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A P2-P1 PARTIALLY PENALIZED IMMERSED FINITE

ELEMENT METHOD FOR STOKES INTERFACE PROBLEMS

YUAN CHEN AND XU ZHANG

Abstract. In this article, we develop a Taylor-Hood immersed finite element (IFE) method to
solve two-dimensional Stokes interface problems. The P2-P1 local IFE spaces are constructed

using the least-squares approximation on an enlarged fictitious element. The partially penalized
IFE method with ghost penalty is employed for solving Stoke interface problems. Penalty terms
are imposed on both interface edges and the actual interface curves. Ghost penalty terms are
enforced to enhance the stability of the numerical scheme, especially for the pressure approxima-

tion. Optimal convergences are observed in various numerical experiments with different interface
shapes and coefficient configurations. The effects of the ghost penalty and the fictitious element
are also examined through numerical experiments.

Key words. Stokes interface problem, immersed finite element method, fictitious element, least-
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1. Introduction

In this paper, we consider the steady-state Stokes interface problem in the two-
dimensional case. Let Ω ⊂ R2 be an open bounded domain that is separated into
Ω+ and Ω− by a smooth interface curve Γ. Consider the following Stokes equation
in the velocity-pressure-stress form

−∇ · σ(u, p) = f , on Ω+ ∪ Ω−,(1a)

∇ · u = 0, on Ω+ ∪ Ω−,(1b)

u = 0, on ∂Ω.(1c)

Here, f is given body force. u represents flow velocity field of an incompressible
fluid motion, and p denotes the pressure. σ(u, p) is the stress tensor defined by

(1d) σ(u, p) = 2νϵ(u)− pI

where the strain tensor ϵ(u) = 1
2 (∇u+(∇u)t). Across the interface Γ, the viscosity

coefficient ν(x) is discontinuous. Without loss of generality, we assume that ν is a
piecewise constant function as follows:

(1e) ν =

{
ν+, in Ω+,
ν−, in Ω−.

Across the interface Γ, the following jump conditions are enforced:

[[u]]Γ = 0, on Γ,(1f)

[[σ(u, p)n]]Γ = 0, on Γ,(1g)

where the jump [[w(x)]]Γ = w+(x)|Γ − w−(x)|Γ, and n is the unit normal vector
on Γ pointing from Ω− to Ω+.
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The Stokes equation is a linearization of the well-known Navier-Stokes equation.
Stokes interface problems often describe multiphase flow with jumps in velocity,
pressure, and physical parameters. Simulations of multiphase flow are widely ap-
plied in fields of fluid dynamics and biology. Examples of these applications include
water-oil flow, bubble column reactors, drug delivery, treatment of lung diseases,
and polymer blending and polymer electrolyte membrane fuel cell [28], etc.

PDE Interface problems, including aforementioned Stokes interface problem,
have attracted great attention among mathematicians, computational scientists and
engineers in the past decades. A wide variety of numerical methods, particularly fi-
nite element method (FEM), have been developed and matured for solving interface
problems. There are roughly two classes of FEM when it comes to interface prob-
lems, namely the fitted-mesh FEM and the unfitted-mesh FEM. The fitted-mesh
method, such as the conventional FEM, requires the solution mesh to be aligned
with the interface; otherwise, the convergence of the numerical method could be
compromised. However, this body-fitting restriction limits its applicability from
problems involving a moving interface, as the solution mesh needs to be regener-
ated at each time level. On the contrast, unfitted-mesh methods usually alleviate
or even eliminate the restriction on mesh. Structured meshes, such as Cartesian
meshes, are usually adopted to solve interface problems with nontrivial interface
shape. See Figure 1 for an illustration of a comparison of an unfitted Cartesian
mesh and a fitted-mesh with a circular interface. This property is particularly ad-
vantageous for moving interface problems [5, 27, 30]. Numerical methods falling to
this class include generalized FEM [7], extended FEM (XFEM) [15], CutFEM [23]
and immersed FEM (IFEM) [34], to name only a few.

Figure 1. Non-body fitting (left) and body-fitting (right) meshes.

The idea of immersed finite element method [34] is to locally modify the standard
FEM basis functions around the interface to satisfiy specific interface jump condi-
tions from the physical laws. Piecewise polynomials are developed as new basis
functions on all elements intersected by interfaces. Several literatures [11, 12, 26,
27, 31, 38, 44] expand this idea to multi-dimensional elliptic interface problems and
higher-order approximation. Due to the discontinuity of IFE functions across the el-
ement boundaries, a partially penalized immersed finite element method (PPIFEM)
was proposed in [36] as an improvement of classical IFEM. The authors added
penalty terms on interface-intersected edges to the IFE scheme to enhance its sta-
bility. Many research papers on IFEM follow this idea in the recent years. For
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example, the PPIFEM has been applied to the elasticity equation [19], interface
problems with triple-junction points [13], higher-order approximations [6, 17], the
Helmholtz equation [20, 37] and the three-dimensional interface problems [18, 22],
parabolic interface problems [39] and hyperbolic interface problems [48]. An im-
proved a priori error estimation with lower regularity requirement was reported in
[21] and the a posteriori error estimation was developed in [25].

There are a few unfitted-mesh methods developed for Stokes interface problems,
such as CutFEM [24], Nitsche’s Extended FEM [45], Extended FEM [16], Fictitious
domain FEM [40, 42], immersed interface method [35]. Within the IFE framework,
[4] proposed an immersed discontinuous Galerkin method based on broken Q1-
Q0 element pair and applied the method in Stokes moving interface problem [5].
Recently [29] introduced a nonconforming IFE method based on broken CR-P0

and rotated Q1-Q0 pairs. A mixed conforming-nonconforming P1 IFE method for
unsteady moving-interface Stokes interface problems was introduced in [30].

So far, to the best of our knowledge, all the IFEMs for the Stokes interface prob-
lem focused on low-order approximations, i.e., P1 or Q1 approximation for velocity
and P0 approximation for pressure. Classical Taylor-Hood Pk-Pk−1 finite element
(k > 1) [9, 43] has not been explored in the immersed finite element framework.
The major obstacle is to construct a broken high-order immersed finite element
space based on actual interface curve together with interface conditions involving
both velocity and pressure on actual interface. For high-order IFE approximations,
most attempts focus on elliptic interface problems. Some early work explored qua-
dratic and higher order method on linear [2] and quadratic interface [8]. In [3],
the authors enforced interface conditions using the L2 inner product defined on the
actual interface curve. Theoretical work of this method has not been developed
including existence of basis functions. In [17], the authors proposed a high-order
IFE space for elliptic interface problem constructed by locally solving a Cauchy
problem. To handle the heavily coupled interface conditions of Stokes interface
problem, we adopt the idea from least-squares high-order IFEM [6, 49] which en-
forces interface conditions on basis functions in a least-squares sense. The existence
of the IFE shape functions is guaranteed by the nature of least squares.

Another concern in Stokes interface problems is the ill-conditioning of the linear
system of the saddle-point problem. To overcome this issue, we follow the idea
of ghost penalty [10] which is applied in XFEM [33, 32], Nitsche’s method [46],
CutFEM [14, 24, 41] for solving Stokes interface problems. The technique is also
a necessary ingredient in theoretically estabilishing the inf-sup conditions of the
aforementioned methods. The basic idea is to add extra stabilization terms on edges
cut by the interface or boundary in order to control the jump of discrete polynomials
in a least-squares sense. We include ghost penalty terms of both velocity and
pressure in our weak formulation. Numerical examples are provided to demonstrate
the necessity of these terms.

In this paper, we propose a high-order Taylor-Hood IFE method. The method
uses piecewise P2 approximation for the velocity and piecewise P1 approximation for
the pressure. A least-squares technique is defined on actual interface to weakly en-
force the coupled interface jump conditions and incompressibility conditions. Prop-
erties of the Taylor-Hood IFE basis functions, such as the existence of the basis
functions, and the their approximation capability are analyzed. The IFE functions
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are used in a partially penalized IFE scheme with ghost penalty for solving the
Stokes interface problems.

The rest of this paper is organized as follows. In Section 2, we construct the
vector-valued IFE spaces based on least-squares and investigate some basic prop-
erties of the new IFE spaces. In Section 3, we present the partially penalized IFE
method with ghost penalty for solving Stokes interface problems. In Section 4, we
provide several numerical examples to demonstrate the performance of this method.
A brief conclusion is given in Section 5.

2. Immersed Taylor-Hood Finite Element Spaces

In this section, we first introduce some basic notations and assumptions, and
then construct the P2-P1 IFE space based on the least-squares framework.

2.1. Notations and Preliminaries. Assume from now on that Ω is a polygonal
domain, and Th is a regular triangulation independent of the location of the inter-
face. Denote by Nh and Eh the set of nodes and edges of the mesh Th, respectively.
Let T i

h = {T ∈ Th : T ∩ Γ ̸= ∅} be the collection of interface elements. The col-
lection of non-interface elements are denoted by T n

h = Th\T i
h . Similarly, we define

E i
h = {e ∈ Eh, e ∩ Γ ̸= ∅} and En

h = Eh\E i
h to be the set of interface edges and

non-interface edges, respectively. The set of interior edges and boundary edges are
denoted by E̊h and Eb

h, respectively. Regarding the regularity of the interface and
mesh requirement, we employ similar hypotheses as stated in [6]:

(H1) The interface Γ cannot intersect an edge of any element at more than two
points unless the edge is part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection
points must be on different edges of this element.

(H3) The interface Γ is a piecewise C2 function, and the mesh Th is formed such
that on every interface element T ∈ T i

h , Γ ∩ T is C2.

Associated with each edge e ∈ Eh, a unit normal vector ne is assigned. For each
internal edge e ∈ E̊h shared by two elements, denoted by Te,1 and Te,2, the normal
ne is pointing from Te,1 to Te,2. For a scalar function w or a vector-valued function
w defined on Te,1 ∪ Te,2, we define the jump and average to be

[[w]]e = w|Te,1 − w|Te,2 , {{w}}e =
1

2
(w|Te,1 + w|Te,2),

[[w]]e = w|Te,1 −w|Te,2 , {{w}}e =
1

2
(w|Te,1 +w|Te,2).

(2)

For each boundary edge e ∈ Eb
h, the normal ne is the unit outward normal vector.

The definitions of the jump and the average are carried over as follows

(3) [[w]]e = {{w}}e = w, [[w]]e = {{w}}e = w, ∀ e ∈ Eb
h.

For simplicity, we sometimes omit the subscript from the notations of jump and
average if there were no confusion on where these jump and average are defined.
For each interface element T ∈ T i

h , we denote γT = Γ ∩ T . The collection of these
curved segments of the interface Γ is denoted by F i

h = {γT : T ∈ T i
h}. The union

of interface edges and interface segments in denoted by Mi
h = E i

h ∪ F i
h.



124 Y. CHEN AND X. ZHANG

On a subdomain Ω̃ ⊂ Ω, let W k,p(Ω̃) be the standard Sobolev space with the

associated norm denoted by ∥ · ∥Wk,p(Ω̃). If Ω̃∩Γ ̸= ∅, we denote Ω̃s := Ω̃∩Ωs, s =

+,−. The broken Sobolev spaces on Ω̃ for k ≥ 2 are defined by

PW k,p(Ω̃) = {v ∈W 1,p(Ω̃) : v|Ω̃± ∈ [W k,p(Ω̃±)},(4)

PWk,p(Ω̃) = {v ∈ [W 1,p(Ω̃)]2 : v|Ω̃± ∈ [W k,p(Ω̃±)]2},(5)

equipped the norms
(6)
∥v∥p

PWk,p(Ω̃)
= ∥v∥p

Wk,p(Ω̃+)
+∥v∥p

Wk,p(Ω̃−)
, ∥v∥p

PWk,p(Ω̃)
= ∥v∥p

Wk,p(Ω̃+)
+∥v∥p

Wk,p(Ω̃−)
.

When p = 2, the spaces PW k,2(Ω̃) and PWk,2(Ω̃) are simplified to be PHk(Ω̃) and

PHk(Ω̃), respectively. Moreover, we define the following space that incorporates
the Stokes interface jump conditions (1f) - (1g)

U(Ω̃) ={(v, q) ∈ PH2(Ω̃)× PH1(Ω̃) : [[v]]Γ∩Ω̃ = 0, [[σ(v, q)n]]Γ∩Ω̃ = 0}.(7)

When Ω̃ = Ω, we define a subspace of U(Ω) by

(8) Ů(Ω) = {(v, q) ∈ U(Ω) :
∫
Ω

qdx = 0}.

2.2. Fictitious Elements. The extension of Pk-Pk−1 Taylor-Hood FEM to inter-
face elements requires the construction of high-order IFE shape functions. Unlike
the low-order IFE approximations, such as P1 or Q1 elements, the higher-order IFE
approximation is more sensitive to the relative location of the interface within an
element, meaning the interface cannot be too close to a vertex or one piece cannot
be too small comparing to the other piece; otherwise the linear system for determin-
ing the coefficient of the shape functions will be ill-conditioned. This phenomenon
has been reported in [1, 6, 17, 47, 49] for elliptic equations. An effective remedy is
to enlarge the physical interface element and construct the IFE shape function on
the new fictitious element, as shown in Figure 2. We adopt the fictitious element
idea in the construction of Stokes IFE functions.

Aλ
1

Aλ
2

Aλ
3

Dλ

Eλ

E
D

O

A1

A3

A2

1

Figure 2. An illustration of a fictitious element.

Given a bounded connected subset K ⊂ R2, we let

Kλ = {X ∈ R2 : ∃ Y ∈ K such that
−−→
OX = (1 + λ)

−−→
OY }
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be the homothetic image of K with respect to the homothetic center O and the
scaling constant λ. For each triangular interface element T ∈ T i

h , we set this
homothetic center to be its centroid and denote the homothetic image of element T
with respect to centroid with a scaling factor λ as Tλ. Then the extended interface
segment is denoted by γλT = Γ ∩ Tλ. We will use this fictitious element Tλ to
generate IFE basis functions. See Figure 2 for an illustration, in which △A1A2A3

is a regular triangle element, and △Aλ
1A

λ
2A

λ
3 is the fictitious element. The curve

D̃E is γT , and curve D̃λEλ is γλT in this case. Furthermore, we state two additional
assumptions for the mesh Th:
(H4) The mesh is generated such that the interface can only intersect each in-

terface element T ∈ T i
h and its fictitious element Tλ at two distinct points

which locate on two different edges of T and Tλ.
(H5) There exists a fixed integer N such that for each K ∈ Th, the number of

elements in the set {T ∈ T i
h : K ∩ Tλ ̸= ∅} is bounded by N .

It has been shown that the smaller subelement of a fictitious element will not be too
small and the ratio over the larger subelement is bounded below by some positive
constant. More precisely, the following lemma holds.

Lemma 2.1. [49] For a mesh fine enough and a generic interface curve, given any
interface element T and its fictitious element Tλ, λ ≤ 1.5, there exists a positive
constant C independent of the interface location such that

(9) r(Tλ) ≥
4λ2

9(1 + λ)2
− Ch

where r(Tλ) = min
s=+,−

{|T s
λ |/|Tλ|} with T s

λ = Tλ ∩ Ωs.

This feature enables us to construct the high-order IFE shape functions on each
fictitious element Tλ instead of the physical interface element T ∈ T i

h . More dis-
cussion and comparisons will be provided in Section 4.

2.3. Least-Squares P2-P1 IFE Functions. In this subsection, we construct the
IFE basis functions for the Stokes interface problem (1). The construction is per-
formed on the fictitious element as described above. Let T ∈ Th be a triangular
element with the vertices A1, A2, A3. Denote the midpoints of three edges of T by
A4, A5, and A6.

First, we recall the standard P2-P1 Lagrange vector-valued shape functions.
Let λi,T be the barycentric coordinate of triangle T such that λi,T (Aj) = δij ,
i, j = 1, 2, 3 where δij is the Kronecker delta function. Let ψi,T be the quadratic
Lagrange nodal basis functions on T such that ψi,T (Aj) = δij , i, j = 1, · · · , 6.
Then the vector-valued P2-P1 Taylor-Hood finite element shape functions ψi,T ,
1 ≤ i ≤ 15 can be written as

(10) ψi,T =

 ψi,T

0
0

 , 1 ≤ i ≤ 6, ψi,T =

 0
ψi−6,T

0

 , 7 ≤ i ≤ 12,

and

(11) ψi,T =

 0
0

λi−12,T

 , 13 ≤ i ≤ 15.



126 Y. CHEN AND X. ZHANG

To simplify the notations for further discussion, we define the nodes Nj , 1 ≤ j ≤ 15
counting multiplicity as follows

Nj = Aj , ∀ 1 ≤ j ≤ 6, Nj = Aj−6, ∀ 7 ≤ j ≤ 12, Nj = Aj−12, ∀ 13 ≤ j ≤ 15.

It can be easily verified that for 1 ≤ i ≤ 15:

ψi,T (Nj) = (δij , 0, 0), 1 ≤ j ≤ 6,

ψi,T (Nj) = (0, δij , 0), 7 ≤ j ≤ 12,

ψi,T (Nj) = (0, 0, δij), 13 ≤ j ≤ 15.

(12)

Let I = {1, 2, · · · , 15} be the index set, and define the polynomial space P(T ) :=
[P2(T )]

2 × P1(T ). The vector-value finite element space P(T ) can also be written
as

(13) P(T ) = span{ψi,T : i ∈ I}.
Now we construct the IFE function space on each interface triangle T ∈ T i

h where
T+ := T ∩ Ω+ and T− := T ∩ Ω−. The vector-valued IFE space is a subspace of

(14) P̃(T ) =
{
(v, q) : (v, q)|T+ ∈ P(T+) and (v, q)|T− ∈ P(T−)

}
which incorporates the interface jump conditions (1f) - (1g). To do this, we split
the index set I into I+ := {i ∈ I, Ni ∈ T+} and I− := {i ∈ I, Ni ∈ T−}. Define
the tensor product space S(T ) := P(T ) × P(T ) and its basis functions ξi,T , ηi,T
where

(15) ξi,T =

{
(ψi,T ,0) , if i ∈ I+

(0,ψi,T ) , if i ∈ I−,
ηi,T =

{
(0,ψi,T ) , if i ∈ I+,
(ψi,T ,0) , if i ∈ I−.

Apparently, the piecewise polynomial space P̃(T ) is isomorphic to the tensor-

product space S(T ) due to the following one-to-one mapping HT : S(T ) 7→ P̃(T ):

(16) HT (w1,w2) =

{
w1, on T

+

w2, on T
−,

∀(w1,w2) ∈ S(T ).

Then we let V1 = span{ξi,T , i ∈ I}, V2 = span{ηi,T , i ∈ I}. The tensor product
function ϕT ∈ S(T ) can be written as

(17) ϕT =
∑
i∈I

viξi,T +
∑
i∈I

ciηi,T

where vi is nodal value at Ni, i ∈ I. It is easy to see the shape function (17) is
constructed by two parts: ξi,T contribute to nodal values, and ηi,T are constructed
to fit interface conditions as we state in the following.

We enforce the interface conditions in constructing our local IFE shape function
in a weak sense. Define a bilinear functional Jλ: S(T ) × S(T ) → R to measure
local basis function’s fitness of Stokes interface condition as follows

Jλ((u, p), (v, q)) = ω0

∫
γλ
T

[[u]] [[v]] ds+ ω1h
2

∫
γλ
T

[[∇ · u]] [[∇ · v]] ds

+ ω2h
2

∫
γλ
T

[[σ(u, p)n]] [[σ(v, q)n]] ds

+ ω3h
4

∫
γλ
T

[[∇ · σ(u, p)]] [[∇ · σ(v, q)]] ds+ ω4h
2

∫
γλ
T

[[p]] [[q]] ds.

(18)
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Here, ωi > 0, i = 0, 1, 2, 3, 4 are weights of the least-squares functional. The scaling
factor h in each term is to balance these weights. It can be seen that the bilinear
form Jλ is symmetric and positive semi-definite. We define |ϕ|Jλ

=
√
Jλ(ϕ,ϕ) to

be a semi-norm on S(T ).
We consider function space

(19) V⊥
2 = {(u, p) ∈ S(T ), Jλ((u, p), (v, q)) = 0, ∀(v, q) ∈ V2}

which is the orthogonal complement of V2 in sense of Jλ. Elements in V⊥
2 are

enforced with interface conditions in the least-squares sense.
Following this idea, the calculation of the unknown vector c = (c1, c2, · · · , c|I|) is

by expressing every ϕT ∈ S(T ) in the form of (17), then we obtain a linear system
for solving c by the definition of V⊥

2 :

(20) Ac = −Bv

where
(21)

Aij = (Jλ (ηj,T ,ηi,T ))i,j∈I ∈ R|I|×|I|, Bij = (Jλ (ξj,T ,ηi,T ))i,j∈I ∈ R|I|×|I|.

Finally, we construct the Lagrange IFE local basis functions ϕi,T , i ∈ I on
T ∈ T i

h by letting v be the the canonical vector ei, 1 ≤ i ≤ |I|:

ϕi,T = HT (ϕT |ei,ci),(22)

here ci is solved by Aci = −Bei.
A comparison of a standard P2-P1 Taylor-Hood finite element shape function

ψ3,T and our P2-P1 IFE shape function ϕ3,T is provided in Figure 3. We can
see that the second velocity component and the pressure component of the IFE
basis function are not entirely zero as in the standard Taylor-Hood basis. This
is due to the stress jump condition (1g) in which the velocity and pressure terms
are coupled together. Similar features have been observed in other vector-valued
IFE functions for Stokes equation [4, 29, 30] and the elasticity equation [19, 38].
Moreover, we notice that the IFE basis functions are generally discontinuous even
though each shape function is constructed to satisfy the continuous jump conditions
in the least-squares sense [6].

The local FE/IFE space on T ∈ Th can be formed as

(23) Sh(T ) =

{
span{ψi,T , i ∈ I} if T ∈ T n

h ,

span{ϕi,T , i ∈ I} if T ∈ T i
h .

The global IFE space Sh(Ω) is defined by
(24)
Sh(Ω) =

{
(u, p) ∈ [L2(Ω)]3 : (u, p) satisfies the following conditions (C1)-(C4)

}
.

(C1): (u, p)|T ∈ Sh(T ), for all T ∈ Th.
(C2): (u, p) is continuous on every non-interface edge e ∈ En

h .
(C3): u is continuous at all vertices and midpoints of T ∈ Th.
(C4): p is continuous at all vertices of T ∈ Th.



128 Y. CHEN AND X. ZHANG

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

Figure 3. Top (from left): Standard FE shape function ψ3,T for
u1, u2 and p. Bottom (from left): the IFE shape function ϕ3,T for
u1, u2 and p with the coefficients (µ+, µ−) = (10, 1).

Then local interpolation operator Ih,T : U(T ) 7→ Sh(T ) is defined by:

Ih,T (u, p) =
6∑

i=1

u1(Ni)ψi,T +
12∑
i=7

u2(Ni)ψi,T +
15∑

i=13

p(Ni)ψi,T , if T ∈ T n
h ,(25)

Ih,T (u, p) =
6∑

i=1

u1(Ni)ϕi,T +
12∑
i=7

u2(Ni)ϕi,T +
15∑

i=13

p(Ni)ϕi,T , if T ∈ T i
h .(26)

The global interpolation operator Ih : U(Ω) 7→ Sh(Ω) is:

(27) Ih(u, p)|T = Ih,T (u, p), ∀ T ∈ Th.

2.4. Properties of IFE Spaces. In this section, we introduce some properties
of the new IFE space. First we prove the existence of the IFE function for any
configuration of interface location and coefficients.

Theorem 2.1 (Existence of IFE Function). On each interface element T ∈ T i
h ,

there exists at least one solution to the linear system (20).

Proof. To prove the linear system (20) has at least a solution is equivalent to prove
Ker(A) ⊆ Ker(B). This is to say Bm = 0 whenever Am = 0 for any vector v.
Suppose this is not true, then there exists a vector m0 such that Am0 = 0 but
Bm0 ̸= 0. Let n0 to be a vector such that n0

TBm0 < 0, set ϕ0,T = ϕ|ϵn0,m0

where ϵ is a constant larger than 0. We have

Jλ(ϕ0,T ,ϕ0,T ) =(ϵn0)
TC(ϵn0) + 2(ϵn0)

TBm0 +m0
TAm0

=ϵ2n0
TCn0 + 2ϵn0

TBm0.
(28)

Here Cij = (Jλ (ξi,T , ξj,T ))i,j∈I ∈ R|I|×|I|. Let ϵ < −2n0
TBm0/n0

TCn0, then

we obtain Jλ(ϕ0,T ,ϕ0,T ) < 0 which contradicts with the semi-positive definiteness
of Jλ(·, ·). �



P2-P1 PARTIALLY PENALIZED IFEM FOR STOKES INTERFACE PROBLEM 129

Theorem 2.2 (Least-Squares Best Approximation). On each interface element
T ∈ T i

h , the local IFE function ϕT = ξT +ηT minimizes the least squares functional
(18), i.e.,

(29) |ξT + ηT |Jλ
= min

ζT∈V2

|ξT + ζT |Jλ
.

Proof. Note that every local IFE function can be written as following form:

(30) ϕT = ξT + ζT

where ξT ∈ V1, ζT ∈ V2. Then following a standard procedure, we have

|ξT + ζT |2Jλ
− |ξT + ηT |2Jλ

=|ξT + ζT + ηT − ηT |2Jλ
− |ξT + ηT |2Jλ

=|ζT − ηT |2Jλ
+ 2Jλ(ξT + ηT , ζT − ηT ).

(31)

Since ζT − ηT ∈ V2, ξT + ηT ∈ V⊥
2 , so Jλ(ξT + ηT , ζT − ηT ) = 0. So we obtain

(32) |ξT + ζT |2Jλ
− |ξT + ηT |2Jλ

= |ζT − ηT |2Jλ
≥ 0.

�

The above theorem shows that our choice of c is the optimal choice for |ϕT |Jλ

for given nodal values v, gauged by the semi-norm | · |Jλ
that measures the fitness

of interface conditions.
The approximation capability of the new IFE space is investigated numerically

in Section 4 through the interpolation error analysis. Let

uI,1 = (Ih(u, p))1, uI,2 = (Ih(u, p))2, pI = (Ih(u, p))3.

We observe that the interpolation errors obey

(33) ||uI,k − uk||L2(Ω) + h|uI,k − uk|H1(Ω) ≤ O(h3), k = 1, 2,

and

(34) ||pI − p||L2(Ω) + h|pI − p|H1(Ω) ≤ O(h2).

3. PPIFEM with Ghost Penalty

We propose the partially penalized IFE method with ghost penalty for Stokes
interface problem as follows. Find (uh, ph) ∈ Sh(Ω) such that

(35)

{
A (uh,vh) +B (vh, ph) + Ju(uh,vh) = L (vh) ,
B (uh, qh)− Jp(ph, qh) = 0,

∀ (vh, qh) ∈ Sh(Ω),
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where the bilinear forms A(·, ·), B(·, ·) and the linear form L(·) are defined by

A(u,v) =

∫
Ω

2νϵ(u) : ϵ(v)dx−
∑
e∈Ei

h

∫
e

{{2νϵ(u)n}} · [[v]] ds

+ ϵ0
∑
e∈Ei

h

∫
e

{{2νϵ(v)n}} · [[u]]

+
σ0
e

|e|
∑
e∈Ei

h

∫
e

[[u]] · [[v]] ds−
∑
T∈T i

h

∫
γT

{{2νϵ(u)n}} · [[v]] ds

+ ϵ1
∑
T∈T i

h

∫
γT

{{2νϵ(v)n}} · [[u]] + σ1
e

hT

∑
T∈T i

h

∫
γT

[[u]] · [[v]] ds,

B(v, p) =−
∫
Ω

p∇ · vdx+
∑
e∈Ei

h

∫
e

{{pn}} [[v]] ds+
∑
T∈T i

h

∫
γT

{{pn}} [[v]] ds,

L(v) =

∫
Ω

f · vdx.

(36)

The ghost penalty terms in (35) are defined as:

Ju(u,v) =
∑

e∈Mi
h

∑
1≤j≤k

σu,jh
2j−1
T

∫
e

{{ν}}
[[
∂jnu

]]
:
[[
∂jnv

]]
ds,

Jp(p, q) =
∑

e∈Mi
h

∑
0≤j≤k

σp,jh
2j+1
T

∫
e

{{ν}}−1 [[
∂jnp

]]
·
[[
∂jnq

]]
ds.

(37)

In (36)-(37), σ0
e , σ

1
e , σu,j and σp,j are penalty parameters. The integer k in ghost

penalty terms refers to the order of polynomials (e.g. for the P2-P1 element, k = 2
in Ju and k = 1 in Jp). The parameter ϵ0 may take the value −1 or 0 or 1 which
refers to the symmetric, incomplete and non-symmetric partially penalized IFEM,
respectively [36].

In A(u,v), we add partially penalized terms on both interface edges and the
interface itself. Approximating functions are not guaranteed to be continuous across
interface elements. The aim of adding penalty terms is to impose the continuity of
approximation and ensure that the coercivity [36]. Several research of IFEM have
verified effectiveness of this technique, including immersed DG method for Stokes
interface problem [4, 5]. Apart from the edge penalty, we add penalty terms on
interface as well, since continuity of basis function inside the element cannot be
guaranteed in our least-squares approximation space. This idea has been employed
in [1, 6, 17]. In the numerical examples, we take corresponding parameters of
penalty on edges same as parameters of penalty on interface. Similar weak forms
are also proposed for imposing continuity within the interface elements for high-
order PPIFE for the elliptic equations [1, 17].

In our numerical scheme, the ghost penalty terms Ju(uh,vh) and Jp(ph, qh)
are added for stabilization. Similar to partially penalized terms, the objective of
adding these terms is to control discontinuous polynomials around the interface.
The operators defined in (37) try to minimize the inter-element normal derivative
jumps ∂nu and ∂np. Different orders are weighted with a proper scaling of h for
consistency. Moreover, several methods for Stokes interface problems mention that
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Jp(ph, qh) is necessary for proving inf-sup stability such as XFEM [32], Nitsche’s
method [46] and Cut-FEM [14, 24, 41]. The term Ju(uh,vh) will serve for improving
the coercivity when the interface cuts the boundary of the domain [24]. Although
the set of edges we stabilize is slightly different from methods above, we believe
these terms would achieve similar effect which could be also revealed from our
numerical examples in the following section.

4. Numerical Experiments

In this section, we provide three classes of numerical experiments. The first
one (Examples 4.1 and 4.2) is a convergence test of both interpolations and IFE
solutions in two different interface shapes. The second test (Example 4.3) focuses
on the effect of the ghost penalty for IFE schemes. The third test (Example 4.4)
demonstrate the advantages of the fictitious element over the actual element when
the interface is close to vertices.

In our numerical experiments, we use a family of Cartesian triangular meshes
{Th} of Ω. These meshes are generated by first partitioning Ω into N ×N standard
uniform squares, and then each square is further partitioned by its diagonal with
negative slope. The mesh size h is defined to be 2/N . To compute the least-squares
IFE basis functions, we set ω0 = max(ν+, ν−), ω1 = 1, ω2 = 1, ω3 = 1, ω4 =
100max(ν+, ν−) for weights of bilinear form (18). The interface cut each interface
triangle into two curved polygons. Numerical quadratures on curve segments and
on curved polygons are performed by a proper mapping into line segment and
standard triangles. The numerical quadratures on curves and curved domains has
been reported in [3].

Example 4.1. In this example, we test accuracy and convergence of the PPIFE
method with ghost penalty. We first consider the straight line interface Γ = {(x, y) ∈
Ω : 2x + y − c = 0} which separates the domain Ω = (−1, 1) × (−1, 1) into Ω+ =
{(x, y) ∈ Ω : 2x+ y − c > 0} and Ω− = {(x, y) ∈ Ω : 2x+ y − c < 0}. Here we let

c =
√
2. The exact solution u and p are defined as follows

u =


(

(2x+ y − c)3/(2ν+)
−(2x+ y − c)3/ν+

)
, in Ω+,(

(2x+ y − c)3/(2ν−)
−(2x+ y − c)3/ν−

)
, in Ω−,

and
p = ex − ey.

The interpolation error is shown in Tables 1 and 2. The data obey the expected
convergence rates (33)-(34). We also notice that the interpolation functions are
identical regardless the coefficient values for ωi, i = 0, 1, 2, 3, 4 for this linear inter-
face case. For the PPIFE method, we use the symmetric weak formulation. We
take σ1

e = σ0
e = 1500, σu,1 = 0, σp,0 = σp,1 = 1 in our experiments. Computational

results for IFE solutions are listed in Table 3 and 4. We test convergence perfor-
mance of the IFE method for both small and large jumps, i.e., (ν+, ν−) is set to be
(10, 1) and (1000, 1), respectively. All data indicate that IFE solutions obey

(38) ||uh,k − uk||L2(Ω) + h|uh,k − uk|H1(Ω) ≤ O(h3), k = 1, 2,

and

(39) ||ph − p||L2(Ω) + h|ph − p|H1(Ω) ≤ O(h2).
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An illustration of IFE solution with both jumps is given in Figure 4. In the dia-
grams, the background is a contour plot of pressure values. The stream lines are
curves tangent to the velocity vector, the line thickness reflects the magnitude of
velocity vectors.

Table 1. Interpolation error of Example 4.1 with (10, 1) at λ = 1.0.

λ N ∥uI,1 − u1∥L2 order ∥uI,2 − u2∥L2 order ∥pI − p∥L2 order

1.0

10 9.15× 10−4 1.83× 10−3 8.36× 10−3

20 1.14× 10−4 3.00 2.28× 10−4 3.00 2.10× 10−3 1.99
40 1.43× 10−5 2.99 2.85× 10−5 3.00 5.25× 10−4 2.00
80 1.79× 10−6 3.00 3.57× 10−6 3.00 1.31× 10−4 2.00
160 2.23× 10−7 3.00 4.47× 10−7 3.00 3.28× 10−5 2.00

N |uI,1 − u1|H1 order |uI,2 − u2|H1 order |pI − p|H1 order

10 4.84× 10−2 9.68× 10−2 2.19× 10−1

20 1.21× 10−2 2.00 2.42× 10−2 2.00 1.10× 10−1 0.99
40 3.03× 10−3 2.00 6.06× 10−3 2.00 5.50× 10−2 1.00
80 7.59× 10−4 2.00 1.52× 10−3 2.00 2.75× 10−2 1.00
160 1.90× 10−4 2.00 3.80× 10−4 2.00 1.37× 10−2 1.01

Table 2. Interpolation error of Example 4.1 with (1000, 1) at λ = 1.0.

λ N ∥uI,1 − u1∥L2 order ∥uI,2 − u2∥L2 order ∥pI − p∥L2 order

1.0

10 9.06× 10−4 1.81× 10−3 8.36× 10−3

20 1.14× 10−4 2.99 2.27× 10−4 3.00 2.10× 10−3 1.99
40 1.42× 10−5 3.01 2.85× 10−5 2.99 5.25× 10−4 2.00
80 1.78× 10−6 3.00 3.57× 10−6 3.00 1.31× 10−4 2.00
160 2.23× 10−7 3.00 4.46× 10−7 3.00 3.28× 10−5 2.00

N |uI,1 − u1|H1 order |uI,2 − u2|H1 order |pI − p|H1 order

10 4.82× 10−2 9.64× 10−2 2.19× 10−1

20 1.21× 10−2 1.99 2.42× 10−2 1.99 1.10× 10−1 0.99
40 3.03× 10−3 2.00 6.05× 10−3 2.00 5.50× 10−2 1.00
80 7.58× 10−4 2.00 1.52× 10−3 1.99 2.75× 10−2 1.00
160 1.90× 10−4 2.00 3.79× 10−4 2.00 1.37× 10−2 1.01

Example 4.2. In this example, we test a curved interface, which has been used in
[4, 29, 30]. The domain Ω = (−1, 1)2 is split into Ω+ and Ω− by circular interface
Γ = {(x, y) ∈ Ω : x2 + y2 − r2 = 0}, where Ω+ = {(x, y) ∈ Ω : x2 + y2 − r2 > 0}
and Ω− = {(x, y) ∈ Ω : x2 + y2 − r2 < 0} with r2 = 0.3. The exact solution to this
Stokes equation is

u =


(

y(x2 + y2 − r2)/ν+

−x(x2 + y2 − r2)/ν+

)
, in Ω+(

y(x2 + y2 − r2)/ν−

−x(x2 + y2 − r2)/ν−

)
, in Ω−,
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Table 3. SPPIFE error of Example 4.1 with (10, 1) at λ = 1.0.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 9.64× 10−4 1.86× 10−3 4.85× 10−2

20 1.17× 10−4 3.04 2.31× 10−4 3.01 7.90× 10−3 2.62
40 1.45× 10−5 3.01 2.87× 10−5 3.01 1.27× 10−3 2.64
80 1.81× 10−6 3.00 3.59× 10−6 3.00 2.14× 10−4 2.57
160 2.24× 10−7 3.01 4.47× 10−7 3.01 2.71× 10−5 2.98

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 4.85× 10−2 9.66× 10−2 8.72× 10−1

20 1.21× 10−2 2.00 2.42× 10−2 2.00 2.71× 10−1 1.69
40 3.03× 10−3 2.00 6.06× 10−3 2.00 9.27× 10−2 1.55
80 7.59× 10−4 2.00 1.52× 10−3 2.00 3.63× 10−2 1.35
160 1.90× 10−4 2.00 3.80× 10−4 2.00 1.44× 10−2 1.33

Table 4. SPPIFE Error of Example 4.1 with (1000, 1) at λ = 1.0.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 9.54× 10−4 1.83× 10−3 5.73× 10−2

20 1.16× 10−4 3.04 2.29× 10−4 3.00 1.13× 10−2 2.34
40 1.44× 10−5 3.01 2.86× 10−5 3.00 2.19× 10−3 2.37
80 1.79× 10−6 3.01 3.58× 10−6 3.00 3.18× 10−4 2.78
160 2.23× 10−7 3.00 4.46× 10−7 3.00 7.19× 10−5 2.14

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 4.83× 10−2 9.62× 10−2 9.80× 10−1

20 1.21× 10−2 2.00 2.42× 10−2 1.99 3.65× 10−1 1.42
40 3.03× 10−3 2.00 6.06× 10−3 2.00 1.38× 10−1 1.40
80 7.59× 10−4 2.00 1.52× 10−3 2.00 4.48× 10−2 1.62
160 1.90× 10−4 2.00 3.79× 10−4 2.00 1.74× 10−2 1.36
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Figure 4. Stream Line of Example 2, Left: contrast (10,1), Right:
contrast (1000,1).

and

p =
1

10
(x3 − y3).
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We take σu,1 = σ1
e = σ0

e = 100, σp,0 = 1 and σp,1 = 0 in the weak form. The
IFE solution errors are listed in Table 7 and 8. Similar with linear interface case,
both small and large jumps are tested for this interface problem. An illustration
of curved interface case numerical results with small and large jump is shown in
Figure 5. As before, the interpolation and IFE solution converge optimally in both
L2 and H1 norms.

Table 5. Interpolation error of Example 4.2 with (10, 1) at λ = 1.0.

λ N ∥uI,1 − u1∥L2 order ∥uI,2 − u2∥L2 order ∥pI − p∥L2 order

1.0

10 3.38× 10−4 3.38× 10−4 3.56× 10−3

20 3.81× 10−5 3.15 3.81× 10−5 3.15 8.94× 10−4 1.99
40 4.82× 10−6 2.98 4.82× 10−6 2.98 2.24× 10−4 2.00
80 5.97× 10−7 3.01 5.97× 10−7 3.01 5.64× 10−5 1.99
160 7.45× 10−8 3.00 7.45× 10−8 3.00 1.44× 10−5 1.97

N |uI,1 − u1|H1 order |uI,2 − u2|H1 order |pI − p|H1 order

10 1.28× 10−2 1.28× 10−2 5.63× 10−2

20 3.08× 10−3 2.06 3.08× 10−3 2.06 2.83× 10−2 0.99
40 7.65× 10−4 2.01 7.65× 10−4 2.01 1.42× 10−2 0.99
80 1.91× 10−4 2.00 1.91× 10−4 2.00 7.15× 10−3 0.99
160 4.81× 10−5 1.99 4.81× 10−5 1.99 3.66× 10−3 0.97

Table 6. Interpolation error of Example 4.2 with (1000, 1) at λ = 1.0.

λ N ∥uI,1 − u1∥L2 order ∥uI,2 − u2∥L2 order ∥pI − p∥L2 order

1.0

10 3.27× 10−4 3.27× 10−4 3.56× 10−3

20 4.03× 10−5 3.02 4.03× 10−5 3.02 8.93× 10−4 2.00
40 4.69× 10−6 3.10 4.69× 10−6 3.10 2.24× 10−4 2.00
80 5.85× 10−7 3.00 5.85× 10−7 3.00 5.59× 10−5 2.00
160 7.31× 10−8 3.00 7.31× 10−8 3.00 1.40× 10−5 2.00

N |uI,1 − u1|H1 order |uI,2 − u2|H1 order |pI − p|H1 order

10 1.27× 10−2 1.27× 10−2 5.63× 10−2

20 3.22× 10−3 1.98 3.22× 10−3 1.98 2.83× 10−2 0.99
40 7.46× 10−4 2.11 7.46× 10−4 2.11 1.41× 10−2 1.01
80 1.89× 10−4 1.98 1.89× 10−4 1.98 7.07× 10−3 1.00
160 4.73× 10−5 2.00 4.73× 10−5 2.00 3.54× 10−3 1.00

Example 4.3. In this example, we test the effect of the ghost penalty terms to the
IFE solution, especially for the pressure. We set the pressure to be 0 (a simpler
case than Example 4.1) and test the scheme with and without the ghost penalty.
Here we use the straight line interface as in Example 4.1. The exact solution can
be written as:
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Table 7. SPPIFE error of Example 4.2 with (10, 1) at λ = 1.0.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 5.94× 10−4 5.94× 10−4 3.68× 10−2

20 5.43× 10−5 3.45 5.43× 10−5 3.45 4.62× 10−3 2.99
40 6.55× 10−6 3.05 6.55× 10−6 3.05 8.48× 10−4 2.45
80 6.56× 10−7 3.32 6.56× 10−7 3.32 1.11× 10−4 2.93
160 7.63× 10−8 3.10 7.63× 10−8 3.10 1.67× 10−5 2.73

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 1.37× 10−2 1.37× 10−2 4.47× 10−1

20 3.18× 10−3 2.11 3.18× 10−3 2.11 1.39× 10−1 1.69
40 8.15× 10−4 1.96 8.15× 10−4 1.96 5.67× 10−2 1.29
80 1.94× 10−4 2.07 1.94× 10−4 2.07 1.50× 10−2 1.92
160 4.78× 10−5 2.02 4.78× 10−5 2.02 5.21× 10−3 1.53

Table 8. SPPIFE error of Example 4.2 with (1000, 1) at λ = 1.0.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 8.88× 10−4 8.88× 10−4 1.48× 10−1

20 5.19× 10−5 4.10 5.19× 10−5 4.10 6.31× 10−2 1.23
40 7.81× 10−6 2.73 7.81× 10−6 2.73 7.98× 10−3 2.98
80 7.28× 10−7 3.42 7.28× 10−7 3.42 1.43× 10−3 2.48
160 7.78× 10−8 3.23 7.78× 10−8 3.23 2.82× 10−4 2.34

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 1.63× 10−2 1.63× 10−2 2.39× 10+0

20 3.35× 10−3 2.28 3.35× 10−3 2.28 1.76× 10+0 0.44
40 9.09× 10−4 1.88 9.09× 10−4 1.88 4.81× 10−1 1.87
80 2.02× 10−4 2.17 2.02× 10−4 2.17 2.02× 10−1 1.25
160 4.81× 10−5 2.07 4.81× 10−5 2.07 7.39× 10−2 1.45
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Figure 5. Stream Line of Example 1, Left: contrast (10,1), Right:
contrast (1000,1).

u =


(

(2x+ y − c)3/(2ν+)
−(2x+ y − c)3/ν+

)
, x ∈ Ω+(

(2x+ y − c)3/(2ν−)
−(2x+ y − c)3/ν−

)
, x ∈ Ω−,
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and
p = 0.

We present symmetric PPIFE results for this example with coefficients (10, 1) and
its flipped coefficients (1, 10) in Tables 9, 10, 11 and 12.

Table 9. SPPIFE Error of Example 4.3 with (10, 1) at λ = 1.0
with Ghost Penalty.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 9.62× 10−4 1.84× 10−3 3.55× 10−2

20 1.16× 10−4 3.05 2.29× 10−4 3.01 4.49× 10−3 2.98
40 1.43× 10−5 3.02 2.86× 10−5 3.00 5.55× 10−4 3.02
80 1.79× 10−6 3.00 3.58× 10−6 3.00 6.81× 10−5 3.03
160 2.24× 10−7 3.00 4.47× 10−7 3.00 9.15× 10−6 2.90

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 4.85× 10−2 9.66× 10−2 7.25× 10−1

20 1.21× 10−2 2.00 2.42× 10−2 2.00 1.80× 10−1 2.01
40 3.03× 10−3 2.00 6.06× 10−3 2.00 4.49× 10−2 2.00
80 7.59× 10−4 2.00 1.52× 10−3 2.00 1.12× 10−2 2.00
160 1.90× 10−4 2.00 3.80× 10−4 2.00 2.99× 10−3 1.91

Table 10. SPPIFE Error of Example 4.3 with (10, 1) at λ = 1.0
without Ghost Penalty.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 9.51× 10−4 1.85× 10−3 4.84× 10−2

20 1.16× 10−4 3.04 2.29× 10−4 3.01 6.36× 10−3 2.93
40 1.43× 10−5 3.02 2.86× 10−5 3.00 7.97× 10−4 3.00
80 1.81× 10−6 2.98 3.58× 10−6 3.00 4.34× 10−4 0.88
160 2.24× 10−7 3.01 4.47× 10−7 3.00 2.08× 10−5 4.38

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 4.85× 10−2 9.66× 10−2 9.25× 10−1

20 1.21× 10−2 2.00 2.42× 10−2 2.00 2.42× 10−1 1.93
40 3.03× 10−3 2.00 6.06× 10−3 2.00 6.76× 10−2 1.84
80 7.60× 10−4 2.00 1.52× 10−3 2.00 9.82× 10−2 -0.54
160 1.90× 10−4 2.00 3.80× 10−4 2.00 6.43× 10−3 3.93

In this simple case p ≡ 0, we observed a super-convergence phenomena similar
to standard Taylor-Hood finite element method. The IFE scheme without ghost
penalty performs unstably. Tables 10 and 12 provide two typical results. In Table
10 with coefficients set to be (10, 1), the convergence seems to be stable on coarse
grids, however, it deteriorates as meshes become finer. For coefficients set to be
(1, 10) in Table 12, numerical results of pressure are extremely unstable even at
coarse meshes.



P2-P1 PARTIALLY PENALIZED IFEM FOR STOKES INTERFACE PROBLEM 137

Table 11. SPPIFE Error of Example 4.3 with (1, 10) at λ = 1.0
with Ghost Penalty.

λ N ∥uh,1 − u1∥L2 order ∥uh,2 − u2∥L2 order ∥ph − p∥L2 order

1.0

10 4.90× 10−4 8.45× 10−4 3.70× 10−2

20 5.31× 10−5 3.21 1.03× 10−4 3.04 4.46× 10−3 3.05
40 6.50× 10−6 3.03 1.27× 10−5 3.02 5.64× 10−4 2.98
80 7.92× 10−7 3.04 1.58× 10−6 3.01 7.59× 10−5 2.89
160 1.00× 10−7 2.99 1.99× 10−7 2.99 1.18× 10−5 2.69

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 2.19× 10−2 4.26× 10−2 7.16× 10−1

20 5.39× 10−3 2.02 1.07× 10−2 1.99 1.78× 10−1 2.01
40 1.34× 10−3 2.01 2.67× 10−3 2.00 4.47× 10−2 1.99
80 3.34× 10−4 2.00 6.68× 10−4 2.00 1.13× 10−2 1.98
160 8.41× 10−5 1.99 1.68× 10−4 1.99 3.23× 10−3 1.81

Table 12. SPPIFE Error of Example 4.3 with (1, 10) at λ = 1.0
without Ghost Penalty.

λ N ∥u1h − u1∥L2 order ∥u2h − u2∥L2 order ∥ph − p∥L2 order

1.0

10 5.15× 10−4 8.49× 10−4 6.02× 10−2

20 8.67× 10−4 -0.75 9.61× 10−4 -0.18 3.94× 10−1 -2.71
40 1.01× 10−5 6.42 1.50× 10−5 6.00 6.05× 10−3 6.03
80 6.22× 10−6 0.70 4.66× 10−6 1.69 1.04× 10−2 -0.78
160 1.00× 10−7 5.96 1.99× 10−7 4.55 3.79× 10−5 8.10

N |uh,1 − u1|H1 order |uh,2 − u2|H1 order |ph − p|H1 order

10 2.20× 10−2 4.24× 10−2 1.35× 10+0

20 2.26× 10−2 -0.04 3.72× 10−2 0.19 2.19× 10+1 -4.02
40 1.46× 10−3 3.95 2.80× 10−3 3.73 6.33× 10−1 5.11
80 1.43× 10−3 0.03 1.03× 10−3 1.44 2.62× 10+0 -2.05
160 8.41× 10−5 4.09 1.68× 10−4 2.62 1.37× 10−2 7.58

Example 4.4. In this example, we revisit the Example 4.2 to examine the perfor-
mance of fictitious element mentioned in Section 2.2. A triangular element with the
size h = 0.1 is intersected by a circular interface with varying radiuses which are
illustrated in Figure 6. When the interface intersects elements with small segments,
the condition number of A, denoted as κA, blows up, as reported in Table 13. This
phenomenon can be alleviated by introducing the fictitious elements, see Table 13
and 14 for comparisons.

From the results, we find that when the interface segment within an element
is small, the magnitude of condition number of A could be as large as 1016 at
moderate contrast (10, 1). The magnitude becomes even larger in higher contrast
case (1000, 1), which reaches a magnitude of 1020. When we use fictitious elements
by setting λ = 0.5, 1.0, 1.5, the condition number κA decreases significantly to a
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Figure 6. From Left to Right: First Line: Elements intersected
by circular interface with r2 = 0.24, 0.245, Second Line: Elements
intersected by circular interface with r2 = 0.249, 0.2495.

Table 13. Condition Numbers for A with coefficients (10, 1) and
varying λ in Example 4.4.

κA
λ = 0 λ = 0.5 λ = 1.0 λ = 1.5

r2 = 0.2400 5.9227E+10 4.2231E+08 4.1618E+07 8.1810E+06
r2 = 0.2450 1.3704E+12 1.1654E+09 8.7194E+07 1.5400E+07
r2 = 0.2490 1.1470E+15 2.8519E+09 1.6133E+08 2.5920E+07
r2 = 0.2495 1.9027E+16 3.2097E+09 1.7448E+08 2.7679E+07

magnitude of 106 when the contrast being (10, 1), and 1011 for the contrast being
(1000, 1).

5. Conclusion

In this article, we develop a high-order numerical scheme to solve Stokes interface
problems on interface-unfitted meshes. An immersed P2-P1 Taylor-Hood finite
element space is developed based on least square construction on fictitious elements.
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Table 14. Condition Numbers for A with coefficients (1000, 1)
and varying λ in Example 4.4.

κA
λ = 0 λ = 0.5 λ = 1.0 λ = 1.5

r2 = 0.2400 2.2326E+14 1.6353E+12 2.0103E+11 6.4952E+10
r2 = 0.2450 6.2710E+15 5.3336E+12 4.1596E+11 1.0124E+11
r2 = 0.2490 5.9345E+18 1.4701E+13 8.3261E+11 1.5309E+11
r2 = 0.2495 9.9791E+19 1.6768E+13 9.1080E+11 1.6218E+11

The proposed IFE method contains penalties on both interface edges and the actual
interface. Ghost penalty terms are also enforced to enhance the stability of the
numerical scheme. Numerical results indicate optimal convergence rate of our new
IFE method.
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