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Abstract. It was proved by Shen that the graph of the classical Weierstrass function
Yoo A" cos(2mb" x) has Hausdorff dimension 2 + log A/ log b, for every integer b > 2
and every A € (1/b,1) [Hausdorff dimension of the graph of the classical Weierstrass
functions, Math. Z., 289 (2018), 223-266]. In this paper, we prove that the dimension
formula holds for every integer b > 3 and every A € (1/b, 1) if we replace the function
cos by sin in the definition of Weierstrass function. A class of more general functions
are also discussed.
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1 Introduction

Weierstrass functions are classical fractal functions. The non-differentiability of these
functions were studied by Weierstrass and Hardy [2]. Recently, Shen [7] proved that the
graph of the classical Weierstrass function ), A" cos(27tb"x) has Hausdorff dimension
2 +1logA/logb, for every integer b > 2 and every A € (1/b,1), which solved a long-
standing conjecture. Some relevant results can be found in [1,3-5,8]. Naturally, we
want to study the Hausdorff dimension of the graph of Weierstrass functions with the
following form:

Wipe(x) =) A"cos(2mb"x+6), x€R,
n=0
where b > 2 is an integer, A € (1/b,1) and 6 € R.

Denote D, , = 2 +1log A/ logb. Denote by dimy I'WV,, 1, o the Hausdorff dimension of
the graph of W) ; p. Our main result is:
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Theorem 1.1. If 0 = —7mt/2, then dimyI'W, ;9 = D, for every integer b > 3 and every
A € (1/b,1). If the integer b > 7, then the dimension formula holds for every A € (1/b,1) and
every 0 € R.

The paper is organized as follows. In next section, we present necessary notations
and properties introduced by Shen [7] and Tsujii [8]. In Sections 3 and 4, we prove the
main result.

2 Preliminaries

In this section, we present necessary notations and properties introduced in [7,8]. Denote
v =1/(Ab), pp(x) = cos(2mtx + 0), and g(x) = ¢, (x). Let A = {0,1,--- ,b —1}. Given
y€Randu = {u,}, € AZ" we define

So(x,u) = i " ge(x(ul)),

where u|, = (uq,- -+ ,u,) and

X u u
X(u|n):b7+7l+ 2

u

-n

=

For simplicity, we will use S(x,u) to denote Sy(x, u) if no confusion occurs.
Givene,d > 0. Two words i,j € AZ" are called (¢, §)-tangent at a point xo € R if

|S(x0,1) — S(x0,j)| <& and [S'(xg,i) — S (x0,j)| < 6.

Let E(g, x0;¢,0) denote the set of pairs (k,1) € A7 x A7 for which there exist u,v € AZT
such that ku and 1v are (¢, §)-tangent at x(. Let

e(q,x0;¢,0) = max #{l € A7: (k,1) € E(q,x0;¢,9)},
keAZt

E<q1x0) = ﬂ m E(q,x0;¢,6),

e>06>0

e(g,x0) = max#{l € A7: (k,1) € E(q,x0) }.
keAl
For | C IR, define

E(q,];¢6) = |J E(q,x0;¢,0),

xo€]

E(q.]) = () () E(q,];¢96),

e>06>0

e(q,]) = max#{l € A7: (k1) € E(g,])}-
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Tsujii’s notation e(q) is defined as

. br-1 k k+1
e(a) = fimmaxe(a [ ~35])
It is well-known that e(q) = max,c(g1) (g, x). For details, please see [7].

Now we define another useful function ¢(g) introduced by Shen [7]. A measurable
function w : [0,1) — [0, o) is called a weight function if ||w||ec < c0 and ||1/w|le < .
A testing function of order q is a measurable function V : [0,1) x A7 x AT — [0,00). A
testing function of order g is called admissible if there exist ¢ > 0 and § > 0 such that the
following hold: For any x € [0,1), if (u,v) € E(q,x;¢,6), then

V(x,u,v)V(x,v,u) > 1.

Given a weight function w and an admissible testing function V of order g, we define a
new measurable function J, : [0,1) — R as follows: for each x € [0,1), let

Z?/,w(x) :sup{wc(ux(();))) Y V(x,u,v):u eﬂ‘?}.

veAT

Define
o(q) = inf |27, o,

where the infimum is taken over all weight functions w and admissible testing functions
V of order g.

Let IP be the Bernoulli measure on AZ " with uniform probabilities {1/b,1/b,---,1/b}.
For each x € R, define a Borel probability measure m, on R by

my(A) =P({v: S(x,v) € A}), ACR

Then m,’s are the conditional measures along vertical fibers of the unique SRB measure
v of the skew productmap T: R/Z xR — R/Z x R,

T(x,y) = (bx mod 1, vy + Pe(x)).
That is, the SRB measure v can be defined by

V(B) = /01 i (By)dx

for each Borel set B C R/Z x R, where B, = {y € R: (x,y) € B}.
We will use the following two theorems to prove our main result.

Theorem 2.1 ([7]). If there exists g € Z, such that o(q) < (+yb)1, then the SRB measure v is
absolutely continuous with respect to the Lebesgue measure on R /Z x R with square integrable
density. In particular, for Lebesgue a.e. x € [0,1), my is absolutely continuous with respect to the
Lebesgue measure on R and with square integrable density. As a result, dimpg T'W), 9 = D, p.
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Theorem 2.2 ([7]). o(q) < e(q).

We remark that Theorem 2.1 strengths a similar result by Tsujii [8], and the dimension
formula dimy I'W, 9 = D, } follows from Ledrappier’s theorem [6]. For details, please
see [7].

The following result can be derived from the definitions of E(g,x) and E(q, J;¢,96).

The proof for general case is same as the special case § = 0, which is presented in [7].
Thus we omit the details.

Lemma 2.1 ((7]). Let xo € R, and k,1 € A9. Then

(1) (k,1) € E(q,xo) if and only if there exist u and v in AZ" such that F(x) = S(x,ku) —
S(x,1v) has a multiple zero at x, that is, F(xo) = F'(xo) = 0.

(2) If (k,1) & E(q,x0), then there is a neighborhood U of xo and €,6 > 0 such that (k,1) ¢
E(q,U;¢,9).

(3) For any compact K C R, if (k,1) & E(q,K), then there exist €,6 > 0, such that (k,1) ¢
E(q,K;¢,9).

(4) Foranye > € > 0,8 > &' > 0, there exists > 0, such that if |x — xo| < 7, (k,1) &
E(q,x0;¢,6), then (k,1) & E(q,x;¢€,8).

The following three lemmas are very useful in the proof of the results in [7]. They still
hold in our case.

Lemma 2.2 ([7]). Assume that forall x € [0,1), E(q,x) # A7 x A9. Then
o(q) <1 —2+2/a,
where « = w(b,q) > 1 satisfies2 —a = (b7 —2)a(a — 1).

Lemma 2.3 (7]). Let g € Z*. Suppose that there are constants ¢ > 0 and 6 > 0and K C [0,1)
with the following properties:

(1) Forx € K, e(q,x;¢,6) = Land for x € [0,1) \ K, e(g, x;¢,6) < 2;

(2) If (u,v) € E(q,x;¢,0) for some x € [0,1) \ Kand u # v, then both x(u) and x(v) belong
to K.

Then o(q) < V2.

Lemma 2.4 ((7]). Let q € Z™". Suppose that there are constants ¢ > 0 and 6 > 0 and K C [0, 1]
with the following properties:

(1) Forx € K, e(q,x;¢,0) = land for x € [0,1) \ K, e(q,x;¢,0) < 2;

(2) If (u,v) € E(q,x;¢,0) for some x € [0,1)\ K and u # v, then either x(u) € K or
x(v) € K.

Then o(q) < (V/5+1)/2.
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3 The case when b is large

If e(1) = 1, then form 4b = 1/A > 1, we have e(1) < b. Thus, we always assume that
e(1) > 2. From e(1) = max,¢[o1) e(1, x), there exists x* € [0,1), such that e(1,x*) = e(1).
We will fix x* in the sequel of the paper.

From definition, there exists k € A, such that#{¢ € A: (k,¢) € E(1,x*)} = ¢(1). Let
2,02,...,¢¢() be all elements in A such that (k,ﬁ(i)) € E(1,x*), and

sin(27x! +0) < sin(27tx? 4+6) < - - < sin(27xV) 4+ 6),

where x' = (x* +¢1)/b,i=1,--- ,e(1).
Similarly as Lemma 3.2 and Lemma 3.3 in [7], we have the following two lemmas.
Since the proof are same as that of in [7], we omit the details again.

Lemma 3.1. If (k,¢) € E(1,x*), then

b b 1—v
b b e
.o t(k—10) < (2 2 29 \?
4 sin 5 {125 + b—v) (3.1¢)

Lemma 3.2. Under the above circumstances, and with the assumption that 1 < i < j < e(1),
the followings hold:

1. If@l = kor 57 = k, then sin(anj + 9) _ Sil’l(ZT[xi + 9) > M’
2. sin(2x/ + 0) — sin(2x’ + 6) > M’
j ] . . . . 2 b,
3. If ' — 0/ # £1 mod b, then sin(27tx! + 6) — sin(27tx' 4 0) > M,

where

Bo(b,v) = \/max {O, <bsin7;)2 — (b’y_zb;)z}'
Bi(b,v) = \/max {O, (bsing)z - (:zziz)z}/

Ba(b,y) = \/max {O, (bsinz?n)2 — (:,12%;2)2}

Using these two lemmas and lemmas in Section 2, we can prove the following theo-
rem, which implies that Theorem 1.1 holds if b > 7.
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Theorem 3.1. 1. Ifb > 7, thene(1) < ~b.
2. Ifb=4,5,6, then either e(1) =2 ore(1) < ~yb.
3. If b = 3, then either e(1) < 2oro(1) < vb.

Proof. Using the exactly same method as in [7], we can obtain the following result: if
b > 4, theneithere(1) =2ore(1) < yb;if b = 3, then either e(1) < 2oro(1) < b. Thus,
we only need to prove the theorem holds if b > 7 and e(1) = 2. If yb > 2, then b > e(1).
Thus it suffices to show it is impossible that e(1) = 2 and yb < 2.

We will prove this by contradiction. Assume that (1) = 2 and b < 2, then (¢, (2) €
E(1, x*). From Lemma 3.1 and v < 2/b, we have

(02— 1Y) ( 2 )2 ( 2y )2
4 sin® < + | —
b 1—7 b—

2-(2/b)\*  [(2-(2/b)\* 16 16
= <1—2/b> + <b—2/b> RECET RN (I
Thus 4 4
.2 7T
sin b < b2y + =27 (3.2)
Consider the function ¢(t) = g1(t) — g2(t), where
, 412 412
g1(t) = t*sin®(r/t) and go(t) = =27 + s

It is easy to check that gy is increasing on (2, +o0) while g is decreasing on (2, +0).
Thus, if b > 7, we have g(b) > ¢(7) > 9 — 8 > 0, which implies that (3.2) does not hold
forb > 7. O

4 Proof of Theorem 1.1: the case b = 3,4,5,6

In this section, we will restrict 8 = —7/2. We will show the following result under this
restriction: for b = 3,4,5,6, if e(1) = 2 then ¢(1) < yb. Combining this result with
Theorem 3.1, we have either (1) < ybor (1) < b for b = 3,4,5,6. Thus Theorem 1.1
holds for this case.

Using the same method as in the proof of Lemma 4.1 in [7], we have the following
lemma. We omit the details.

Lemma 4.1. Assume that 0 < k < { < b satisfying (k,¢) € E(1,x*). Then for any x € (0,1),
one of the followings holds: either

(4.1)

. r2m(x* +k) . 2m(x* 4 0) 29v1 — 2 292
‘sm( ) e ()| =T o=y
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or
292

I—v

‘cos (271(3(2 + k)) ~cos (27‘[(3(2; +7)

)‘g2m+

Notice that 0 = —7r/2. Forx € Rand i = {i,} , € AZ", we have

i”l P (xn) —ZHZ’y ! cos (2 (bn+;—1+---+%‘)). (4.3)

Lemma 4.2. If x € Rand i = {i,}}’_,. Then the following equalities hold:

S(x,i) = S(1 —x,i’), (4.4a)
S'(x,i) = —S'(1—x,i), (4.4b)
wherei’ = {ij,}° , 1, =b—1—i,.

Proof. Notice that

1b—nx b_;n_il"‘"""b_lb_in)>

)+ (o T+ )

Thus (4.4a) holds. From

a0 =T B (1) e on(Z o))

we can see that (4.4b) holds. O

From Lemma 4.2, we know that (k,¢) € E(1,x*) is equivalent to (b —-1—-kb—-1-
) € E(1,1—x*). Thus e(1,x*) = e(1,1 — x*). Hence, we may assume that x* € [0, 1].

41 Thecaseb =6

Proposition 4.1. Assumeb = 6 and e(1) = 2. Then o(1) < 67.

Proof. 1t is clear that 6y > 6- (1/3) = e(1) > o(1) if v > 3. Thus we may assume that
v < 1. Frome(1) = 2, there exist 0 < k < ¢ < 6, such that (k,£) € E(1,x*).



H. J. Ruan and N. Zhang / Anal. Theory Appl., 36 (2020), pp. 482-496 489

From (k,¢) € E(1,x*) and Lemma 3.1, we have

. (2r(x* + k) . (2m(x* 4+ 0) 2y 2-(1/3) 2

’Sln< 6 )‘““( 6 )'§6—7§6—(1/3)_17’ (4.59)
5 7T(£ — k) 27 \? 2y \*_ 2

4sin® = < (1_7) + (6—7> <124 (2/17)% < 2. (4.5b)

If { —k # 4+1 mod 6, then 4 sin? @ > 4sin® %” = 3, which contradicts with (4.5b).
Thus £ — k = £1 mod 6. Combining this with k < ¢, we can see that { —k =1 or 5.

Let k¥ = 0.98. We will show that the inequality (4.2) does not hold. In fact, if (4.2)
holds, then

* * X 2
‘Cos (W) — cos (W) ’ <2.098-(1/3) + 2151{?; < 0.987.

Combining this with (4.5a), we have
—k
1= 4sin2% = 45in (”(66)> < (2/17)% 4+ 0.9872 < 0.989.

Contradiction! Thus the inequality (4.1) holds. Let y* = m(2x* +k+ ¢)/6. Then y* €
[0,57t/3] and

| cos(y™)| :‘2Sin%cos(y*) n(27'£(x6*—|—k)) _sin (27T(X;+€)>’

L2-(1/3)- V1 —0.982 N 2-(1/3)?
- 6 6-(6—1/3)

< 0.029 < cos(497/100).

Thus y* € (497/100,517t/100) U (14971/100, 15177/100).

Case 1. y* € (4971/100,5171/100). In this case, 2x* +k + ¢ € (294/100,306/100). If
k+1=¢, thenx* +k € (97/100,103/100). Since x* € [0, 3], we have (k,£) = (1,2)
and x* € [0,3/100). If k+5 = ¢, from x* > 0 and k > 0, we have 2x* + 2k +5 >
5 > 306/100, a contradiction!

Case 2. y* € (14971/100,1517t/100). In this case, 2x* + k + ¢ € (894/100,906/100). If
k+1 = ¢, then x* +k € (397/100,403/100). Since x* € [0, 1], we have (k1) =
(4,5) and x* € [0,3/100). If k +5 = ¢, we must have k = 0 and ¢ = 5. Thus, from
x* €0, %], we can obtain 2x* + 2k +5 < 6 < 894/100, a contradiction!

From Case 1 and Case 2, we can see that in the case that ¢ < %, if 0 <k < I < 6satisfying
(k,1) € E(1,x*), then 0 < x* < 3/100, and (k,I) = (1,2) or (k,I) = (4,5).

From above arguments, e(1,x) = 1if x € [3/100,1/2]. Using the fact that e(1,x) =
e(1,1—x), wealsohavee(1,x) = 1if x € [1/2,97/100].
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Let K = [3/100,97/100]. Then e(1,K) = 1 and ¢(1,[0,1)) < 2. From Lemma 2.1(3),
there exist e > 0,6 > 0, such that e(1,x;¢,6) = 1if x € K, and e(1,x;¢,6) < 2if x €
[0,1)\K.

In the case that x € [0,1/2] \ K, if (k,£) = (1,2), then x(2) = (x+2)/6 C K; if
(k,¢) = (4,5), then x(4) = (x +4)/6 C K. Using the symmetry (Lemma 4.2), we know
that the conditions of Lemma 2.4 hold for g = 1. Thus (1) < (v/5+1)/2.

If v > (v/5+1)/12, then 6 > ¢(1). Thus, it suffices to show it is impossible that
v < (\@ +1)/12 and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

it () = (70) + (7)
(VE+1)/6 2 (VE+1)/6 2
S( —(\@+1)/12) +<1—(\@+1)/12)

which contradicts with k # /. O

< 056 < 4sin’ (g)

42 Thecaseb=>5
Proposition 4.2. Assumeb =5ande(1) =2. Then o(1) < 5.

Proof. If v > 2/5, then 5y > 2 = ¢(1) > ¢(1). Thus we may assume that y < 2. From
e(1) = 2, there exist 0 < k < ¢ < 5 such that (k,¢) € E(1,x*). Now we will show that
x* €(3/20,7/20) and (k, ¢) = (3,4).

In fact, from (k,¢) € E(1,x*) and Lemma 3.1,

‘sin(Zrcx*;_k)—sin@n *+£)‘ <o 7<§x —24—3,
2 x

4sin? (”(55_]{)) < (12_’Y7)2+ <52_77>2 < (1_§>2+ (éi%)z <2

[621] ]

U‘I\N

Assume that { —k # +1 mod 5. Then ¢ —k € {2,3}. Thus 4sin’ (7(k — ¢)/5) >
4 sin? (27‘(/5) > 3.618, a contradiction. Thus ¢/ — k = =1 mod 5. Since ¢ > k, we have
{—k=1lor{l{— k=4

Let k = v/2/2. We will show that inequality (4.2) in Lemma 4.1 does not hold. In fact,
if (4.2) holds, then

1.38 < 4sin? (g) n? (” )
X

=[sin (2757 s ( J)\ﬂ s (2
<<4)2+(2 V2 2+2><(2/5)) <(i

=\23 2 *5 1-2 23

*

) s o 2

2 2
) +(1.1)2 < 13,
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a contradiction. Thus the inequality (4.1) in Lemma 4.1 holds. Let y* = 7w (2x* +k+¢) /5.
We have

2 cos(y*) sin (g) ’ :‘2cos(y*) sin (7-[<€5_k)) ‘

:‘ sin (2nx*;k> —sin (27‘(x* + £> ‘

2x 2 x4/1— (L2 2x(2)2
EXSENE NS
5

i Q1

< 0.128.

- 5 5x (5

Thus
0.128

* < -
[cos(y™)l < 2sin(7t/5)

Since y* € [0,87/5], we have y* € (2371/50,277t/50) U (7371/50,777/50).
Case 1. y* € (2371/50,2771/50). In this case, 2x* + k + ¢ € (23/10,27/10). If { — k =1,
then x* + k € (13/20,17/20), which contradicts the fact that x* € [0,1/2) and k

is a nonnegative integer. If / — k = 4, then 2x* 4+ 2k + 4 > 4 > 27/10, which also
contradicts the fact that x* € [0,1/2) and k is a nonnegative integer.

< 0.11 < cos (%)

Case 2. y* € (7371/50,777/50). In this case, 2x* + k + ¢ € (73/10,77/10). If £ — k = 1,
then x* + k € (63/20,67/20). Thus (k, ¢) = (3,4) and x* € (3/20,7/20). If { —k =
4, then x* + k € (33/20,37/20), which also contradicts the fact that x* € [0,1/2)
and k is a nonnegative integer.

Thus, in the case that v € (0,2/5],if 0 < k < ¢ < 5 satisfying (k,¢) € E(1,x*), then
x* € (3/20,7/20) and (k, £) = (3,4).

From above arguments, e(1,x) = 1if x € [0,3/20] U [7/20,1/2]. Using the fact that
e(1,x) =e(1,1—x),wehavee(l,x) =1ifx € [1/2,13/20] U [17/20,1].

Let K = [0,3/20] U [7/20,13/20] U [17/20,1]. Then e(1,K) = 1 and e(1,[0,1)) < 2.
From Lemma 2.1, there existe, § > 0, such thate(1,x;¢,6) = 1ifx € K,and e(1, x;¢,6) <2
ifx €[0,1)\K.

If x € (3/20,1/4), we have x(3) = (x +3)/5 € (7/20,13/20) C K.If x € [1/4,7/20),
we have x(4) = (x +4)/5 € [17/20,1) C K. From Lemma 2.4, we have ¢(1) < (/5 +
1)/2.

If v > (v/5+1)/10, then 59 > ¢(1). Thus, it suffices to show it is impossible that
7 < (v/5+1)/10and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

.o (TT(0—k) 29 \2 27 \2

asin? (557) < (525) + (725
(V5+1)/5 2 (v5+1)/5

S<5—(\/§+1)/10> +<1—(\/§+1)/10

which contradicts with k # /. O

)2 < 0.9348 < 4sin’ (g)
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43 Thecaseb =4

Proposition 4.3. Assume that b = 4 and e(1) = 2. Then o(1) < 47.

Proof. If v > 1, then 4y > 2 = ¢(1) > ¢(1). Thus we may assume that 7 < 1. From
e(1) = 2, there exist 0 < k < ¢ < 4 such that (k,¢) € E(1,x*). Now we will show that
x* € (9/25,1/2] and (k, £) = (2,3).

In fact, from (k, ¢) € E(1,x*) and Lemma 3.1,

sin (2 5 i (2 )| < 2 <220 -2 e

Let k = 3. We will show that the inequality (4.2) in Lemma 4.1 does not hold. In fact,
if (4.2) holds, then

2 —4sin? (g) < 4sin? (”(k;g))

:‘ sin (an*:k> —sin <2nx*: g> ‘2 + ‘cos <2nx*2_k) — Cos (27rx*: 6) ‘2

(2 fan 3 O () () <2

A contradiction. Thus (4.1) in Lemma 4.1 holds. Let y* = 7t(2x* + k + ¢) /4. We have

‘Zcos y )sm(nﬂ <‘2cos y )sin (7‘((54—1{))‘

i) o)
S2><§><41—(§)2Jr ix((;_);_\f %<028

Thus | cos(y*)| < 0.28/+/2 < 0.2 < cos(4371/100). Since y* € [0,377/2], we have y* €
(4371/100,577/100) U (1437/100,37/2).

If y* € (4371/100,577t/100), then 2x* + k + ¢ € (43/25,57/25). In this case, we have
k+ ¢ = 2 so that (k,¢) = (0,2) and x* € [0,7/50). If y* € (14371/100,37c/2], then
2x* +k+ ¢ € (143/25,6]. In this case, we have k + ¢ = 5 so that (k,¢) = (2,3) and
x* € (9/25,1/2].

In the case that v < 3, we have (0,2) ¢ E(1,x) for all x € [0,1]. In fact, assume
that (0,2) € E(1,x). Then there exist k = {k,}* ; and 1 = {{,}?’,, such that S(x, k) —
S(x,1) =0, where k; =0, ¢ = 2.
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Letx, = (x +4ky+ -+ +4"k,) /4", yy = (x +2+ 4l + - - - +4""14,)/4". Then

| cos(27x1) — cos(27ty1) + (cos(27txz) — cos(27y2)) |

:‘ — i 7" (cos(2mxy) — COS(ZTCQV"))‘
n==3

Notice that

cos(27txp) — cos(27my,) = cos (% + szﬁ) — cos (7r(x8+2) + Ez%)
w(x+1) (ka4 Llo)my .
( s T 4 ) ot

T (kz—gz)ﬂ . 31
n<—§—|—74 )2—251n§.

= —2sin
Thus
cos(27xq) — cos(2myr) < 1— y(cos(27xy) — cos(2my,)) < 1+ sin %—[ < 1.93.

From the inequality (4.6), we have
.o (27T .o (TT(L—k)
_ 2 (47T _ 2
4 = 4sin (4) 4 sin ( 1 )
=| sin(271x1) — sin(27ry1) \2 + | cos(27x1) — cos(27y) }2

<<§)2 11932 < 3.81.

A contradiction. Thus, in the case that v < 1/2,if 0 < k < ¢ < 4 satisfying (k,¢) €
E(1,x*), then x* € (9/25,1/2] and (k, £) = (2,3).

From the above arguments, ¢(1,x) = 1if x € [0,9/25]. Using the fact that e(1,x) =
e(1,1—x), wehavee(l,x) = 1if x € [16/25,1].

Let K = [0,9/25] U [16/25,1]. Thene(1,K) = 1and e(1,[0,1)) < 2. From Lemma 2.1,
there exist ¢, 6 > 0, such thate(1, x;¢,6) = 1if x € K, and e(1,x;¢,6) < 2if x € [0,1)\K.

In the case that x € (9/25,1/2], we have x(3) = (x+3)/4 € [16/25,1] C K. From
Lemma 2.4, we have (1) < (V5 +1)/2.

If v > (v/5+1)/8, then 4y > ¢(1). Thus, it suffices to show it is impossible that
v < (\@ +1)/8and e(1) = 2. In fact, if this holds, then from Lemma 3.1,

4sin® (n<€4_ k)) = (42—77)2+ (12—77>2

(VB+1)/4 2 (V5+1)/4
S<4—<\@+1)/8) +<1—(ﬁ+1)/8
which contradicts with k # /. O

2
) < 1.897 < 4sin? (g)
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44 Thecaseb =3

Proposition 4.4. Assumeb =3 ande(1) =2. Then o(1) < 37.

Proof. If v > 2/3, then 3y > 2 = ¢(1) > o(1). Thus we may assume that y < 2/3. From
e(1) =2, there exist 0 < k < ¢ < 3 such that (k,¢) € E(1, x*).
Lety* = m(2x* +k+¢)/3. From (k,¢) € E(1,x*) and Lemma 3.1,

an (1)

:‘sin (27‘[x*3+k) — sin <2nx*;£>‘
< 2 < 4/3 4

=3-y—=3-2/3 7

2‘ cos(y*)}

Thus | cos(y*)| < 4/(7v/3) < cos(3971/100). Hence y* € (3971/100,617t/100). Since
y* € [0,47t/3], we have 2x* + k + ¢ € (117/100,183/100). Thus (k,¢) = (0,1) and
x* € (17/200,83/200).

From above arguments, e(1,x) = 1if x € [O, 17/ 200] U [83 /200,1/ 2]. Using the fact
thate(1,x) =e(1,1—x),e(1,x) =1lifx € [1/2, 117/200] U [183/200,1].

LetK; = [O, 17/ 200] U [83 /200,117/ 200] U [183 /200, 1]. From Lemma 2.1, there exist
e > 0,0 >0,suchthate(1,x;¢,0) =1ifx € Ky, and e(1,x;¢,6) < 2if x € [0,1)\K;.

If x € (17/200,51/200), we have x(0) = x/3 € (17/600,17/200) C K;.

If x € [51/200,83/200), we have x(1) = (x +1)/3 € (251/600,283/600) C K.

From Lemma 2.4, we have ¢(1) < (v/5 + 1)/2. Thus, if v > (V5 + 1)/6, then 3y >
a(1).

Now we will show: if ¢ < (\/§+ 1)/6and (k,¢) = (0,1), then x* € (23/200, 77/200).
In fact, from (k, /) € E(1,x*) and Lemma 3.1,

2‘ sin (n(k?)_ 5)) cos(y*)

5 )2t )|

2y (vV5+1)/3
< < < 0.4384.
T3-7 T 3-(V5+1)/6

:’ sin (271

Thus | cos(y*)| < 0.4384/+/3 < cos(0.4177). Hence y* € (0.417t,0.597). By the definition
of y*, we have 2x* + k+ ¢ € (1.23,1.77). Combining this with (k,¢) = (0,1), we have
x* € (23/200,77/200).

Now we will show: if v < (v/5+1)/6and x € (23/200,1/8}, then (0,1) ¢ E(1,x).
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In fact, assume that (0,1) € E(1,x). Then from Lemma 3.1,

3 = 4sin? (g)

:‘ cos (271%”) — Cos (2%%“) ‘2 + ‘ sin (271%”) —sin (271%“) ’2
<(Vasin (n7370)) 4 (575)
< (\fssin 517;)2 + (3 E\(@\/gi)l/fm)z < 2.9913.

A contradiction. If x € [3/8,77/200), then 0 < sin((2x 4+ 1)71/3) < sin(77/12) =
sin(57t/12). Thus, using the same argument, we can see that: if v < (v/5+1)/6 and
x € [3/8,77/200), then (0,1) ¢ E(1,x).

From the above arguments, in the case that ¢y < (\@ +1)/6,if0 <k <l <3
satisfying (k, ¢) € E(1,x*), then x* € (1/8,3/8) and (k,¢) = (0,1).

Let K, = [0,1/8] U [3/8,5/8] U [7/8,1]. From Lemma 2.1, there exist ¢,6 > 0, such
thate(1,x;¢,0) =1lif x € Ky, and e(1, x;¢,6) < 2if x € [0,1)\Ka.

In the case that x € (1/8,3/8), we have x(0) = x/3 € (1/24,1/8) C Ky, and x(1) =
(x+1)/3 € (3/8,11/24) C K. From Lemma 2.3, (1) < V2.

If v > v/2/3, then 3y > V2 > 0(1). Thus, it suffices to show that if v < V2/3,
then it is impossible that ¢(1) = 2. In fact, assume that there exists x € (%, %) satisfying
(0,1) € E(1, x). From Lemma 2.1, we know that there exist k = {k,}° ; and 1 = {/,,}° ,
such that S(x, k) — S(x,1) =0, where ky =0, ¢, = 1.

Letx, = (x +3ky+---+3"k,) /3"y, = (x + 1+ 30+ --- +3"14,) /3". We have

| cos(27x1) — cos(27y1) + (cos(27xz) — cos(27y2)) |

(o) 0 2
:‘ -y Y"1 (cos(2mxy) — COS(ZR’yn))‘ <2Y 4" < ZL
n=3 n=2 1- Y

Notice that

cos(27txy) — cos(27ys)
27t(x + 3ky) 2t(x + 14 34y)
08 —————=> — o8

9 9
= —2sin (2% + %) sin (2?7-[) > —2sin <2§> > —1.3.
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Thus cos(27tx1) — cos(2my;) < 292/(1 — ) + 1.37. Hence

3 =4sin? (g) = | cos(27x1) — cos(27yy) \2 + | sin(27x1) — sin(27ry1)\2
() e (25D ()
<(2 x (v/2/3)? V2

2 571' 2
——— +13 X — 3 — 2.3140.
\7 a3 +1.3 x 3 ) +(\fcos( 12)) <

A contradiction. O
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