Xi) = S−i (xi, y−i , p−i )− Ri(Xi) + S+
i+1(x+i+1, yi+1, q+i+1).

Let
D̂i = {Xi = (y−i , p−i , x+i+1, q+i+1) ∈ Di : |p−i | = |q

+
i | = r}.

By Proposition 3.7, the function Xi ∈ D̂i → Gi(xi, yi+1, Xi) has a nondegenerate critical
value

Crit Xi Gi(xi, yi+1, Xi) = Gi(xi, yi+1, Xi(xi, yi+1)) = Ski(xi, yi+1), (3.18)

which is the generating function of the symplectic map fki .
Let us define a formal discrete action functional

B(z, X) = ∑
i∈Z

(Gi(xi, yi+1, Xi)− 〈xi, yi〉), z = (zi)i∈Z, X = (Xi)i∈Z,

where
zi = (xi, yi) ∈ Vi, Xi = (y−i , p−i , x+i+1, q+i+1) ∈ D̂i.

The functional is defined on V×D, where

V = ∏
i∈Z

Vi, D = ∏
i∈Z

D̂i.

The derivatives of B are well defined since each variable appears in a finite number of
terms. Hence the gradient ∇B is in l∞, and it is a continuous function on V×D. Note
that B(z, X) is the Maupertuis action of a broken trajectory on Σ0 with discontinuities at
the points B±i . At critical points, discontinuities disappear. Hence a critical point (c, C)
of B defines an orbit c of the scattering map and the corresponding heteroclinic chain σ.

Proposition 3.8.

• For any z ∈ V close to c (with small ‖z − c‖∞), the function X ∈ D → B(z, X) has a
strongly nondegenerate critical point X(z).

• The (formal) critical value equals the action functional (2.2):

A(z) = B(z, X(z)).

• If c is a strongly nondegenerate critical point of A, then (c, X(c)) is a strongly nondegen-
erate critical point of B on V×D.
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We call a critical point strongly nondegenerate if the Hessian has an inverse which
is bounded in l∞. The first item of Proposition 3.8 follows from the fact that for fixed z
the functional split into a sum of independent functions of Xi, and these functions have
nondegenerate critical points with the critical values (3.18). The rest follows easily.

Now we complete the proofs of Theorems 2.1 and 2.2. We will deal simultaneously
with the real and complex case. In the real case the chain σ is positive, and we choose
small neighborhood Vi of ci and small neighborhoods Pi of p̂−i and Qi of q̂+i so that
s+(z, q)s−(z, p) > δ > 0 for z ∈ Vi, q ∈ Qi, p ∈ Pi. In the complex case we take small
neighborhoods Pi and Qi of p̂−i and Qi of q̂+i so that ψzi(Pi) ⊂ W−loc(zi) \W−strong(zi) and
ψzi(Qi) ⊂ W+

loc(zi) \W+
strong(zi) for all zi ∈ Vi. In the complex case we also choose an

integer sequence 0 ≤ ni ≤ m0.
Take small µ0 > 0 and let µ ∈ (0, µ0] in the real case and µ ∈ [−µ0, 0) ∪ (0, µ0] in the

complex case. Let

Fµ
i (zi, Zi), zi ∈ Vi, Zi = (x+i , y−i , q+i , p−i ) ∈ Vi ×Qi × Pi,

be the generating function in Corollary 3.1, and Rµ
i (Xi), Xi = (y−i , p−i , x+i+1, q+i+1) ∈ Di,

the generating function in Corollary 3.2. Set

Aµ(z, X) = ∑
i∈Z

(Fµ
i (zi, Zi) + Rµ

i (Xi)), z = (zi)i∈Z ∈ V, X = (Xi)i∈Z ∈ D.

This formal functional is the Maupertuis action of a concatenation of trajectories on Σµ

with breaks at the constraints, i.e., at the points B±i = B±i (Xi, µ) in Corollary 3.2. If
(z, X) is a critical point of Aµ on V×D, then the points B±i = B±i (Xi, µ) lie on a smooth
trajectory γ : R→ Σµ shadowing the collision chain.

By Corollaries 3.1 and 3.2,

‖∇Aµ −∇B‖∞ ≤ Cµ| ln µ|.

By Proposition 3.8, the functional B has a strongly nondegenerate critical point (c, X(c)).
Now the proof is completed by the implicit function theorem in l∞.

4 Slowly time dependent systems

Let φt
τ be the flow of the frozen system and

W±(τ) = {x : φt
τ(x)→ z0(τ) as t→ ±∞}

the stable and unstable manifolds of the equilibrium z0(τ). If γτ : R→ W−(τ) ∩W+(τ)
is a transverse homoclinic orbit of the frozen system:

Tγτ(t)W
+(τ) ∩ Tγτ(t)W

−(τ) = R γ̇τ(t),
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then it smoothly depends on τ. The Maupertuis action

P(τ) = A(γτ) =
∮

γ
p dq, ω = dp ∧ dq, (4.1)

is called the Poincaré potential, and∫ +∞

−∞
∂τ H(γτ(t), τ) dt = −P′(τ) (4.2)

is called Melnikov’s function. If ω is nonexact, the Poincaré potential may be multival-
ued, but P′(τ) is always correctly defined.

Let us find the scattering map for the extended system (1.4). The stable and unstable
manifolds W±(τ, h0) of a point (z0(τ), τ, h0) ∈ N̂ are

W±(τ, h0) =
{
(x, τ, h) : x ∈W−(τ), h = h0 +

∫ ±∞

0
∂τ H(φt

τ(x), τ) dt
}

. (4.3)

A homoclinic γτ of the frozen system defines a family of heteroclinics

γ̂τ,h : R→W+(τ, h+) ∩W−(τ, h−)

of the extended system, where by (4.3),

h+ − h− = −
∫ +∞

−∞
∂τ H(γτ(t), τ) dt = P′(τ).

If γτ is transverse, then the heteroclinics γ̂τ,h are transverse.
The branch f of the scattering map F : N̂ → N̂ associated to γτ is defined by

f (γ̂τ,h(−∞)) = γ̂τ,h(+∞). This is a symplectic map represented by the generating func-
tion S(τ+, h−) = τ+h− + P(τ+):

f (τ−, h−) = (τ+, h+) ⇔ τ− = ∂h−S = τ+, h+ = ∂τ+S = h− + P′(τ+).

The Hamiltonian (1.5) is unbounded as h → 0. Thus we fix small δ > 0 and study the
system for h ∈ [δ, δ−1]. Then we can try to apply the results of section 2 to the symplectic
critical manifold

Ñδ = N̂ ∩ {δ ≤ h ≤ δ−1}.

Unfortunately Ñδ is not invariant under the scattering map: the trajectory

f n(τ, h) = (τ, h + nP′(τ))

will exit Ñδ after a finite number of steps. Also, since τ is conserved by the scattering
map, all heteroclinic chains are degenerate. Hence we can’t use Theorems 2.1 and 2.2.
But weaker Theorems 2.3 and 2.4 do apply.
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Let {γk
τ}k∈K be a finite collection of families of transverse homoclinics, and Pk(τ) =

A(γk
τ) the corresponding Poincaré potentials. Then there are several branches fk of the

scattering map with generating functions

Sk(τ+, h−) = τ+h− + Pk(τ).

As in Section 2, we assume that the leading eigenvalues of the equilibrium z0(τ) are
simple. In the real case they are ±α(τ), and in the complex case ±α(τ)± iβ(τ).

First consider the real case. Define the functions s± on W±loc(τ) as in (2.5) and define
ρ±(γk

τ) as in (2.6). We call a sequence (code) ki ∈ K negative if

ρ+(γ
ki
τ )ρ−(γ

ki+1
τ ) < 0 for all i.

We construct trajectories with negative energy corresponding to a negative code. For
positive codes and positive energy there is a similar result. Theorem 2.3 with µ = −ε < 0
implies the following:

Theorem 4.1. Let h0 > 0 and τ0 ∈ R. Let (ki)
n−1
i=0 be a negative code such that

h0 +
i

∑
j=0

P′k j
(0) > 0, i = 0, · · · , n− 1.

There exists ε0 > 0 such that for any ε ∈ (0, ε0] there exists a sequence (τi)
n
i=0 and a trajectory

γ(t) ∈ M, τ = τ0 + εt, such that:

• E(0) = −εh0 and E(t) < 0 for 0 ≤ t ≤ T = (τn − τ0)/ε.

• The trajectory γ shadows the homoclinic chain (γki
τi )

n−1
i=0 :

d(γ(t), γki
τi (R)) ≤ C

√
ε, ti ≤ t ≤ ti+1, ti = (τi − τ0)/ε.

• The sequences τi and hi = −E(ti)/ε satisfy

∆τi = τi+1 − τi = −
ε ln ε

α(τi)
+O(ε), (4.4a)

∆hi = hi+1 − hi = P′ki
(τi) +O(ε ln ε). (4.4b)

The sequence (τi, hi) shadows a trajectory of a composition of the symplectic maps
f ki
ε : (τi, hi)→ (τi+1, hi+1) with the generating functions

Ski
ε (τi+1, hi) = τi+1hi +

ε ln ε

α(τi+1)
hi + Pki(τi+1).

Thus (τi, hi) shadows a trajectory of the scattering map F.
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Theorem 4.1 was proved in [4] by a different method. The complex case was not
considered in [4]. Then we use Theorem 2.4. The code is now a pair of sequences (ki, ni),
where the sequence ki ∈ K is arbitrary and 0 ≤ ni ≤ m0. The assertion is the same except
that (4.4a) is replaced by

∆τi =
ε| ln ε|
α(τi)

− 2πεni

β(τi)
+O(ε),

where O(ε) is bounded independent of ni.

Appendix

We have seen that for H = o(ε) the reduction (1.5) does not work. Let us discuss this
case briefly. The frozen system has a compact normally hyperbolic invariant manifold
N0 = {(z0(τ), τ) : τ ∈ T} in M × T. Hence for small ε there is a normally hyperbolic
compact invariant manifold

Nε = {(zε(τ), τ) : τ ∈ T}, zε(τ) = z0(τ) +O(ε).

By (1.3) we have H|Nε = H(zε(τ), τ) = O(ε2). Let us describe multibump trajectories
coming exponentially close to Nε.

Let {γk
τ}k∈K be a finite collection of families of transverse homoclinics of the frozen

system, and Pk(τ) = A(γk
τ) the Poincaré potentials. Take a discrete periodic set Tk ⊂ R

of nondegenerate critical points of Pk. Fix any

0 < δ < min{|t− s| : t, s ∈ ∪k∈KTk, t 6= s}.

A trajectory will correspond to a code which is a strictly increasing sequence (τi ∈ Tki)i∈Z.

Theorem A.1. Suppose that ε > 0 is sufficiently small. Then for any code (τi)i∈Z there exists a
unique trajectory γ(t) ∈ M, τ = τ0 + εt, such that for all i ∈ Z,

• d(γ(t), γki
τi (R)) ≤ Cε for |τ − τi| ≤ δ.

• d((γ(t), τ), Nε) ≤ e−C/ε for mini |τ − τi| ≥ δ.

Here C is a constant independent of ε and the code. Theorem A.1 was proved in [5]
by global variational methods for natural Hamiltonian systems under the assumption
that the homoclinics γk

τ are action minimizing but may be nontransverse. Under the
transversality assumption the proof is easier, see [9].

The multibump trajectory γ : R→ M shadows the infinite homoclinic chain (γki
τi )i∈Z

and comes exponentially close to the manifold Nε. Most of the time the energy E(t) =
O(ε2). At the critical points τ = τi the energy has spikes of order ε. The spikes are narrow
and rare: ∆ti = ε−1(τi+1 − τi) ∼ ε−1. There is no substantial chainge of energy as in
Theorem 4.1.
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