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EVALUATION OF CURVES AND SURFACES BY METHODS

BASED ON DIFFERENTIAL EQUATIONS AND CAGD
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Abstract. For the evaluation of free-form polynomial and trigonometric curves and surfaces, sev-
eral Taylor methods and two new methods (DP and DT) motivated by Computer Aided Geomet-

ric Design (CAGD) have been considered. Their accuracy and computational costs are compared
through numerical examples. In the polynomial case they are also compared with the most used
evaluation algorithms.
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1. Introduction

The design of free-form curves and surfaces through a set of control points and
a blending system of basis functions is a usual tool in the fields of computer aided
design, computer aided manufacturing, geometric modeling or computer graphics.
Among the blending bases of univariate functions, we can mention the Bernstein
basis of polynomials (see Section 3), the B-splines or the rational Bernstein basis
(see [9], [13]). All these bases are examples of normalized B-bases, which are the
bases with optimal shape preserving properties of their corresponding spaces (see
[2]). Normalized B-bases have also been found for spaces containing other types
of functions, such as exponential, trigonometric or hyperbolic functions, which are
also useful in many applications (cf. [10], [11], [12], [14], [16], [17], [18], [23], [26]).

The de Casteljau and the rational de Casteljau algorithms are stable algorithms
for the evaluation of polynomial or rational Bézier curves and surfaces and present
additional advantages over other known evaluation algorithms (cf. [9], [3]). How-
ever, for the spaces mentioned at the end of the previous paragraph, algorithms
with similar advantages to those of the de Casteljau algorithm have not been found.
These and other spaces useful in CAGD (computer aided geometric design) satisfy
that their basis functions are the solutions of linear differential systems. In [24] it
was shown that typical numerical methods for solving the differential systems (as
the Taylor method or the implicit midpoint scheme) can be used to evaluate free-
form curves and also to evaluate tensor-product surfaces, which can be generated
by evaluating a series of isoparametric curves at a grid of points.

A first goal of our paper is the comparison of the accuracy and computational
cost of several dynamic methods related with Taylor method for evaluating algebraic
and trigonometric polynomials. In the polynomial case, we consider randomly
generated polynomials and Wilkinson’s polynomials, and we also compare these
methods with the most efficient evaluation methods (see [4], [5]). A second goal
of this paper is the presentation of two new evaluation methods for algebraic and
trigonometric polynomials, which are called DP (direct polynomial) and DT (direct
trigonometric), respectively. Both methods use the normalized B-basis of their
corresponding space and perform a direct evaluation, computing the basis functions

Received by the editors March 26, 2019 and, in revised form, October 10, 2020.

2000 Mathematics Subject Classification. 65D17, 65D25, 65L05.

1



2 J. DELGADO AND J.M. PEÑA

in a nested way. The nice behavior of these algorithms is illustrated by numerical
examples.

The paper is organized as follows. Section 2 presents several Taylor methods for
evaluation. Section 3 presents the evaluation methods for algebraic polynomials and
contains the numerical examples comparing them. The corresponding evaluation
methods and numerical examples for trigonometric polynomials are presented in
Section 4. Finally, Section 5 summarizes the main conclusions of the paper and
considers a future work.

2. Evaluations of functions by solving system of linear differential equa-
tions

Let us consider representations given by

(1) f(t) =
n∑

i=0

c0i ui(t), t ∈ [a, b],

where (c0i)
n
i=0 is a sequence of real numbers and (u0, u1, . . . , un) is a basis of a

linear space of functions Ω.
If u′

i ∈ Ω for all i = 0, 1, . . . , n, then f(t) can be evaluated by solving a system of
linear differential equations according to [24]. Let us recall this method. If u′

i ∈ Ω
for all i then there exists a matrix R = (rij)0≤i,j≤n such that

(2)
d

dt


u0

u1

...
un

 = R


u0

u1

...
un

 .

Differentiating (1) and taking into account the previous expression we obtain

f ′(t) =
n∑

i=0

c0i u
′
i(t) = (c00, . . . , c0n)

d

dt


u0

u1

...
un

 = (c00, . . . , c0n)R


u0

u1

...
un

 .

Let us choose (cij)
0≤j≤n
1≤i≤n such that the matrix C = (cij)0≤i,j≤n is nonsingular. Let

us define

(3) X(t) := (x0(t), x1(t), . . . , xn(t))
T = C (u0(t), . . . , un(t))

T , t ∈ [a, b].

We can observe that x0(t) = f(t). Differentiating the previous expression and using
(2) and (3) we obtain

X ′(t) := C
d

dt


u0(t)
u1(t)
...

un(t)

 = C R


u0(t)
u1(t)
...

un(t)

 .

Taking into account that C is nonsingular and denoting A := CRC−1 we derive
from the previous expression the following system of linear differential equations:

(4) X ′(t) = AX(t).

Let us recall that the first component of the solution of the previous system of
differential equations is x0(t) = f(t). So, each method to solve numerically a
system of differential equations can be used as a method to evaluate the function
f(t) in (1).
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In this paper we consider several Taylor methods for solving those systems.

2.1. Taylor methods. Now let us show how to obtain approximations to X(t) in
(3) at a mesh of points (ti)

K
i=1 given by ti = a+ i h, where h = b−a

K .
Let us consider the following initial value problem (IVP)

(5)

{
X ′(t) = AX(t), t ∈ [a, b]
X(a) = X0

.

The point X(ti+1) = X(ti + h) is computed by the usual Taylor method as a
truncation of the following series

X(ti+1) = X(ti + h) = X(ti) + hX ′(ti) +
h2

2!
X ′′(ti) + · · ·+ hs

s!
X(s)(ti) + · · ·

= X(ti) + hAX(ti) +
h2 A2

2!
X(ti) + · · ·+ hs As

s!
X(ti) + · · · .

For example, we consider the following approximation:

X(ti+1) ≈ Xi+1 :=
s∑

r=0

hr Ar

r!
Xi.

Therefore, the usual Taylor method to solve (5) can be expressed as:

(6) X(ti) ≈ Xi = Mh Xi−1, i = 1, . . . ,K, where Mh =
s∑

r=0

hrAr

r!
,

with A0 = I the identity matrix of order n + 1. From now on, we will call this
method Taylor 0. Let us mention that, in [25], a method for computing Mh with
no need of Taylor expansions has been presented.

Remark 2.1. Now let us analyze the computational cost of Taylor 0. First Mh

must be constructed and this has a computational cost of O
(
s(n+ 1)3

)
elementary

operations. Then, (6) must performed, which has a computational cost of O(K(n+
1)2). Hence, the computational cost of the Taylor 0 method for the evaluation of
K points of X(t) is of O

(
max

{
s(n+ 1)3,K(n+ 1)2

})
elementary operations.

A point X(ti) can also be approximated by solving the following IVP

(7)

{
X ′(t) = AX(t), t ∈ [a, b]
X(b) = XK

.

In this case, approximations to X(ti) can also be obtained by using the Taylor
technique as a truncation of the following series:

X(ti) = X(ti+1 − h)

= X(ti+1)− hX ′(ti+1) +
h2

2!
X ′′(ti+1) + · · ·+ (−1)s

hs

s!
X(s)(ti+1) + · · ·

=

∞∑
r=0

(−1)r
hr Ar

r!
X(ti+1).

Therefore, the previous expression gives an alternative Taylor method to approx-
imate the values of a parametric function (1) by solving (7) with the previous
formula. This method can be expressed in the following way

(8) X(ti) ≈ Xi = Nh Xi+1, i = K − 1, . . . , 1, 0, where Nh =
s∑

r=0

(−1)r
hr Ar

r!
.
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where Nh = I − hA + h2 A2

2! + · · · + (−1)s hs As

s! . From now on, we will call this
method Taylor 1.

Remark 2.2. Analogously to the case of Taylor 0, it can be checked that the com-
putational cost of the Taylor 1 method for the evaluation of K points of X(t) is of
O
(
max

{
s(n+ 1)3,K(n+ 1)2

})
elementary operations.

In [8] it was considered a two-point Hermite Taylor series expansion given by

(9) y(x) = (x− x1)
s
s−1∑
i=0

Bi

i!
(x− x2)

i + (x− x2)
s
s−1∑
i=0

Ai

i!
(x− x1)

i,

where

Ai =
di

dxi

[
f(x)

(x− x2)s

]
x=x1

and Bi =
di

dxi

[
f(x)

(x− x1)s

]
x=x2

,

for i = 0, 1, . . . , s − 1. In the following result, expressions for Ai’s and Bi’s are
stated, and a straightforward induction on i can be applied for the proof.

Proposition 2.3. The coefficients Ai and Bi of the two-point Hermite Taylor
series expansion (9) are given by

Ai =
1

(x1 − x2)s+i

i∑
k=0

(−1)k
(
i

k

)(
s− 1 + k

s− 1

)
k! (x1 − x2)

i−k y(i−k)(x1),

Bi =
1

(x2 − x1)s+i

i∑
k=0

(−1)k
(
i

k

)(
s− 1 + k

s− 1

)
k! (x2 − x1)

i−k y(i−k)(x2),

for i = 0, 1, . . . , s− 1.

The Taylor two-points method to solve the following problem

(10)

{
X ′(t) = AX(t)
X(a) = X0, X(b) = XK

can be expressed as follows:

X(ti) = (ti − a)s
s−1∑
r=0

Br

r!
(ti − b)r + (ti − b)s

s−1∑
r=0

Ar

r!
(ti − a)r,

where

Ar =
1

(a− b)s+r

r∑
k=0

(−1)k(a− b)r−k

(
r

k

)(
s− 1 + k

s− 1

)
k!Ar−kX0,

Br =
1

(b− a)s+r

r∑
k=0

(−1)k(b− a)r−k

(
r

k

)(
s− 1 + k

s− 1

)
k!Ar−kXK .

Remark 2.4. It can be observed that the problem (10) is overdetermined. But,
in the context of CAGD, it is usual that representations (1) satisfy the endpoint
interpolation property: f(0) = c00 and f(b) = c0n. Hence, both conditions X(a) =
X0 and X(b) = XK in (10) are a priori known and the solution to the problem
(10) is unique. The idea of the Taylor two-points method to solve (10) is taking
advantage of those two conditions.

Remark 2.5. It can be checked that the computational cost of the Taylor two-points
method for the evaluation of X(t) at K points is of O

(
max

{
s(n+ 1)4,K(n+ 1)2

})
elementary operations.
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3. Evaluation algorithms for polynomials

3.1. Horner algorithm. Let Pn be the space of polynomials of degree at most
n. Let us consider a polynomial p ∈ Pn, first represented in the power basis

(11) p(t) =
n∑

i=0

cit
i.

The most well known algorithm to evaluate the previous polynomial is the Horner
algorithm. The pseudocode of this algorithm can be seen in Algorithm 1.

Algorithm 1 Horner algorithm for the evaluation of p ∈ Pn at t

Require: t ∈ [0, 1] and (ci)
n
i=0

Ensure: res ≈
∑n

i=0 cit
i

res = cn
res = res · t+ cr, r = n− 1, . . . , 0

The Horner algorithm evaluates a polynomial of degree n with a computational
cost of order O(n).

3.2. De Casteljau algorithm. Let us consider a polynomial p ∈ Pn again, but
now represented in the Bernstein-Bézier form

(12) p(t) =
n∑

i=0

ci b
n
i (t), 0 ≤ t ≤ 1,

where bni (t) =
(
n
i

)
ti(1 − t)n−i, 0 ≤ i ≤ n, are the Bernstein polynomials of degree

n. This representation is often used in CAGD. In fact, the Bernstein basis is the
normalized B-basis of Pn on [0, 1] and so it has optimal shape preserving properties
(cf. [1], [2]). A polynomial in the Bernstein-Bézier form can be evaluated by the
de Casteljau algorithm, the VS algorithm, the DP algorithm and by the methods
in Section 2.

The de Casteljau algorithm is the most usual algorithm for the evaluation of
polynomial curves in CAGD (cf. [9]). It also presents advantages for subdivision,
degree elevation and degree reduction. The pseudocode corresponding to the de
Casteljau algorithm can be seen in Algorithm 2.

Algorithm 2 De Casteljau algorithm for the evaluation of p ∈ Pn at t

Require: t ∈ [0, 1] and (ci)
n
i=0

Ensure: res ≈
∑n

i=0 cib
n
i (t)

f0
j := cj , j = 0, . . . , n

fr
j = (1− t) · fr−1

j + t · fr−1
j+1 , j = 0, . . . , n− r, r = 1, . . . , n

res = fn
0

The de Casteljau algorithm evaluates a polynomial of degree n with a computa-
tional cost of order O(n2).
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3.3. VS algorithm. The VS algorithm was used in [20] for the evaluation of
multivariate polynomials. It is a nested algorithm whose univariate version uses a
basis (the VS basis) that coincides, up to scaling, with the Bernstein basis. The
VS basis (zn0 , z

n
1 , . . . , z

n
n) for Pn is given by

zni (t) = ti(1− t)n−i =
bni (t)(

n
i

) .

The pseudocode of the VS algorithm can be seen in Algorithm 3. It evaluates a
polynomial of Pn represented with the VS basis with a computational cost of order
O(n).

Algorithm 3 VS algorithm for the evaluation of p ∈ Pn at t

Require: t ∈ [0, 1] and (ci)
n
i=0

Ensure: res ≈
∑n

i=0 ciz
n
i (t)

if t ≥ 1
2 then

coc = 1−t
t

p0(t) = c0
pi(t) = coc pi−1(t) + ci for i = 1, . . . , n
res = pn(t) t

n

else
coc = t

1−t

pn(t) = cn
pn−i(t) = coc pn+1−i(t) + cn−i for i = 1, . . . , n
res = p0(t) (1− t)n.

end if

3.4. Evaluation of polynomials in Bernstein form by DP. It can be shown
that

bni+1(t) =
t

1− t
· n− i

i+ 1
· bni (t), i = 0, 1, . . . , n− 1, t ∈ [0, 1).

Taking into account the previous relation and that p(1) =
∑n

i=0 cib
n
i (1) = cn we

can derive Algorithm 4 for the evaluation of a polynomial of degree n (12), which
we call direct polynomial (DP) evaluation and uses the Bernstein-Bézier represen-
tation. Algorithm 4 evaluates (12) with a computational cost of order O(n). So, we

Algorithm 4 Direct polynomial (DP) algorithm for the evaluation of p ∈ Pn at t

Require: t ∈ [0, 1] and (ci)
n
i=0

Ensure: res ≈
∑n

i=0 cib
n
i (t)

if t < 1 then
b = (1− t)n

res = c0 b
for i = 1 : n do
b = n−i+1

i
t

1−tb
res = res+ ci b

end for
else
res = cn

end if
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have again an evaluation algorithm of the Bernstein-Bézier representation of a poly-
nomial but with a lower order of computational complexity than the de Casteljau
algorithm. The simple idea of direct evaluation with respect to the normalized B-
basis of the space and a nested computation for the evaluation of the corresponding
basis functions can be extended to other spaces, as shown in Section 4. In addition,
its accuracy can compete and even improve that of the other evaluation algorithms
of the same complexity. In fact, the following remark shows that the computation
of b in the DP algorithm has high relative accuracy (HRA).

Remark 3.1. Given an algorithm using only additions of numbers of the same sign,
multiplications and divisions, and assuming that each initial real datum is known
to HRA, then it is well known that the output of the algorithm can be computed
to HRA (cf. [7, p. 52]). Moreover, in (well implemented) floating point arithmetic,
HRA is also preserved even when we perform true subtractions when the operands
are original (and so, exact) data (cf. p. 53 of [7] and [6]). So, the sufficient condition
to assure the HRA of an algorithm is called “no inaccurate cancellation” (NIC) and
it is satisfied if it only uses additions of numbers of the same sign, multiplications,
divisions and subtractions (additions of numbers of different sign) of the initial
data. Clearly, the computation of b in the DP algorithm is NIC and so it has HRA.

3.5. Evaluation of polynomials by Taylor methods. Let us see how to eval-
uate a polynomial in the Bernstein-Bézier form or in the power form by using the
Taylor methods presented in Section 2.

Let us start with a polynomial represented in the Bernstein-Bézier form. In
Section 4 of [24] it was shown that

d

dt


bn0 (t)
bn1 (t)
...

bnn(t)

 =



−n −1 0 · · · 0 0
n −n+ 2 −2 · · · 0 0
0 n− 1 −n+ 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · n− 2 −n
0 0 0 · · · 1 n


︸ ︷︷ ︸

R1


bn0 (t)
bn1 (t)
...

bnn(t)

 .

So, in order to evaluate the polynomial (12) with some of the Taylor mehtods
mentioned before first we need to choose a nonsingular matrix C = (cij)0≤i,j≤n

such that c0j = cj for j = 0, 1, . . . , n. Then, taking into account Section 2 we obtain
the linear differential equations system X ′(t) = A1 X(t) with A1 = CR1C

−1.
In order to solve the systems of linear differential equations of Section 2 it is

necessary to know the conditions X(a) = X0 and/or X(b) = XK . It is well known
that a polynomial p(t) =

∑n
i=0 ci b

n
i (t) satisfies the endpoint interpolation property:

p(0) = c0 and p(1) = cn (see Remark 2.4). Hence, the initial conditions of the
systems are known and given by

X(0) = C0 := (c00, c10, . . . , cn0)
T , X(1) = Cn := (c0n, c1n, . . . , cnn)

T .

First, Taylor 0 method can be used for obtaining an approximation to the solu-
tion of the following problem:

(13)

{
X ′(t) = A1 X(t), t ∈ [0, 1]
X(0) = C0

.

This method for the evaluation will be called Taylor 0 Bernstein (0 B).
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Then, Taylor 1 method can be used for obtaining an approximation to the solu-
tion of the following problem:

(14)

{
X ′(t) = A1 X(t), t ∈ [0, 1]
X(1) = Cn

.

This method for the evaluation will be called Taylor 1 Bernstein (1 B).
Finally, Taylor two-points method can be used for obtaining an approximation

to the solution of the following problem:

(15)

{
X ′(t) = A1 X(t), t ∈ [0, 1]
X(0) = C0 and X(1) = Cn

.

This method for the evaluation will be called Taylor two-points Bernstein (2-p B).
Let us recall that in the field of CAGD the two conditions of (15) are known because
of the endpoint interpolation property (see Remark 2.4).

Now, let us see how to evaluate a polynomial (11) represented in the power basis
by using the Taylor methods presented in Section 2. It can be seen that

d

dt


1
t
t2

...
tn

 =



0 · · · · · · · · · · · · 0
1 0 · · · · · · · · · 0
0 2 0 · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 n− 1 0 0
0 · · · · · · 0 n 0


︸ ︷︷ ︸

R2


1
t
t2

...
tn

 .

Now, analogously to the case of the Bernstein-Bézier representation, we need to
choose a nonsingular matrix C = (cij)0≤i,j≤n such that c0j = cj for j = 0, 1, . . . , n.
Then, taking into account Section 2 we obtain the linear differential equations
system X ′(t) = A2 X(t) with A2 = CR2C

−1. In order to solve the system of linear
differential equations of Section 2 it is necessary to know the conditions X(a) = X0

and X(b) = XK . In the case of the power basis the initial conditions are

X(0) = C0, X(1) = Sn :=

n∑
j=0

(c0j , c1j , . . . , cnj)
T .

Taylor 0 method can be used for obtaining an approximation to the solution of
the following problem:

(16)

{
X ′(t) = A2 X(t), t ∈ [0, 1]
X(0) = C0

.

This method for the evaluation will be called Taylor 0 Power (0 P).
Then, Taylor 1 method can be used for obtaining an approximation to the solu-

tion of the following problem:

(17)

{
X ′(t) = A2 X(t), t ∈ [0, 1]
X(1) = Sn

.

This method for the evaluation will be called Taylor 1 Power (1 P).
Finally, Taylor two-points method can be used for obtaining an approximation

to the solution of the following problem:

(18)

{
X ′(t) = A1 X(t), t ∈ [0, 1]
X(0) = C0 and X(1) = Sn

.
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This method for the evaluation will be called Taylor two-points Power (2-p P). The
two conditions of the previous problem are again known.

Remark 3.2. The Taylor methods can be used for obtaining the exact solution of
the systems of differential linear equations (13), (14), (15), (16), (17) and (18).
For example, in the case of the Taylor 0 B method, when the solution X(t) is a
polynomial curve of degree n, the exact solution (up to roundoff errors) is obtained

by taking Mh =
∑n

r=0
hrAr

1

r! .

3.6. Numerical tests. We have generated randomly 20 polynomials of degree
20, 20 polynomials of degree 60 and 10 polynomials of degree 100, using the power
representation. In particular, for each polynomial we have generated randomly its
coefficients with respect to the power basis as integers in the interval [−100, 100].
The coefficients of the polynomials with respect to the Bernstein basis have been
computed by using Algorithm 2 in [5] with exact arithmetic. Then we have evalu-
ated all the polynomials at the points of the mesh (i/200)200i=0 with exact arithmetic.
In addition, we have also evaluated twenty times the polynomials of degrees 20 and
60, and ten times the polynomials of degree 100, at the same points by the Horner
algorithm, de Casteljau, VS and DP algorithms, by solving (13) by Taylor 0 B, by
solving (14) by Taylor 1 B, by solving (15) by Taylor 2-p B, by solving (16) by
Taylor 0 P, by solving (17) by Taylor 1 P and by solving (18) by Taylor 2-p P. In
Taylor 0 (6) and Taylor 1 (8) we have taken s equal to the degree of the polynomial
being evaluated, that is, s = 20 for the polynomials of degree 20, s = 60 for the
polynomials of degree 60 and s = 100 for the polynomials of degree 100, whereas
in Taylor 2-p we have taken s equal to the half of the degree of the evaluated
polynomial. Then we have computed the average relative errors at each point of
the mesh among all the polynomials of each degree 20, 60 and 100. Then, average
relative error and maximum relative error among all points of the mesh have been
computed. We have also measured the average computational time used by each
algorithm for the evaluation of a polynomial of each degree at the complete mesh
of points.

Data for the polynomials of degree 20 can be seen in Figure 1 and Table 1. In
particular, in the graphic to the left of Figure 1, relative errors for algorithms using
the Bernstein representation can be seen. On the other hand, in the graphic to the
right of that figure, relative errors for algorithms using the power representation
can be seen. In addition, in Table 1 the average relative error, the maximum
relative error and the computational time for each algorithm can be seen. For these
polynomials, Horner and DP algorithms present the best behaviour with respect to
computational time and maximum relative errors and Horner and de Casteljau are
the best with respect to the average relative error. In contrast, Taylor 0 B and 1
P present the worst behaviours with respect to the average and maximal relative
errors, although all the algorithms are accurate.

Data for the polynomials of degree 60 can be seen in Figure 2 and Table 2.
In particular, in the graphic to the left of Figure 2 relative errors for algorithms
using the Bernstein representation can be seen. In the graphic to the right of the
figure, relative errors for algorithms using the power representation can be seen. In
addition, in Table 2 the average relative error, the maximum relative error and the
computational time for each algorithm can be seen. For these polynomials, Horner
and DP algorithms again present the lowest computational time. The lowest average
and maximum relative errors are provided by Horner and de Casteljau. Again,
Taylor 0 B and 1 P present the worst behaviours with respect to the average and
maximal relative errors.
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Table 1. Average and maximum errors, and computational time
when evaluating polynomials of degree 20 generated randomly.

Algorithm Average rel. error Maximum rel. error Time
Horner 2.8914e− 16 6.2538e− 15 1.1e− 05
Casteljau 5.2742e− 16 6.9918e− 15 1.4e− 04
DP 7.8841e− 16 6.6459e− 15 6.6e− 05
VS 1.1255e− 14 1.3119e− 13 3.2e− 04
Taylor 0 B 7.3324e− 11 2.5276e− 09 1.6e− 03
Taylor 1 B 7.5518e− 15 6.8608e− 14 1.6e− 03
Taylor 2-p B 4.9022e− 13 2.1924e− 11 1.4e− 01
Taylor 0 P 5.2198e− 15 4.7475e− 14 1.4e− 03
Taylor 1 P 2.2816e− 11 4.3559e− 10 1.4e− 03
Taylor 2-p P 7.9949e− 13 2.7330e− 11 1.4e− 01

Data for the polynomials of degree 100 can be seen in Figure 3 and Table 3.
In particular, in the graphic to the left of Figure 3, relative errors for algorithms
using the Bernstein representation can be seen. In the graphic to the right of
the figure, relative errors for algorithms using the power representation can be
seen. On the other hand, in Table 3 the average relative error, the maximum
relative error and the computational time for each algorithm can be seen. For these
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Figure 1. Errors when evaluating polynomials of degree 20 gen-
erated randomly.
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Figure 2. Errors when evaluating polynomials of degree 60 gen-
erated randomly.
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Table 2. Average and maximum errors, and computational time
when evaluating polynomials of degree 60 generated randomly.

Algorithm Average rel. error Maximum rel. error Time
Horner 3.4338e− 16 1.5218e− 14 2.3e− 05
Casteljau 1.1973e− 15 1.5186e− 14 9.1e− 04
DP 2.1144e− 15 1.7051e− 14 1.2e− 04
VS 2.8651e− 14 3.0836e− 13 8.0e− 04
Taylor 0 B 2.4505e− 01 2.6309e+ 00 1.5e− 02
Taylor 1 B 1.1934e− 04 4.3496e− 03 1.4e− 02
Taylor 2-p B 3.4190e− 04 2.8575e− 03 6.4e+ 00
Taylor 0 P 6.4927e− 15 7.8957e− 14 1.5e− 02
Taylor 1 P 1.2537e+ 00 2.0593e+ 02 1.5e− 02
Taylor 2-p P 7.6784e− 09 1.7735e− 07 6.5e+ 00
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Figure 3. Errors when evaluating polynomials of degree 100 gen-
erated randomly.

polynomials, Horner and DP algorithms again present the lowest computational
time. The lowest average and maximum relative errors are provided by Horner and
de Casteljau. Again, Taylor 0 B and 1 P present the worst behaviours with respect
to the average and maximal relative errors.

Table 3. Average and maximum errors, and computational time
when evaluating polynomials of degree 100 generated randomly.

Algorithm Average rel. error Maximum rel. error Time
Horner 4.1218e− 16 6.2493e− 15 5.1e− 05
Casteljau 1.8522e− 15 1.4178e− 14 2.8e− 03
DP 3.4857e− 15 2.1790e− 14 2.2e− 04
VS 2.3104e− 14 1.4298e− 13 1.4e− 03
Taylor 0 B 7.4928e− 01 1.5060e+ 01 6.6e− 02
Taylor 1 B 5.3796e− 02 1.6599e− 01 5.9e− 02
Taylor 2-p B 4.9121e− 01 8.9741e+ 00 3.9e+ 01
Taylor 0 P 6.8438e− 15 1.0702e− 13 6.5e− 02
Taylor 1 P 6.3560e− 01 1.9969e+ 01 6.3e− 02
Taylor 2-p P 3.4907e− 02 8.3677e− 01 4.0e+ 01
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Figure 4. Relative errors when evaluating polynomial p(x).

In order to derive some conclusions about the stability of the evaluation algo-
rithms, we also use classical tests. Let us consider the following polynomials

p(x) =
20∏
i=1

(
x− i

20

)
and q(x) =

20∏
i=1

(
x− 2

2i

)
.

These polynomials, with roots {i/20 | i = 1, . . . , 20} and {1/2i−1 | i = 1, . . . , 20},
respectively, were originally studied by Wilkinson in [21] and [22]. In these works
Wilkinson showed the ill-conditioning of the roots of these polynomials.

First we have computed with Mathematica in exact arithmetic the coefficients
of both Wilkinson polynomials with respect to the Bernstein, the VS and the
monomial bases. Then we have evaluated polynomial p at the points of the mesh
{i/257}257i=0 with Horner algorithm, de Casteljau, VS and DP algorithms, by solving
(13) by Taylor 0 B, by solving (14) by Taylor 1 B, by solving (15) by Taylor 2-p B,
by solving (16) by Taylor 0 P, by solving (17) by Taylor 1 P and by solving (18) by
Taylor 2-p P, with s = 20 for Taylor 0 (6) and Taylor 1 (8), and s = 10 for Taylor
2-p. Relative errors can be seen in Figure 4. In particular, in the graphic to the left
of Figure 4, relative errors for algorithms using the Bernstein representation can be
seen. In the graphic to the right of the figure, relative errors for algorithms using
the power representation can be seen. In addition, in Table 4 the average relative
error, the maximum relative error and the computational time for each algorithm
can be seen. We can observe that only four algorithms are accurate enough for the
evaluation p(x): VS, DP, de Casteljau and Taylor 1 B.

Finally we have evaluated the polynomial q at the points of the mesh {i/257}257i=0

with the same algortihms. Relative errors can be seen in Figure 5. In the graphic to
the left of Figure 5, relative errors for algorithms using the Bernstein representation
can be seen. In the graphic to the right of the figure, relative errors for algorithms
using the power representation can be seen. In addition, in Table 5 the average
relative error, the maximum relative error and the computational time for each
algorithm can be seen. We can observe that only five algorithms are accurate
enough for the evaluation q(x): de Casteljau, DP, VS, Horner and Taylor 0 P.

Remark 3.3. When evaluating a polynomial curve at a small number of points,
Taylor methods are not faster than other known evaluation methods for polynomials
such as the de Casteljau algorithm. Nevertheless, in CAGD applications it is very
often necessary to evaluate a polynomial curve at a large number of points. In this
case, the Taylor method is faster than the Casteljau algorithm as it can be seen in
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Table 4. Average and maximum errors when evaluating polyno-
mial p(x).

Algorithm Average rel. error Maximum rel. error
Horner 1.022525282150209e− 01 7.384140909590709e+ 00
Casteljau 6.247787735510910e− 09 2.739654275408099e− 07
DP 4.922196705116571e− 09 1.720640597874556e− 07
VS 1.311800798206712e− 09 3.176184625997251e− 08
Taylor 0 B 2.448835183609981e+ 01 1.416183770954575e+ 03
Taylor 1 B 2.654693119489577e− 07 1.938195540236600e− 05
Taylor 2-points B 8.449974381220470e+ 00 2.066023751160633e+ 02
Taylor 0 P 1.887436054608656e− 01 1.100892595124509e+ 01
Taylor 1 P 1.225179560927253e+ 04 8.553363933485990e+ 05
Taylor 2-points P 6.356777995974766e+ 02 2.471774409929074e+ 04
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Figure 5. Relative errors when evaluating polynomial q(x).

Table 5. Average and maximum errors when evaluating polyno-
mial q(x).

Algorithm Average rel. error Maximum rel. error
Horner 2.581593270021876e− 14 1.080387585722120e− 12
Casteljau 1.365150114097193e− 14 6.398300966705923e− 13
DP 1.644101106265629e− 14 1.520237677578364e− 12
VS 1.689130767397024e− 14 1.520237677578364e− 12
Taylor 0 B 1.276491769361432e+ 14 3.098650278051026e+ 16
Taylor 1 B 7.579050302369344e+ 36 1.947815927708921e+ 39
Taylor 2-points B 7.002956456764707e+ 12 1.786151714810890e+ 15
Taylor 0 P 5.313254028838989e− 14 1.542080310162485e− 12
Taylor 1 P 4.471913215233135e+ 44 1.149281696314916e+ 47
Taylor 2-points P 8.283774684253482e− 01 1.969320857686634e+ 02

the complexity analysis of [24] and the numerical results in Table 2 of Example 1
of that reference.

4. Evaluation of trigonometric polynomials

In [19] it was shown that, for a fixed value of the shape parameter β ∈ (0, π),
the unique normalized B-basis (that is, the basis with optimal shape preserving
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properties) of the vector space of trigonometric polynomials of degree at most n

T β
n = span{1, sinu, cosu, . . . , sin(nu), cos(nu)}, u ∈ [0, β],

is {T β
0,2n, T

β
1,2n, . . . , T

β
2n,2n}, with

T β
i,2n(u) = tβi,2n sin

i
(u
2

)
sin2n−i

(
β − u

2

)
, u ∈ [0, β],

where {tβi,2n}2ni=0 are the nonnegative normalizing coefficients defined by

tβi,2n = tβ2n−i,2n =
1

sin2n
(

β
2

) ⌊ i
2 ⌋∑

r=0

(
n

i− r

)(
i− r

r

)(
2 cos

(
β

2

))i−2r

, i = 0, . . . , n.

As shown in [15], if β ≥ π, then there does not exist normalized B-basis of the
space T β

n and, in fact, the space does not possess shape preserving representations,
in contrast to our case β < π. For simplicity, from now on we will use ti instead of

tβi,2n. Now let us consider a function f ∈ T β
2n represented by its normalized B-basis

as

(19) f(u) =

2n∑
i=0

ciT
β
i,2n(u).

Analogously to the case of DP algorithm for polynomials in the Bernstein-Bézier
form, the previous function can be evaluated by a direct trigonometric (DT) algo-
rithm. For this purpose, it can be checked that

T β
i+1,2n(u) =

ti+1

ti
·

sin
(
u
2

)
sin

(
β−u
2

) · T β
i,2n(u), i = 0, 1, . . . , 2n− 1, u ∈ [0, β).

Taking into account the previous relation and that f(β) = c2n, we can derive
Algorithm 5 for evaluating a trigonometric polynomial (19) by DT algorithm.

Algorithm 5 Direct trigonometric (DT) algorithm for the evaluation of f ∈ T β
2n

at u

Require: β ∈ (0, π), u ∈ [0, β] and (ci)
n
i=0

Ensure: res ≈
∑2n

i=0 ciT
β
i,2n(u)

if u < β then

b = t0 sin
2n( β−u

2 )

res = c0 b
for i = 1 : 2n do

b = ti
ti−1

sin(u
2 )

sin( β−u
2 )

b

res = res+ ci b
end for

else
res = c2n

end if

Analogously to the case of polynomials in Bernstein-Bézier form, in order to eval-
uate the trigonometric function (19) with some of the Taylor methods mentioned
in Section 2, we first need to choose a nonsingular matrix C = (cij)0≤i,j≤2n such
that c0j = cj for j = 0, 1, . . . , 2n. Then, taking into account Section 2, we obtain
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the linear differential equations system X ′(u) = AX(u) with A = CRC−1, where
R is given according to Example 2 in [24] by

R =



− n

tan( β
2 )

− t0
t1

2n

2 sin( β
2 )

0 · · · 0 0

t1
t0

1

2 sin( β
2 )

− n−1

tan( β
2 )

− t1
t2

2n−1

2 sin( β
2 )

· · · 0 0

0 t2
t1

2

2 sin( β
2 )

− n−2

tan( β
2 )

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · n−1

tan( β
2 )

− t2n−1

t2n

1

2 sin( β
2 )

0 0 0 · · · t2n
t2n−1

2n

2 sin( β
2 )

n

tan( β
2 )


.

In order to solve the system of linear differential equations of Section 2 for
the particular case of the previous trigonometric polynomials, it is necessary to
know the conditions X(0) = X0 and/or X(β) = XK . It is straightforward to

check that a trigonometric polynomial f(u) =
∑2n

i=0 ci T
β
i,2n(u) satisfies the endpoint

interpolation property: f(0) = c0 and f(β) = c2n. Hence, the initial conditions of
the systems are

X(0) = C0 := (c00, c10, . . . , c2n,0)
T , X(β) = Cn := (c0,2n, c1,2n, . . . , c2n,2n)

T .

First, let us use Taylor 0 method for obtaining an approximation to the solution
of the following problem:{

X ′(u) = AX(u), u ∈ [0, β]
X(0) = C0

.

Then, Taylor 1 method can be used for obtaining an approximation to the solution
of the following problem:{

X ′(u) = AX(u), u ∈ [0, β]
X(β) = Cn

.

Finally, Taylor two-points method can be used for obtaining an approximation to
the solution of the following problem:{

X ′(u) = AX(u), u ∈ [0, β]
X(0) = C0 and X(β) = Cn

.

The two conditions are again known (see Remark 2.4).

4.1. Numerical tests. We have generated randomly 20 trigonometric polynomi-

als of degree 8 represented in the normalized B-basis of T π/3
2n . In particular, for each

function we have generated randomly its 17 coefficients respect to the normalized

B-basis {Tπ/3
0,16, T

π/3
1,16, . . . , T

π/3
16,16} as integers in the interval [−100, 100]. Then we

have evaluated all functions at the points of the mesh (iπ/600)200i=0 with exact arith-
metic. In addition, we have also evaluated twenty times the functions at the same
points by Algortihm 5 and solved the corresponding linear differential system (4)
by DT, by Taylor 0 (6) and Taylor 1 (8) both with s = 33, and by Taylor two-points
with s = 49. Then we have computed the average relative errors at each point of
the mesh among all functions. Then, the average relative error and the maximum
relative error among all points of the mesh are computed. We have also measured
the average computational time used by each algorithm for the evaluation of each
function at the complete mesh of points. All these data can be seen in Figure 6
and Table 6. We see that the accuracy of DT algorithm is very high, outperforming
the remaining algorithms. However, Taylor 1 is also very accurate and presents a
similar computational time, and all algorithms are accurate.
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Figure 6. Errors when evaluating trigonometric functions gener-
ated randomly.

Table 6. Average and maximum errors, and computational time
when evaluating trigonometric functions generated randomly.

Algorithm Average rel. error Maximum rel. error Time
DT 3.7005e− 15 9.8612e− 14 2.4e− 03
Taylor 0 5.6254e− 09 2.5282e− 07 5.3e− 03
Taylor 1 3.2336e− 12 1.1038e− 10 2.3e− 03
Taylor 2-points 1.3306e− 10 2.7572e− 09 3.2e+ 00

In Table 6 it can be seen that the computational time for the evaluation of
trigonometric curves at a small number of points is very similar for DT, Taylor
0 and Taylor 1. However, as in the case of the evaluation of polynomials (see
Remark 3.3 and the reference therein), when evaluating a trigonometric curve at a
large number of points both Taylor 0 and Taylor 1 are faster than other algorithms
like DT. In order to illustrate this fact, a trigonometric polynomial of degree 8
has been randomly generated. In particular, we have generated randomly its 17

coefficients respect to the normalized B-basis {Tπ/3
0,16, T

π/3
1,16, . . . , T

π/3
16,16} as integers in

the interval [−100, 100]. Then we have evaluated the function at the points of the

mesh (iπ/(3 · 105))105i=0 by DT, by Taylor 0 and Taylor 1 both with s = 33, and by
Taylor two-points with s = 49. The computational time used by each algorithm at
the complete mesh of points is shown in Table 7.

Table 7. Computational time when evaluating a trigonometric
function at a large number of points.

DT Taylor 0 Taylor 1 Taylor 2-points
Time 7.53e− 02 4.41e− 02 3.71e− 02 1.40e+ 01

5. Conclusions

Several Taylor methods have been used to evaluate polynomial and trigonometric
curves in computer aided design. Direct evaluation methods, called DP and DT
for the polynomial and the trigonometric case, respectively, have been presented
and they use the normalized B-basis of their corresponding space and a nested



EVALUATION OF CURVES AND SURFACES 17

evaluation of their basis functions. Comparisons of these methods and other usual
evaluation methods are performed through numerical experiments. It is shown that
the accuracy of Taylor methods depends on the place of the evaluation point. The
great accuracy of DP and DT is shown. When evaluating at a large number of
points, the computational time with Taylor 0 and Taylor 1 is lower than with DP
and DT.
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[22] Wilkinson, J. H., Rounding Errors in Algebraic Processes, Notes Appl. Sci. 32, Her Majesty’s
Stationery Office, London, 1963.

[23] Wu, W. and Yang, X., Geometric Hermite interpolation by a family of intrinsically defined
planar curves, Comput. Aided Design, 77 (2016), pp. 86-97.

[24] Yang, X. and Hong, J., Dynamic Evaluation of Free-Form Curves and Surfaces, SIAM J. Sci.
Comput., 39 (2017), pp. B424-B441.

[25] Yang, X. and Hong, J., Dynamic Evaluation of Exponential Polynomial Curves and Surfaces
via Basis Transformation, SIAM J. Sci. Comput., 41 (2019), pp. A3401A3420.

[26] Zhang, J., C-curves: An extension of cubic curves, Comput. Aided Geom. Design, 13 (1996),
pp. 199-217.
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