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Abstract. The main interests here are to study the relationship between card(X) and
card(P(X)) and the connection between the separability of a space X and cardinality
of some function space on it. We will convert the calculation of card(P(X)) to the
calculation of card(F(X → Q)). The main tool we used here is Zorn Lemma.
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1 Introduction

Let X be a set. If X is a finite set, we call the number of elements of X the cardinality
of X, and denote it by card(X). For two infinite sets X and Y, we can use this notion to
compare the ”number” of two sets X and Y. The following expressions are well-known:

(i) card(X) ≤ card(Y) if there exists an injective map φ : X → Y;

(ii) card(X) ≥ card(Y) if there exists a surjective map φ : X → Y;

(iii) card(X) = card(Y) if there exists a bijective map φ : X → Y.

Let X and Y be two sets. We recall the following theorems in [1–3].

Theorem 1.1. card(X) = card(Y) if and only if card(X) ≤ card(Y) and card(X) ≥ card(Y)
both hold.

Theorem 1.2. Either card(X) < card(Y) or card(Y) < card(X) or card(X) = card(Y).

Theorem 1.3. card(X) < card(P(X)).
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In this paper, we use N, Z, Q, R and C to denote the set of positive integers, integers,
rational numbers, real numbers and complex numbers respectively. The number filed F
mentioned here is a subfield of C, thus Q is the minimal number field and F ⊃ Q. Given
two sets X and Y, we denote

F(X → Y) = {map f : X → Y}. (1.1)

Especially, there is a natural algebra structure on F(X → F) if F is a field. As usual,
we use (X, ρ) to denote a metric space with a metric map ρ : X × X → [0,+∞), which
satisfies

(i) ρ(x1, x2) = 0 if and only if x1 = x2;

(ii) ρ(x1, x2) = ρ(x2, x1);

(iii) ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3), where x1, x2, x3 are arbitrary points of X.

We use (X,M, µ) to denote a measure space, where M is a σ-algebra on X, and µ is a
measure, i.e., µ : M→ [0,+∞] is a map, satisfying

(i) µ(φ) = 0;

(ii) µ(∪∞
j=1Ej) = ∑+∞

j=1 µ(Ej), where Ej ∈M and Ej1 ∩ Ej2 = ∅, (j1 6= j2).

We denote card(N) = c0, which is the minimal cardinality of all infinite sets. Denote
card(R) = c, which is called ”cardinality of the continuum”.

Let X and Y be two sets and α = card(X), β = card(Y). We have the following
definitions,

Definition 1.1. If X ∩Y = ∅, we define α + β = card(X ∪Y).

Definition 1.2. Define α · β = card(X×Y).

Definition 1.3. Define βα = card(F(X → Y)).

We verify that these three definitions are well-defined. Suppose two sets X1 and Y1
satisfy card(X1) = card(X), card(Y1) = card(Y) and X1 ∩ Y1 = ∅ (in Definition 1.1).
Then, we have bijective maps φ : X → X1 and ψ : Y → Y1. We construct three maps ω, θ,
η as follows:

ω : X ∪Y → X1 ∪Y1, ω(z) =
{

φ(x), if z = x ∈ X,
ψ(y), if z = y ∈ Y,

(1.2a)

θ : X×Y → X1 ×Y1 : θ(x, y) = (φ(x), ψ(y)), (1.2b)

where x ∈ X, y ∈ Y.

η : F(X → Y)→ F(X1 → Y1) : η( f ) = ψ ◦ f ◦ φ−1, (1.3)

where f ∈ F(X → Y), “◦” represents the composition of maps. It is easy to verify that
ω, θ, η are bijective. Thus these definitions are well-defined.
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Remark 1.1. (1) Note that in Definition 1.1, if β = α, we have α + α = card(X × {0, 1}),
where α = card(X). (2) In some literature, 2α = card(P(X)) where α = card(X). We will
see that this coincides with the Definition 1.3, which will be explained in the Theorem
1.8.

We state the theorems about the cardinal computation as follows and leave the dis-
cussion about cardinality and the separability of a space X in Section 3.

Theorem 1.4. If α1, α2, β are cardinal numbers of three nonempty sets, then βα1 · βα2 = βα1+α2 .

Theorem 1.5. If α, β1, β2 are cardinal numbers of three nonempty sets, then βα
1 · βα

2 = (β1 · β2)α.

Theorem 1.6. Given two cardinal numbers α, β, if at least one of them is the cardinal number of
an infinite set, then α + β = max(α, β). Especially, α + α = α when α is the cardinal number of
an infinite set.

Theorem 1.7. If α, β are cardinal numbers of two nonempty sets and at least one of them is
infinite, then α · β = max(α, β). Especially, α · α = α when α is the cardinal number of an
infinite set.

Theorem 1.8. Suppose two cardinal numbers α, β satisfy α ≥ β ≥ 2, and α ≥ c0. Then

βα = 2α = card(P(X)),

where α = card(X).

Theorem 1.9. Suppose V is an infinite-dimensional linear space over the field F with a basis E.
Then, card(V) = max(card(E), card(F)). Especially, card(V) = card(E) when F = Q.

Example 1.1. Let V = R, F = Q. We know that

e =
∞

∑
n=0

1
n!

is a transcendental number, so {ek}∞
k=0 is a linear independent set over Q, thus R is an

infinite-dimensional linear space over Q. If E is a basis of R over Q, then card(E) =
card(R) = c.

Theorem 1.10. For any two infinite sets X and Y, card(X) = card(Y) if and only if card(P(X)) =
card(P(Y)) and there exists an algebra isomorphism Ψ : F(X → Q)→ F(Y → Q).

This paper is organized as follows. In Section 2, we prove Theorems 1.4–1.10. In
Section 3, we discuss the connection between separability of a space X and the cardinality
of some function space on it and prove several related results. Finally, several unsolved
questions are raised in the context.
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2 Proof of Theorems 1.4–1.10

Proof of Theorem 1.4. Suppose X1, X2, Y are nonempty sets satisfying card(X1) = α1,
card(X2) = α2 and card(Y) = β, without loss of generality, we can assume that X1 ∩X2 =
∅. According to Definition 1.3,

βα1 = card(F(X1 → Y)), βα2 = card(F(X2 → Y)),
βα1 · βα2 = card(F(X1 → Y)× F(X2 → Y))

= {( f1, f2) : map f1 : X1 → Y, map f2 : X2 → Y}.

Since X1 ∩ X2 = ∅, ( f1(x1), f2(x2)), x1 ∈ X1, x2 ∈ X2, corresponds bijectively to map
f : X1 ∪ X2 → Y, where

f (x) =
{

f1(x1), if x = x1 ∈ X1,
f2(x2), if x = x2 ∈ X2.

(2.1)

Therefore, F(X1 → Y)×F(X2 → Y) = F(X1 ∪X2 → Y). By Definition 1.1 and Definition
1.3, we have

βα1 · βα2 = card(F(X1 ∪ X2 → Y)) = βcard(X1∪X2) = βα1+α2 .

Thus, we complete the proof. �

Proof of Theorem 1.5. Suppose X, Y1, Y2 are nonempty sets satisfying card(X) = α,
card(Y1) = β1 and card(Y2) = β2. By Definition 1.3, βα

1 = card(F(X → Y1)), βα
2 =

card(F(X → Y2)). By Definition 1.2, βα
1 · βα

2 = card(F(X → Y1)× F(X → Y2)). Besides
F(X → Y1)× F(X → Y2) = {map f : X → Y1 × Y2} = F(X → Y1 × Y2). By Definition
1.2, card(Y1 ×Y2) = β1 · β2. It follows that

βα
1βα

2 = card(F(X → Y1 ×Y2)) = (card(Y1 ×Y2))
card(X) = (β1 · β2)

α,

the second ”=” follows by Definition 1.2. �

Proof of Theorem 1.6. We first consider the case when α + α = α, where α is the cardinal
number of an infinite set. The proof of this case can be seen in [3, Page 30].

To prove the general result, we divide the situation into two cases:
(i) β > α and α is the cardinal number of an infinite set. Suppose X, Y satisfy X ∩ Y = ∅,
card(X) = α and card(Y) = β. Since β > α, there is a proper subset Y1 of Y s.t. card(Y1) =
card(X) = α and Y1 ∩X = ∅. Because α + α = α, we obtain card(X ∪Y1) = card(Y1) = α.
So there is a bijective map φ : X ∪ Y1 → Y1. We construct a map ψ : X ∪ Y = (X ∪ Y1) ∪
(Y \Y1)→ Y:

ψ(z) =
{

φ(z), if z ∈ X ∪Y1,
z, if z ∈ Y \Y1.

(2.2)
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Then ψ is trivially bijective, thus card(X ∪ Y) = card(Y), which indicates α + β = β =
max(α, β).

(ii) β > α, where α is the cardinal number of a finite set, β is the cardinal number of an
infinite set. Suppose X = {x1, · · · , xk}, Y is an infinite set, β = card(Y) and X ∩ Y = ∅.
Select a sequence {yj}∞

j=1 in Y. Thus,

X ∪Y =
(
{yj}∞

j=1 ∪ {x1, · · · , xk}
)
∪
(

Y \ {yj}∞
j=1

)
.

As any infinite countable set has card c0, there exists bijection η: {yj}∞
j=1 ∪ {x1, · · · , xk} →

{yj}∞
j=1. Let ω : X ∪Y → Y be defined as

ω(z) =

{
η(z), if z ∈ {yj}∞

j=1 ∪ {x1, · · · , xk},
z, if z ∈ Y \ {yj}∞

j=1.
(2.3)

It is easy to see that ω is bijective, so card(X ∪ Y) = card(Y). We conclude that α + β =
β = max(α, β). �

Remark 2.1. Applying the principal of induction, the special case in Theorem 1.6 α + α =
α can be extended to

α + · · ·+ α︸ ︷︷ ︸
k

= α,

where k ∈N, α is the cardinal number of an infinite set.

Proof of Theorem 1.7. We first consider the case when α · α = α, where α is the cardinal of
an infinite set. Suppose X satisfies card(X) = α. Define

X = {(A, φ) : A ⊂ X satisfies card(A× A) = card(A), φ : A→ A× A bijective}. (2.4)

Since X is infinite, it has countably infinite subset A0 = {xj}∞
j=1 ⊂ X and we have bijec-

tion φ0 : A0 → A0 × A0. Thus, X is nonempty. We can define the order relation in X:
(A1, φ1) < (A2, φ2)⇔ A1 ⊂ A2 and φ2|A1 = φ1. Suppose X1 is a totally ordered subset of
X. Let Ã = ∪A∈X1 A, then

Ã× Ã = ∪A∈X1,B∈X1(A× B) = ∪A∈X1(A× A).

Construct the map φ̃ : Ã→ Ã× Ã, where φ̃(x) = φ(x), if x ∈ A ∈ X1. So (Ã, φ̃) ∈ X and
(Ã, φ̃) is an upper bound for X1 in X. By Zorn Lemma, X has maximal element (A∗, φ∗).
Here are three cases as follows:

(i) X \ A∗ = ∅, i.e., X = A∗. Then α · α = α.
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(ii) card(X \ A∗) ≤ card(A∗). Let B = X \ A∗, then card(B) ≤ card(A∗), X = A∗ ∪ B
and A∗ ∩ B = ∅. By Theorem 1.6,

α = card(X) = card(A∗ ∪ B) = max(card(A∗), card(B)) = card(A∗).

So (A∗, φ∗) ∈ X, card(A∗) = card(A∗ × A∗). It follows that α · α = α.

(iii) card(X \ A∗) > card(A∗). This case cannot occur because of the reason that: If
card(X \ A∗) > card(A∗), then X has proper subset B ⊂ X \ A∗ such that card(B) =
card(A∗), i.e., there exists a bijection from B to A∗, so card(A∗ × B) = card(B ×
A∗) = card(B × B) = card(A∗ × A∗). Since B ∩ A∗ = ∅, any two of the four
product sets in the above equation do not intersect. Note the following equality:

(A∗ ∪ B)× (A∗ ∪ B) = (A∗ × A∗) ∪ {(A∗ × B) ∪ (B× A∗) ∪ (B× B)}. (2.5)

Applying Theorem 1.6 and the result in Remark 2.1, we obtain following equality:

card({(A∗ × B) ∪ (B× A∗) ∪ (B× B)})
=card(A∗ × A∗) = card(A∗) = card(B). (2.6)

Thus, there is a bijection η : B → {(A∗ × B) ∪ (B× A∗) ∪ (B× B)}. We construct
the map ω : A∗ ∪ B→ (A∗ ∪ B)× (A∗ ∪ B) as follows:

ω(z) =
{

φ∗(z), if z ∈ A∗,
η(z), if z ∈ B.

(2.7)

Then ω is bijective and ω|A∗ = φ∗. Therefore, (A∗ ∪ B, ω) ∈ X and (A∗ ∪ B, ω) >
(A∗, φ∗). This contradicts that (A∗, φ∗) is a maximal element for X, it follows that
α · α = α.

Now we turn to the general case. Suppose β > α, X, Y satisfy card(X) = α, card(Y) = β,
where β is the cardinal number of an infinite set. Without loss of generality, assume
X ∩ Y = ∅. Since X is nonempty, ∃ x1 ∈ X, so α · β = card(X × Y) ≥ card({x1} × Y) =
card(Y) = β. On the other hand, because β > α, ∃ proper subset Y1 of Y and a bijection
ψ : X → Y1. Let X1 = X ∪ (Y \ Y1), then X1 ⊃ X and we can construct a bijection
θ : X1 → Y, where

θ(z) =
{

ψ(x), if z = x ∈ X,
z, if z ∈ Y \Y1.

Since β · β = β, α · β = card(X × Y) ≤ card(X1 × Y) = β · β = β. Thus, α · β = β =
max(α, β). �

Remark 2.2. Suppose α is the cardinal number of an infinite set. Applying the principal of
induction, the special case in Theorem 1.7 α · α = α can be extended to αk = α · α · · · α = α,
k ∈N. Applying Theorem 1.7, the result in Remark 2.1 can be extended to c0α = α + α +
· · ·+ α + · · · = max(c0, α) = α.
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Question 2.1. Whether αk = α can be extended to αc0 = α for any α > c0? If not, for
which kind of α, αc0 = α holds?

When α = c0, c0
c0 = c > c0; if α = c, then cc0 = c, the proof of which can be found

in Theorem 3.2 in the Section 3. For a more common case, suppose γ0 = c, γk = 2γk−1 ,
k ∈ N. If α ∈ {γ0, γ1, · · · , γn, · · · }, then αc0 = α holds. The more general case remains to
be answered.

Before giving the proof of Theorem 1.8, we give some explanations. Theorem 1.8
means that given an infinite set X, then for any set Y satisfying card(X) ≥ card(Y) ≥ 2,
we have card(P(X)) = card(F(X → Y)). Especially, let Y = {0, 1}, then F(X → {0, 1}) =
{characteristic map χE : E ∈ P(X)}. Therefore, card(P(X)) = card(F(X → Y)), when
computing the cardinal number of P(X), the choice of Y is flexible to a certain extend.

Proof of Theorem 1.8. Since card(Y) ≥ 2, without loss of generality, assume {0, 1} ⊂ Y.
Then card(F(X → Y)) ≥ card({χE : E ∈ P(X)}) = card(P(X)). On the other hand, each
f ∈ F(X → Y) has a graph {(x, f (x)) : x ∈ X} ∈ P(X × Y). Thus card(F(X → Y)) ≤
card(P(X × Y)) = 2card(X×Y); according to Theorem 1.7 and card(X) ≥ card(Y) ≥ 2,
card(X × Y) = card(X); so card(F(X → Y)) ≤ 2card(X) = card(P(X)). In a word, by
Theorem 1.1 we get card(F(X → Y)) = card(P(X)). �

Proof of Theorem 1.9. Suppose V is an infinite-dimensional linear space over the field F
with a basis E. Any element x ∈ V can be written as x = ∑n

j=1 λjej in a unique way, where
λj ∈ F, ej ∈ E, ej1 6= ej2 , (j1 6= j2). Let α = card(E), since V is infinite-dimensional, α ≥ c0.
Let X = {(e1, e2, · · · , en; λ1, · · · , λn) : ej ∈ E, λj ∈ F, n ∈ N}. For each n ∈ N fixed, the
number of the selections of choosing n different vectors from E is αn = α (by Theorem
1.7). After choosing n different vectors, each ej multiplies λj ∈ F, βn = β possibilities
in total, where β = card(F). Thus, the cardinal number of the set consisting of all the
linear compositions of n vectors from E is α · β. It follows that card(V) ≤ card(X) =
(α · β) + (α · β) + · · ·+ (α · β) + · · · = c0(α · β) = α · β = max(α, β) (applying the result
of Remark 2.2, note that α ≥ c0).

On the other hand, because V ⊃ E and V ⊃ {λe1 : λ ∈ F}, it follows that card(V) ≥
card(E) and card(V) ≥ card(F). As a result, card(V) = max(card(E), card(F)). �

Proof the Theorem 1.10. ”⇒” suppose X, Y are two infinite sets satisfying card(X) =
card(Y). Then, there exists a bijection φ : X → Y. φ induces the map Φ : P(X) → P(Y) :
Φ(E) = φ(E) = {φ(x), x ∈ E} ∈ P(Y), where E ∈ P(x). Clearly, Φ is bijective, so
card(P(X)) = card(P(Y)). And φ can also induce the map Ψ : F(X → Q)→ F(Y → Q) :
f → Ψ( f ) = f ◦ φ−1. It is easy to check that Ψ is an algebra isomorphism from F(X → Q)
to F(Y → Q).

”⇐ ” In Introduction, we have pointed out that F(X → Q) is an algebra, now denote
it by A. Consider a special ideal family of A, denote it by S-type: An ideal I of A belongs
to S-type⇔ I satisfies the following conditions:

• (i) I 6= ∅, I 6= A;
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• (ii) I is a principal ideal, i.e., I = { f0 · g : f0 ∈ I is a fixed element, ∀g ∈ A};

• (iii) In the family of principal ideals, I is a maximal element.

It is not hard to prove that all S-type ideals are {Ix : x ∈ X}, where

Ix = {function f : X → Q; f (x) = 0}.

Similarly, all S-type ideals of F(Y → Q) are {Iy : y ∈ Y}, where

Iy = {function h : Y → Q; h(y) = 0}.

Since Ψ : F(X → Q) → F(Y → Q) is algebra isomorphism, {Ψ(Ix) : x ∈ X} ⊂ {Iy : y ∈
Y}. So card(X) ≤ card(Y); and because {Ψ−1(Iy) : y ∈ Y} ⊂ {Ix : x ∈ X}, it follows that
card(Y) ≤ card(X). In a word, we obtain the result

card(X) = card(Y)

by Theorem 1.1. �

Remark 2.3. It seems that the requirement in Theorem 1.10 is isomorphism ”Ψ : F(X →
Q) → F(Y → Q)” is not important. We concern about whether this requirement can be
removed. We make following hypothesis.

Hypothesis 2.1. Suppose X, Y are two sets. Then card(X) = card(Y) ⇔ card(P(X)) =
card(P(Y)).

This hypothesis holds in the following three cases: (1) X and Y are finite sets. (2)
the cardinal numbers of X and Y are from a special sequence {α0, α1, · · · , αn, · · · }, where
α0 = card(S), αk = 2αk−1 , k ∈ N, and S is an arbitrary infinitely set. (3) If we accept the
”continuum hypothesis”, then the hypothesis holds when max(card(X), card(Y)) ≤ c.

3 Cardinality and separability of the space

In this section, we discuss the relationship between the cardinality and the separability
of the space. A metric space is called separable if it has a countable dense subset.

Theorem 3.1. If (X, ρ) is a separable metric space, then card(X) ≤ c.

Proof. Suppose {xn}∞
n=1 is a countable dense subset of X. Then, for each x ∈ X, there

exists a subsequence {xnk}∞
k=1 converges to x, i.e., ρ(xnk , x) → 0, k → ∞. Such sequence

{xnk}∞
k=1 is not unique, but if x1 6= x2, it holds that {x(1)nk } 6= {x

(2)
nk }, where x(1)nk → x1,

x(2)nk → x2. Let
X = {{xnk}∞

k=1 : {nk} is a subsequence of N} .
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Each {xnk} corresponds to a real number t = ∑∞
n=1

εn
2n ∈ [0, 1], where

εn =

{
1, n = nk,
0, n 6= nk.

Thus, card(X) ≤ card(X) = card([0, 1]) = c.

The separability of (X, ρ) does not contribute to the separability of C(X, ρ). For ex-
ample, Let X = Rn and ρ is the Euclidean metric. Then

Cc(R
n) = { f ∈ C(Rn) : f has compact support},

C0(R
n) = { f ∈ C(Rn) : f vanishes at infinity}.

It is well-known that Cc(Rn) and C0(Rn) are separable. However, C(Rn) is not separable.
The computation of card(C(X, ρ)) needs further argument.

Theorem 3.2. Suppose (X, ρ) is a separable metric space, C(X, ρ) is the set of all continuous
functions with respect to ρ. Then, card(C(X, ρ)) = c.

Proof. For each r > 0, construct a function fr ∈ C(X, ρ) as follow,

fr(x) =
{

r− ρ(x, x0), if ρ(x, x0) ≤ r,
0, if ρ(x, x0) > r,

(3.1)

where x0 is a fixed point in X. So card(C(X, ρ)) ≥ card((0,+∞)) = c. On the other hand,
since (X, ρ) is separable, it has a countable dense subset {xn}∞

n=1 ⊂ X. Each f ∈ C(X, ρ),
since f is continuous, f is uniquely determined by { f (xn)}+∞

n=1. Let

X = {{λn}∞
n=1 : λn ∈ C, n ∈N} ,

then card(C(X, ρ)) ≤ card(X) = cc0 .
To complete the proof of Theorem 3.2, we have to prove cc0 = c. Let

l2 =
{
{λn}∞

n=1 : λn ∈ C, n ∈N and
∞

∑
n=1
|λn|2 < +∞

}
be a separable Hilbert space, by Theorem 3.1, card(l2) = c. l2 consists of Hilbert cubes
H = {{λn}∞

n=1 : λn ∈ C and |λn| ∈ In = [− 1
2n , 1

2n ], n ∈ N} = I1 × I2 × · · · × In × · · · ,
where card(In) = c. It follows that c = card(l2) ≥ card(H) = cc0 . And trivially cc0 ≥ c.
Therefore, cc0 = c.

Remark 3.1. For the equation cc0 = c, we might have such simpler explanation: since
c = 2c0 , cc0 = (2c0)c0 = 2c0×c0 = 2c0 = c. However, does (2c0)c0 = 2c0×c0 holds? Note that
2α is not the usual exponential function! In view of this and Theorem 1.4, Theorem 1.5,
we pose the following question:
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Question 3.1. Given arbitrary three cardinal numbers α1, α2, β of nonempty sets, whether
the equation (βα1)α2 = βα1×α2 holds?

Consider the space Lp, which consists of functions defined on a measure space
(X,M, µ). µ is called a complete measure ⇔ if E ∈ M and µ(E) = 0, then µ(F) = 0
for any subset F ∈ M of E. There exists a equivalence relation in M ”∼”: E1 ∼ E2 ⇔
µ((E1 \ E2) ∪ (E2 \ E1)) = 0. Given this equivalence relation, M becomes [M]. All µ-
measurable functions on X is denoted by M(X), define the equivalence relation ”∼”:
f1 ∼ f2 ⇔ f1 − f2 = 0, µ-a.e.. The quotient space M(X)/ ∼ is denoted by [M(X)]. For
0 < p < +∞, let

Lp(X, µ) =
{

f ∈ [M(X)] : ‖ f ‖p =
( ∫

X
| f |pdµ

)1/p
< +∞

}
.

Define the metric ρp as follow: for any f1, f2 ∈ Lp,

ρp( f1, f2) =

{
‖ f1 − f2‖p

p, if 0 < p < 1,
‖ f1 − f2‖p, if 1 ≤ p < +∞.

(3.2)

Then Lp(X, µ) becomes a linear metric space, 0 < p < +∞. L∞(X, µ) is the set of µ-
measurable essentially bounded functions. L∞(X, µ) can be a metric space with the met-
ric induced by the essential supremum ‖ f ‖∞.

Theorem 3.3. Suppose (X,M, µ) is a measure space with the complete measure µ. Identify-
ing the elements in M differ by a set of measure zero, we get [M]. If card([M]) ≥ c0, then
card(Lp(X, µ)) ≤ (card([M]))c0 , where 0 < p < +∞.

Proof. Let

ϕQ(X, µ) =

{
n

∑
j=1

(rj + ir′j)χEj : rj, r′j ∈ Q, Ej ∈ [M], n ∈N

}
.

It is clear that ϕQ(X, µ) is dense in Lp(X, µ), 0 < p < +∞ (see [1, pp. 200]). Thus,
for each f ∈ Lp(X, µ), there is a sequence of functions { fn}∞

n=1 ⊂ ϕQ(X, µ) satisfying
‖ fn − f ‖p → 0, such { fn}∞

n=1 is not unique. But if f 6= g, it must hold that { fn} 6= {gn},
where ‖gn − g‖p → 0. It follows that card(Lp(X, µ)) ≤ (card(ϕQ(X, µ)))c0 .

And since ϕQ(X, µ) is a linear space over Q + iQ, {χE : E ∈ [M]} = E is its basis,
trivially card(E) = card([M]), by Theorem 1.7,

card(ϕQ(X, µ)) = max(card(E), card(Q + iQ)) = max(card([M]), card(Q + iQ)).

And because card([M]) ≥ c0 = card(Q) = card(Q× {0, 1}) = card(Q + iQ), it follows
that card(ϕQ(X, µ)) = card([M]). Therefore, we get the result that card(Lp(X, µ)) ≤
(card([M]))c0 , where 0 < p < +∞.
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Remark 3.2. For general measure space (X,M, µ), whether φQ(X, µ) is dense in L∞(X, µ)
is not sure. We must make an assumption of µ. For example, if µ(X) < +∞, then
φQ(X, µ) is dense in L∞(X, µ), so the result of Theorem 3.3 also holds for the case when
p = +∞.

Theorem 3.4. Suppose (X, ρ) is a separable metric space, (X,M, µ) is a measure space. If
C(X, ρ) is dense in Lp(X, µ), then card(Lp(X, µ)) ≤ c, where 0 < p < +∞.

Proof. (X, ρ) is separable, so card(C(X, ρ)) = c by Theorem 3.2. If C(X, ρ) is dense in
Lp(X, µ), then using a similar argument to the proof of Theorem 3.3, we can show that

card(Lp(X, µ)) ≤ (card(C(X, ρ)))c0 = cc0 = c.

Now we consider how to make C(X, ρ) dense in Lp(X, µ)? Use B(x0, r) to denote the
open ball in X of radius r centering at x0. BX is the Borel algebra generated by open sets
in X. Suppose (X,M, µ) is a measure space, where M ⊃ BX and µ has the following
regular properties: (i) ∃x0 ∈ X s.t. µ(B̄(x0, r)) < +∞, ∀r ∈ [0, ∞); (ii) ∀E ∈ M, µ(E) =
inf{µ(V) : open set V ⊃ E} = sup{µ(U) : closed set U ⊂ E}.

Theorem 3.5. (X, ρ) is a metric space and (X,M, µ) is a measure space. If µ is regular, then
C(X, ρ) is dense in Lp(X, µ), where 0 < p < +∞.

Proof. In the proof of Theorem 3.3, we have shown that φQ(X, µ) is dense in Lp(X, µ)
(0 < p < +∞). Now we consider using continuous functions to approach χE (E ∈ [M]).
For any fixed ε > 0, by the regularity of µ, there exists a closed set Uε and an open Vε

such that Uε ⊂ E ⊂ Vε and µ(Vε \Uε) < ε. Let

fε(x) =
d(x, X \Vε)

d(x, X \Vε) + d(x, Uε)
,

where d(x, W) = inf{ρ(x, y) : y ∈ W} is the distance between x and W. By the axiom
(iii) of ρ, d(x, W) is continuous function of x. It follows that fε ∈ C(X, ρ), 0 ≤ fε ≤ 1 and
χUε ≤ fε ≤ χVε . So ∫

X
|χE − fε|pdµ ≤ µ(Vε \Uε) < ε, (0 < p < ∞).

Thus, C(X, ρ) is dense in Lp(X, µ), where 0 < p < ∞.

Combining Theorem 3.4 and Theorem 3.5, we get the following corollary.

Corollary 3.1. Suppose C(X, ρ) is a separable metric space, (X,M, µ) is a measure space with
regular measure µ. Then, card(Lp(X, µ)) ≤ c, where 0 < p < +∞.

Corollary 3.2. Suppose µ is a σ-finite measure of (X,M, µ) and card([M]) > c. Then, Lp(X, µ)
is not separable, where 0 < p ≤ +∞.
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Proof. First, we assume that µ is a finite measure, i.e., µ(X) < +∞. Then, any set E ∈ [M]
corresponds to a characteristic function χE ∈ Lp(X, µ)(0 < p ≤ +∞). Since card([M]) >
c, card(Lp(X, µ)) ≥ card([M]) > c. Therefore, Lp(X, µ) is not separable. Otherwise, if
Lp(X, µ) is separable, by Theorem 3.1, card(Lp(X, µ)) ≤ c. A contradiction!

When µ is a σ-finite measure, we can get the result by using the result of the finite
measure case, we leave out the details here.

Question 3.2. For general metric space (X,M, µ), when card([M]) = c, whether Lp(X, µ)
is separable?

We only consider the Euclidean space below. Let X = Rn, µ = µL is the Lebesgue
measure. Denote the Lesbesgue measure space by ML. After the process of completion,
we get [ML]. The set of all Lebesgue measurable functions is denoted by ML(R

n), given
the equivalence relation as before, we get [ML(R

n)]. C(Rn) represents the set of all con-
tinuous functions with respect to Euclidean topology on Rn, the dual space of Schwartz
space S(Rn) is the tempered distribution space S′(Rn).

Theorem 3.6. card(C(Rn)), card(Lp(Rn)), card([ML(R
n)]), card(S′(Rn)) = c.

Proof. (i) For Rn is separable, by Theorem 3.2, card(C(Rn)) = c.
(ii) For any r > 0, corresponds to a function χB(0,r) ∈ Lp(Rn), so card(Lp(Rn)) ≥

card((0,+∞)) = c. On the other hand, since C(Rn) is dense in Lp(Rn) (by Theorem 3.5),
where 0 < p < +∞. It follows that card(Lp(Rn)) = c holds when 0 < p < +∞. The
computation of card(L∞(Rn)) is consisted in the case (iii).

(iii) Let Xk = { f · χ{k−1≤|x|≤k} : f ∈ L∞(Rn)}. Then f ∈ L∞(Rn) can be written
as f = ∑∞

k=1 fk, where fk ∈ Xk has compact support. Clearly, Xk ⊂ Lp(Rn)(0 < p <
∞), so card(Xk) ≤ card(Lp(Rn)) = c. It follows that card(L∞(Rn)) ≤ card(X1 × · · · ×
Xk × · · · ) ≤ cc0 = c; and since χB(0,r) ∈ L∞(Rn), card(L∞(Rn)) ≥ card((0,+∞)) = c.
Therefore, we get the result that card(L∞(Rn)) = c.

Since L∞(Rn) ⊂ [M(Rn)], card([M(Rn)]) ≥ card(L∞(Rn)) = c. On the other hand,
each g ∈ [M(Rn)] can be written as g = ∑∞

k=1 gk, where gk = gχ{x:k−1≤|g(x)|<k} ∈ L∞(Rn).
Therefore,

card([M(Rn)]) ≤ (card(L∞(Rn)))c0 = cc0 = c.

(iv) The computation of S′(Rn) is rather complicated, we give an outline of the proof
as below: each u ∈ S′(Rn) corresponds to a sequence of {uk}, where uk ∈ S′(Rn)k, k ∈N,
where

S′(Rn)k = {u ∈ S′(Rn) : supp(u) ⊂ B̄(0, k + 1) = {x ∈ Rn : |x| ≤ k + 1}}.

It follows that each S′(Rn)k is a subset of tempered distribution with fixed compact sup-
port. We define uk : uk( f ) = u(Ωk f ), ∀ f ∈ S(Rn),

Ωk(x) = ωk(|x|) = ωk

(√
x2

1 + · · ·+ x2
n

)
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and ωk is an one-variable function:

ωk(t) =


1, if 0 ≤ t ≤ k,
ω0(t− k), if k < t < k + 1,
0, if t ≥ k + 1,

ω0(t) = 1− λ0

∫ t

0
exp(−1/s(1− s))ds,

where

λ0 =

(∫ 1

0
exp(−1/s(1− s)) ds

)−1

.

Then ω0 ∈ C∞([0, 1]), and

ω0(0) = 1, ω0(1) = 0, ω(k)(0) = ω(k)(1) = 0, (k ∈N).

Thus Ωk has special property: ‖∂αΩk‖∞ ≤ Cα, the constant Cα is independent with k. We
can show that uk weakly converges to u, i.e., for any f ∈ S(Rn), limk→∞ uk( f ) = u( f ). It
follows that card(S′(Rn)) ≤ ∏∞

k=1 card(S′(Rn)k).
The tempered distribution with compact support uk has Fourier transform ûk ∈

C∞(Rn) (see [1, pp. 291–296]). So card(S′(Rn)k) ≤ card(C∞(Rn)) = c. It follows that
card(S′(Rn)) ≤ c. On the other hand,

card(S′(Rn)) ≥ card(L∞(Rn)) = c.

Therefore, card(S′(Rn)) = c.

Remark 3.3. the cardinal number of the Cantor set in R of zero measure is c, and because
Lebesgue measure is complete, the cardinal number of the set of all sets of zero measure
in R is = 2c. Since the union of a non-measurable set and a measurable set is non-
measurable if they do not intersect, the cardinal number of the set of all non-measurable
sets is = 2c.

Question 3.3. Suppose ML is the set of all Lesbesgue measurable sets in Rn, then all non-
measurable sets = P(Rn) \ML, after adding the equivalence relation (identifying the sets
differ by a set of measure zero), denote it by [P(Rn) \ML], then what is card([P(Rn) \
ML])? This is what we will consider next.
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