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Abstract. Let A be a general expansive matrix on R"”. The aims of this article are
twofold. The first one is to give a survey on the recent developments of anisotropic
Hardy-type function spaces on R”, including anisotropic Hardy-Lorentz spaces,
anisotropic variable Hardy spaces and anisotropic variable Hardy-Lorentz spaces as
well as anisotropic Musielak-Orlicz Hardy spaces. The second one is to correct some
errors and seal some gaps existing in the known articles. Some unsolved problems are
also presented.
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1 Introduction

In order to meet the requirements arising in the development of harmonic analysis and
partial differential equations, there has been more and more research in extending clas-
sical function spaces from Euclidean spaces to some more general underlying spaces;
see, for instance, [8, 34, 44, 47,49, 58, 85,90, 116]. In 2003, to give a unified framework
of the real-variable theory of both the isotropic Hardy space and the parabolic Hardy
space of Calderén and Torchinsky [19], for the first time, Bownik [12] introduced the
anisotropic Hardy space H Z (R") with p € (0,00), where A is a general expansive matrix
on R” (see [12, p. 5, Definition 2.1]). In [12], Bownik also established the characterizations
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of H Z(]R”), respectively, in terms of atoms, maximal functions and tight frame multi-
wavelets (see [12, p. 94, Definition 4.2]), and proved as well that the dual space of HZ (R™)
with p € (0, 1] is the anisotropic Campanato space; as applications, Bownik [12] also ob-
tained the boundedness of anisotropic Calderén-Zygmund operators from H/ (R") to
itself (or to the Lebesgue space LP(R")). Later on, Bownik et al. [16] further extended the
anisotropic Hardy space to the weighted setting. Very recently, Wang [110] considered
a multiplier theorem on anisotropic Hardy spaces H (R"). Nowadays, the anisotropic
setting has proved useful not only in developing function spaces, but also in many other
branches such as the wavelet theory (see, for instance, [5,12,25]) and partial differential
equations (see, for instance, [18,53]).

Let us briefly recall some history of the study of anisotropic function spaces. It has
been developed parallel to the theory for isotropic spaces; we refer the reader in partic-
ular to the monographs [9, 88] (and the articles mentioned there), and to the survey [10].
For any p € (1,00) and {s;}/"; C IN, the (classical) anisotropic Sobolev space on R"
contains all f € L?(IR") such that

& f , .
e € LP(R") forany i€ {1,---,n}.
X

1

It is obvious that, unlike in case of the isotropic Sobolev space (namely, the case when
s = -+ - = 5,), the smoothness properties of an element depend on the chosen direction
in R". The number s, defined by setting 1 := %(% +--- é), is usually called the mean
smoothness, and a = (a1, -- ,a,), given by a; := Sii, i € {1,---,n}, characterizes the
anisotropy. Similarly to the isotropic situation, more general scales of anisotropic Bessel
potential spaces (fractional Sobolev spaces), anisotropic Besov spaces and anisotropic
Triebel-Lizorkin spaces were studied. It is well known that the isotropic theory has a
more or less complete counterpart of the fundamentals (definitions, description via dif-
ferences and derivatives, elementary properties, embeddings for different metrics, in-
terpolation) in the context of anisotropic spaces. A survey on the basic results for the
(anisotropic) spaces of Besov or Triebel-Lizorkin type was given in [94, Subsections 4.2.1
through 4.2.4] (with preceding results in [83,92,93,103-106]) and [57, Sections 2.1 and
2.2]. More recently, several authors were concerned with the problem of obtaining use-
ful decompositions of anisotropic function spaces of Besov and Triebel-Lizorkin type.
A construction of unconditional bases using Meyer wavelets was obtained in [7, 8]; see
also [44, 45,49]; a different approach, involving the ¢-transform of Frazier and Jawerth
(see [40,41]) was followed in [28-30]; see also [95]. More recent contributions can be
found in [13-15] and [55, 61, 62]. Based on the approach used in [107,108], further repre-
sentations were obtained by local means, atomic and sub-atomic decompositions, which
can be found in [34,47]; see also [24,35,36,101,112,113] for applications. Finally, let us
refer the reader to [109, Chapter 5] where Triebel gave a very nice and detailed sum-
mary of the history, recent developments and the state-of-the-art (in 2006), which we also
recommend for further references. Moreover, Barrios et al. [4] further characterized the
anisotropic Besov spaces in terms of Peetre maximal functions and approximations; Li et
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al. [64] presented the duality theory of weighted anisotropic Besov and Triebel-Lizorkin
spaces; Li et al. [65] and Liu et al. [80, 81] established the characterizations of weighted
anisotropic Besov and Triebel-Lizorkin spaces via Littlewood-Paley functions involving
ball averages. In addition, anisotropic weak Hardy spaces were studied by Ding et al. [27]
and Barrios et al. [5], which were just special cases of anisotropic Hardy-Lorentz spaces
introduced by Liu et al. in [77,79]; anisotropic local Hardy spaces were investigated
by Betancor et al. [11]; weighted anisotropic product Hardy spaces were considered by
Bownik et al. [17] and Li et al. [63]. In 2014, based on the work of both Bownik [12] and
Ky [60], Li et al. [68] introduced the anisotropic Musielak—Orlicz Hardy space, which was
a generalization of the anisotropic Hardy space of Bownik [12], the weighted anisotropic
Hardy space of Bownik et al. [16] as well as the Musielak—-Orlicz Hardy space of Ky [60].
Recently, the anisotropic product Musielak-Orlicz Hardy space was studied by Fan et al.
in [32] and the anisotropic mixed-norm Hardy space by Huang et al. in [51].

The main purposes of this article are twofold. The first one is to give a survey on
the recent developments of anisotropic Hardy-type function spaces on R", including
anisotropic Hardy-Lorentz spaces, anisotropic variable Hardy spaces, anisotropic vari-
able Hardy-Lorentz spaces and anisotropic Musielak—Orlicz Hardy spaces. To be pre-
cise, the main results that we review include: various real-variable characterizations of
these four kinds of function spaces, the boundedness of Calderén-Zygmund operators
on anisotropic Hardy-Lorentz spaces and Musielak-Orlicz Hardy spaces, the bounded-
ness of maximal operators of the Bochner—Riesz and the Weierstrass means on anisotropic
variable Hardy spaces and Hardy-Lorentz spaces as well as some real interpolation re-
sults. The second purpose is to correct some errors and seal some gaps existing in the
proofs of Lusin area function characterizations of the above four kinds of function spaces,
namely, the proofs of the sufficiencies of, respectively, [79, Theorem 2.7], [75, Theorem
6.1], [78, Theorem 5.2] and [67, Theorem 2.8]. In addition, some unsolved problems are
also presented.

The organization of this survey is as follows.

In Section 2, we first give some notation which are used throughout this article and
then recall some notions on expansive matrices and homogeneous quasi-norms.

The aim of Section 3 is the summary of anisotropic Hardy-Lorentz spaces H" (R")
with p € (0,00), g € (0,00] and A being a general expansive matrix. To this end, we
first recall the notion of Lorentz spaces LP(IR") which are then used to define H," (R™").
Moreover, in Subsections 3.2 and 3.3, various real-variable characterizations of the spaces
H f"q (R™), respectively, in terms of maximal functions, atoms, finite atoms, molecules and
the Lusin area functions as well as the Littlewood-Paley g-functions or g;-functions, es-
tablished in [77,79], are presented. Some errors and gaps existing in the proof of the suf-
ficiency of [79, Theorem 2.7] are also corrected and sealed in Subsection 3.3. As an appli-
cation, the fact that the space H;"(R") is an intermediate space between H%""' (R") and
HP”(R™) with 0 < p1 < p < p2 < c0and q1, 4,92 € (0, 0], and also between H" (R")
and HY" (R") with p € (0,00) and 0 < g1 < g < g2 < oo in the real method of interpo-
lation, proved in [77, Theorem 6.1], is displayed. As another application, the bounded-
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ness of J-type Calderén—Zygmund operators from H’, (R") to the weak Lebesgue space
LP*(R") (or to HY”(R")) in the critical case, from Hf;’% (R") to itself (or to LP7(IR")) with
J € (0, %]’ p € (135,1] and g € (0,0}, as well as the boundedness of some Calderén-
Zygmund operators from H f"q (R™) to LF*°(IR"), obtained in [77, Subsection 6.2], are also
given, where b := |det A|, A € (1, min{|A|: A € 0(A)}]| and 0(A) denotes the set of all
eigenvalues of A.

In Section 4, we give the real-variable theory of anisotropic variable Hardy spaces
HZ(')(]R”), where the variable exponent function, p(-) : R" — (0, o], satisfies the so-
called globally log-Holder continuity condition (see [75, (2.5) and (2.6)]). For this pur-
pose, we first recall the definition of variable Lebesgue spaces LP)(IR™), which are the
associated basic function spaces of H f\(') (R"), and then present the notion of the spaces
H Z(') (R™). Furthermore, we display various real-variable characterizations of the spaces

H Z(') (R") from [75], respectively, by means of maximal functions, atoms, finite atoms,
and the Lusin area functions as well as the Littlewood-Paley g-functions or g}-functions.
Some errors and gaps existing in the proof of the sufficiency of [75, Theorem 6.1] are also
corrected and sealed in Subsection 4.3. As applications, a criterion on the boundedness of

some sublinear operators from H Z(') (R") into a quasi-Banach space and the boundedness

of maximal operators of the §-summability means from Hf\(') (R") to Lr0) (R™), obtained
in [75], are presented.

Section 5 is devoted to the introduction of the real-variable theory of anisotropic vari-
able Hardy-Lorentz spaces HZ(')’q(IR”), with p(-) as in Section 4 and g € (0, o], which
are the generalizations of the spaces H7(IR") considered in Section 3. To this end, we
successively recall the notions of variable Lorentz spaces LP()7(R") from [59] and the
spaces H Z(')’q(]R”) from [78]. Then various real-variable characterizations of the spaces

HZ(') ’q(]R”), respectively, in terms of maximal functions, atoms, finite atoms, and the
Lusin area functions as well as the Littlewood-Paley g-functions or g}-functions, es-
tablished in [76,78], are presented. Some errors and gaps existing in the proof of the
sufficiency of [78, Theorem 5.2] are also corrected and sealed in Subsection 5.2. As an

application of the real-variable characterizations of both H f‘(') (R") and HZ(‘)’q(lR”), areal
interpolation result, obtained in [78, Theorem 6.2], is displayed. Moreover, we review a

criterion on the boundedness of some sublinear operators from H Z(')’q(]R") into a quasi-
Banach space and the boundedness of maximal operators of the 8-summability means
from Hfl(')’q(IR”) to LP()A(IR™); see [76].

In Section 6, we present the real-variable theory of anisotropic Musielak-Orlicz Hardy
spaces HY (R") with ¢ : R" x [0,00) — [0,00) being an anisotropic growth function
(see [68, Definition 3]). For this purpose, we first recall the notions of the class of uniform
anisotropic Muckenhoupt weights, anisotropic growth functions as well as Musielak—
Orlicz spaces L?(R"), and then the definition of the spaces H% (IR"). Moreover, we point
out that the anisotropic Musielak-Orlicz Hardy space H% (IR") and the anisotropic vari-
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able Hardy space Hfl(') (IR™) (see Section 4) cannot cover each other; see Remark 6.1(ii)
below. Then we display several real-variable characterizations of the spaces H%(R"),
respectively, by means of atoms, molecules and the Lusin area functions as well as the
Littlewood-Paley g-functions or g}-functions, which are established in [67,73,74]. Some
errors and gaps existing in the proof of the sufficiency of [67, Theorem 2.8] are also cor-
rected and sealed in Subsection 6.3. As an application of these real-variable character-
izations, the boundedness of integral anisotropic Calderén-Zygmund operators from
H%(R") to itself (or to the Musielak-Orlicz space L?(IR")), the dual spaces of H (R")
and the characterizations of HY (R") via the so-called tight frame multiwavelets, obtained
in [73,74], are reviewed.

2 Notions and notation

In this section, we give some notation and recall some notions on expansive matrices and
homogeneous quasi-norms which are used throughout this article.

We always let N := {1,---}, Z, := {0} UN and 0, be the origin of R”. For any
multi-index & := (ay,- -+ ,&,) € (ZL)" =: 2", let |a| := a1 + - - - + &, and

N 0 \“ 0 \*

We use the symbol C to denote a positive constant which is independent of the main pa-
rameters and may change from line to line, and use C, g,...) to denote a positive constant
depending on the indicated parameters «, 3, - - - . The symbol f < g means f < Cg and,
when f < ¢ S f, we write f ~ g. We also use the following convention: If f < Cg
and g = horg < h,wethenwrite f S g ~hor f < g < h ratherthan f S g =hor
f S g < h. In addition, for any set F C IR", we denote by 1r its characteristic function
and by |F| its n-dimensional Lebesgue measure. For any r € [1, 00|, we denote by 7’ its
conjugate index, namely, 1/r +1/r" = 1 and by [s| (resp. [s]) the largest (resp. least)
integer not greater (resp. less) than s for any s € R.

Denote by L} _(R") the set of all locally integrable functions on R". For any r €
(0, o] and measurable set E C R", denote by the symbol L’(E) the set of all measurable
functions f such that, when r € (0, 0),

1l ey := [/E \f(x)\rdx} v < 00

and

1 £llL() := ess sup | f(x)| < co.

x€E
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Recall that an 7 x n matrix A is called an expansive matrix, shortly a dilation, if

min |[A] > 1,
Aec(A)

here and thereafter, c(A) denotes the set of all eigenvalues of A (see, for instance, [12]).
The following notion of homogeneous quasi-norms is just [12, p. 6, Definition 2.3].

Definition 2.1. Let A be a given dilation. A measurable mapping p : R" — [0,00) is
called a homogeneous quasi-norm, associated with A, if

(i) x # 0, implies p(x) € (0, );
(ii) forany x € R", p(Ax) = bp(x), here and thereafter, b := | det A|;

(iii) there exists a constant R € [1,00) such that, for any x, y € R", p(x +y) < R[p(x) +
p(y)l-

By [12, p. 5, Lemma 2.2], we know that, for a given dilation A, there exist some r &
(1,00) and an open ellipsoid A, with |A| = 1, such that A C rA C AA. Then, for any
i € Z, it is easy to see that B; := A'A is open, B; C rB; C B;,1 and |B;| = b'. For any
x € R"and i € Z, x + B; is called a dilated ball. Let

B:={x+B;: xecR"andi € Z}, (2.1)
and
T::inf{iGZ: rfzz}. 2.2)

For any given dilation A, due to [12, p. 6, Lemma 2.4], we can use the step homogeneous
quasi-norm p defined by setting, for any x € R",

p(x):=)_ bilB’_H\B’_(x) when x #0,, orelse p(0,):=0,
i€Z

for convenience. Let A_ and A be two positive numbers such that
1< A <min{|A|: A€ c(A)} <max{|A|: A €ec(A)} <Ay
In particular, when A is diagonalizable over C, we can let
A :=min{|A]: A €0(A)} and Ay :=max{|A]|: A €0(A)}.

Otherwise, we can choose them sufficiently close to these equalities in accordance with
what we need in our arguments.

Recall also that a Schwartz function is an infinitely differentiable function ¢ satisfying,
forany ¢ € Z and multi-index & € Z',

[¢]lac == sup [p(x)]*[9*p(x)| < co.

xeR"
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Let 8(R") be the set of all Schwartz functions as above, equipped with the topology
determined by {|| - [|s¢}acz" tez,, and 8'(R") its dual space, equipped with the weak-*
topology. For any N € Z_, let

SN(R") := < p €8(R"): [[¢llsywr):= sup sup [|a"‘<p(x)|max{1, [P(x)]NH <1
x ez xeR”
la] <N

Throughout this article, for any ¢ € §(R") and i € Z, let ¢;(-) := b~'p(A~.).

3 Anisotropic Hardy-Lorentz spaces

In this section, we first recall the definition of anisotropic Hardy-Lorentz spaces H,, (R")
introduced in [77] and then present various real-variable characterizations of H',7(R")
established recently in [77,79].

3.1 Definition of anisotropic Hardy-Lorentz spaces

We begin with the notion of Lorentz spaces. Let p € (0,00) and g € (0, c0]. The Lorentz
space LP1(IR") is defined to be the set of all measurable functions f with finite LP4(IR")
quasi-norms || f| ps(rr) given by

00 1/q
{Z/ [tl/pf*(t)}qit} , when g € (0,00),
. 0
1 eraeey = su [tl/P *(t h -
p 11, when g = oo,
te(0,00)

where f* denotes the non-increasing rearrangement of f, namely, for any ¢ € (0, )
fr(t) :=inf{a € (0,00) : dp(a) <t}

Here and thereafter, for any « € (0, 0),

de(a) == [{x € R" : [f(x)] > a}]. (3.1)
Then, when g € (0, 0),
) / 1/q 1/p19 1/q
Wiy~ { [0t ) an) {8 e} T} 6o
€z

and

Iflirmise ~ sup (o [dy@)] 7}~ sup {2 [ay2)] "}

a€(0,00) kez

where the positive equivalence constants are independent of f; see [46].



380 J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456

Definition 3.1. Let ¢ € §(R") and f € 8'(R"). The non-tangential maximal function
My (f) with respect to ¢ is defined by setting, for any x € R”,

My(f)(x) == sup |f*or(y)l. (3.3)
yEX+By, keZ

Moreover, for any given N € IN, the non-tangential grand maximal function My(f) of
f € 8'(R") is defined by setting, for any x € R”,

Mn(f)(x) == sup My(f)(x). (3.4)
peSN(R")

The following notion of anisotropic Hardy-Lorentz spaces is just [77, Definition 2.5].

Definition 3.2. Let p € (0,00), g € (0, 0] and

1 Inb
— — 1> J +2, When P S (0/ 1]/
N(p) — { \‘(p InA_
2,

when p € (1,0).

For any N € IN N [N(,,), %), the anisotropic Hardy-Lorentz space H,"(IR") is defined by

setting
HY'Y(R") := {f € 8'(R") : Mn(f) € LP(R")}

and, for any f € H"(R"), let 1 ez gy == (IMN () pa e -

Remark 3.1. (i) Even though the quasi-norm of H",’(IR") in Definition 3.2 depends on
N, from [77, Theorem 3.6] (see also Theorem 3.1 below), it follows that the space
HY(R") is independent of the choice of N as longas N € N N[N, (p) ®)-

(ii) Obviously, when p = g, H}?(R") becomes the anisotropic Hardy space H’, (IR")
introduced by Bownik in [12] and, when g = co, H,(R") is the anisotropic weak
Hardy space H; (R") investigated by Ding and Lan in [27].

(iii) Very recently, via the variable Lorentz spaces £P()4()(IR") in [31], where

p(+), q(-) : (0,00) = (0,00)

are bounded measurable functions, Almeida et al. [2] investigated the anisotropic
variable Hardy-Lorentz spaces HP()1()(R", A). Clearly, when p(-) = a constant €
(0,00) and g(-) = a constant € (0,c0), the space HP()7()(R", A) goes back to the
anisotropic Hardy-Lorentz space H(R"). However, the space H?()1()(R", A)
cannot cover the space H,(IR"), because the variable exponent q(-) in £7()40) (R")
belongs to (0, o).

(iv) Let p € (0,00),9 € (0,00] and N € NN [N(,), ). Then HY'(R") C 8'(R") with
continuous inclusion and H?(R") is complete; see [77, Propositions 2.7 and 2.8].
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3.2 Some equivalent characterizations of H/7(IR")

Recall that the notion of anisotropic (p, r, s)-atoms was first introduced by Bownik in [12,
p- 19, Definition 4.1].

Definition 3.3. An anisotropic triplet (p,r,s) is said to be admissible if p € (0,1], r €

(1,00] and
s€EZ.N H<;—1> 1r11nAbJ ,oo>. (3.5)

For an admissible anisotropic triplet (p,7,s), a measurable function a on R" is called an
anisotropic (p, 1, s)-atom (shortly, a (p, 7, s)-atom) if

(i) suppa:={x € R": a(x) # 0} C B, where B € B and B is as in (2.1);
(i) [laller ey < [BIY"1P;
(iii) for any & € Z" with |a| <'s, [, a(x)x*dx =0.

Via (p,r,s)-atoms, Liu et al. [77] introduced the anisotropic atomic Hardy—-Lorentz
space H"*1(IR") as follows.

Definition 3.4. Let A be a dilation, (p,r,s) an admissible anisotropic triplet and g €
(0, c0]. The anisotropic atomic Hardy-Lorentz space H,*/(IR") is defined to be the set
of all f € §'(R") satisfying that there exist a sequence of (p,r,s)-atoms, {a*}icn ez,
supported, respectively, in {Bf}icnrez C 9B, and a positive constant C such that
YieN 135;(3() < Cforany x € R" and k € Z, and

f=Y Y Aldb in $'(RY),

keZ ieIN

where A¥ ~ 2K|BK|Y/P for any k € Z and i € N with the positive equivalence constants
independent of k and i.
Moreover, for any f € H"7(R"), let

1/q

q/p
1l oy = i 2(2%?) N

keZ \ieN keZ icIN

with the usual modification made when g = co, where the infimum is taken over all the
decompositions of f as above.

We next recall the definition of anisotropic molecular Hardy-Lorentz spaces
HY“1(R") from [77].
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Definition 3.5. (i) An anisotropic quadruple (p,r,s,¢€) is said to be admissible if p €
(0,1], r € (1,00], s is as in (3.5) and ¢ € (0,00). For an admissible anisotropic
quadruple (p,r,s,¢€), a measurable function m is called an anisotropic (p,7,s,€)-
molecule (shortly, a (p, 1, s, €)-molecule) associated with a dilated ball B € B if

(i) foreachje Z,,
]| sy < 07F[BIY VP,
where Uy(B) := B and, for any j € N, Uj(B) := (A/B) \ (A/"'B);
(i)2 forany a € Z' with |a| <,

/n m(x)x*dx = 0.

(ii) Let (p,r,s,€) be an admissible anisotropic quadruple and g € (0,c0]. The
anisotropic molecular Hardy-Lorentz space H,,””“7(R") is defined to be the set
of all f € 8'(R") satisfying that there exist a sequence of (p,1,s,¢)-molecules,
{m*}icn kez, associated, respectively, with dilated balls {Bf};cniez C B, and a
positive constant C such that Y; 1 B (x) < C for any k € Z and x € R", and

f=Y Y Amf in 8'(R"),

keZicIN

where AF ~ 2F|BF|1/ for any k € Z and i € N. Moreover, for any f € H"7“"(R"),
let

q/p /4
oo = i {z(zw) } =¥ XAk

keZ \ieN keZ iceN

with the usual modification made when g = oo, where the infimum is taken over
all the decompositions of f as above.

The following atomic and molecular characterizations are, respectively, from [77, The-
orems 3.6 and 3.9].

Theorem 3.1. Let (p,1,s,¢€) be an admissible anisotropic quadruple as in Definition 3.5 with
e € (max{1, (s +1)log,(A+)},00), g € (0,00] and N € N [N,), ). Then

Hﬁ,r,s,q (]Rn) — HZ:‘? (IR") — Hf\,r,s,e,q (Rn)

with equivalent quasi-norms.
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Let ¢ € 8(R"). The radial maximal function M{,(f) of f € 8'(IR"), with respect to ¢,
is defined by setting, for any x € R",

Mo (f)(x) = sup |f * pr(x)]- (3.6)

In [77, Theorem 4.9], the authors also obtained the maximal function characterizations
of HY'(R") as follows.

Theorem 3.2. Suppose that p € (0,00), g € (0,00] and ¢ € 8(R") satisfying [, ¢(x)dx # 0.
Then, for any f € 8'(IR"), the following statements are mutually equivalent:

(i) fe HZ'q(lR”);
(i) My(f) € LP(R");
(iii) MY(f) € LP(R").
Moreover, there exist two positive constants C and C, independent of f, such that

1l < € ||MB(F) < ClMp(F) ey < ClF Lo

Definition 3.6. For an admissible anisotropic triplet (p, r,s), g € (0, o], the anisotropic fi-
nite atomic Hardy-Lorentz space H/:"7(IR") is defined to be the set of all f € §'(R") sat-

isfying that there exist K, I € N, a f1n1te sequence of (p, r,s)-atoms, {a¥ Yiep,nnN ke[LKINZ/

LPA(R")

supported, respectively, in {Bf e, nnNke, Kinz C B, and a positive constant C, inde-
pendent of I and K, such that Y_/_; 1 : se(x) < Cforany x € R" and k € [1,K] N Z, and

1

f= ZZ/\ai-‘ in 8'(R"),

=1
where A ~ 2F|B¥|1/P for any k € [1,K]NZ and i € [1,1] NN with the positive equiva-

lence constants independent of k, K and i, I. Moreover, for any f € H Z rﬁan(]R") let

k=1

1
117
K 1 p K 1
1 llzz20 e = i [Z (ZW) ] =Y YAk KIeN
’ i=1 k=1i=1

with the usual modification made when g = co, where the infimum is taken over all the
decompositions of f as above.

In what follows, denote by C(IR") the set of all continuous functions. The following
conclusion was established in [77, Theorem 5.7].

Theorem 3.3. Let (p,r,s) be an admissible anisotropic triplet and q € (0, oo].

(i) Ifr € (1,00), then | - || HE29 (R and || - || HYA(Re) 7€ equivalent quasi-norms on
P
HA fin (an)

(ii) || - HHf{,ng’q(]R") and || - HHfﬁ(IR”) are equivalent quasi-norms on HZ SR N C(R).
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3.3 Littlewood-Paley function characterizations of H/7(IR")

In this subsection, we display the characterizations of H,/? (R") in terms of the anisotropic
Lusin area function, the anisotropic Littlewood-Paley g-function or g} -function; see [79].
Meanwhile, we also correct some errors and seal some gaps existing in the proof of
the sufficiency of [79, Theorem 2.7], namely, the Lusin area function characterizations
of HY'(R™).

Recall that a distribution f € 8'(IR") is said to vanish weakly at infinity if, for
each p € S(R"), f*x¢p — 0in 8'(R") as k — oo. Denote by 8)(R") the set of all
f € 8'(R") vanishing weakly at infinity. Letz := v/—1 and, for any x := (x1,---,xy),
v:=(vy, - ,vy) € R, x-v:= Y}, 50 Forany f € L}(R"), denote by fthe Fourier
transform of f, which is defined by setting, for any v € R",

f(v):= Rnf(x)e’zmx'”dx. (3.7)

The following Calderén reproducing formula is just [17, Proposition 2.14]. In what
follows, C°(IR") denotes the set of all infinitely differentiable functions with compact
support on R".

Lemma 3.1. Lets € Zy and A := (a;;)1<i,j<n be a dilation. Assume that 6 € CZ°(R") satisfies
supp 6 C By,

/ x"0(x)dx =0 forany vy € Z with |y| <s,

and 0(Z) > Cforany & € {x € R" : (2||A]|)"! < p(x) < 1}, where C is a positive constant
and
n 1/2
lall:= (Y laii2) "
ij=1
Then there exists some ¢ € S(IR™) such that

(i) supp ¢ is compact and away from the origin;

(i) forany & € R\ {0,},

Y ¢ ((aye)o(aye) =1,

jez
where A* denotes the adjoint matrix of A.
Moreover, for any f € 8§(R"), f = Ljcz f * j * 0; in 8'(R").

Let0 € 8§(IR") be asin Lemma 3.1 with s asin (3.5). Forany f € 8'(R") and A € (0, o),
the anisotropic Lusin area function S(f), the anisotropic Littlewood-Paley g-function
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g(f) and the anisotropic Littlewood-Paley g;-function g;(f) are defined, respectively,
by setting, for any x € R",

1/2
I Gk(y)lzdy] , (3.8)

(A= | Lo [

| keZ X+

- 1/2
g)x) = X |f*9k(x)!2] ,

=
and

A

1/2
* o —k bk % 2
() = {?:;b [ A dy} .

In [79, Theorems 2.7 through 2.9], the authors characterized the space H Z’q(IR”), respec-
tively, in terms of the anisotropic Lusin area function, the anisotropic Littlewood—Paley
g-function or g}-function as follows.

Theorem 3.4. Let p € (0,1] and g € (0, 00]. Then

(i) f € HY'(R") if and only if f € 8)(R") and S(f) € LP(R"). Moreover, there exists a
positive constant C such that, for any f € HY'(R"),

1
¢ IS parey < Iflmawny < CASCHpagrs) -

(ii) The conclusion as in (i) remains true if S(f) is replaced, respectively, by g(f) or g5 (f) with
A€ (2/p, ).

Remark 3.2. Let S¢(f) and Sy (f) be the anisotropic Lusin area functions defined, respec-
tively, by using 6 and ¢ as in Lemma 3.1. We should point out that, in the original proof of
the sufficiency of Theorem 3.4(i) (namely, [79, Theorem 2.7]), the authors used both Sy(f)
and Sy (f); see, respectively, the proofs of [79, (3.23) and (3.29)]. Thus, the following fact
is needed: for any f € 8,(R"), the LP7(R") quasi-norms of the anisotropic Lusin area
function S(f) are independent of the choices of 6§ and ¢ as in Lemma 3.1. However, in
the original proof of the sufficiency of [79, Theorem 2.7], the authors did not present the
proof of this necessary fact. To seal this gap, we first present the following conclusions.

Theorem 3.5. Let p € (0,1], g € (0,00] and 6, ¢ be as in Lemma 3.1 with s as in (3.5). Then
there exists a positive constant C such that, for any f € 8j(R"),

1
C Hsf)(f)HLr',q(]R") < st(f)HLp/q(]Rn) <C HS(‘)(J[)HLW(]R”) ’

where S(f) and Sy (f) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via 0 and .
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To prove Theorem 3.5, we first recall the notion of anisotropic Hardy-Littlewood max-
imal operators as follows.

Definition 3.7. The anisotropic Hardy-Littlewood maximal operator Myy, is defined by
setting, for any f € L] (R") and x € R”,

loc

Min(f)(x) =sup sup o [ (f@)ldz= sup oo [1fG)Ide 39)

keZ yex+By xcBeB
where B is as in (2.1).

The following Fefferman-Stein vector-valued inequality of the maximal operator
My, on the Lorentz space LP4(IR") was obtained in [79, Lemma 4.5(i)], which plays a
key role in the proof of Theorem 3.5.

Lemma 3.2. Let p € (1,00), q € (0,00] and r € (1, c0]. Then there exists a positive constant C
such that, for any sequence { f;}; of measurable functions,

<c| |z mr]m

LPA(IR™) J LPA(R")

{;[MHLM}W

We also need the following conclusion, which is just [17, Lemma 2.3] and originates
from [21, Theorem 11].

Lemma 3.3. Let A be a dilation. Then there exists a set
0= {Q’;C]R”: keZ,zerk}
of open subsets, where Ej is an index set, such that
(i) foreach k € Z, |R"\ U, Qx| = 0 and, when o # B, Qi N Qf = @;
(ii) for any o, B, k, ¢ with ¢ > k, either lei N Qg =Qor Qﬁ - QE;
(iii) for each (¢, B) and each k < {, there exists a unique « such that Qg c Qk;

(iv) there exist some v € Z \ Zy and u € N such that, for any Qf withk € Z and « € Ey,
there exists an xqr € Qj such that, for any x € Q,

xQ’;( + By C Q]u(( Cx+ ka-i-u-

Henceforth, we call Q := {Qf} kez,acE, from Lemma 3.3 dyadic cubes and k the level,
denoted by ¢(Q¥), of the dyadic cube QX for any k € Z and & € Ej.

The following technical lemma is necessary, which is just [51, Lemma 6.14]. In what
follows, for any t € IR, we denote by [#] the least integer not less than ¢.
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Lemma 3.4. Let s be as in (3.5), v and u as in Lemma 3.3(iv) and

re Inb 1
Inb+(s+1)InA_""|"

Then there exists a positive constant C such that, for any k,i € Z, {co}gea C [0,0) with Q as
in Lemma 3.3, and x € R”,

p(kVi)(s+1) 25

|Q| mi - CQ
z(QH;ﬂw»u [b0Vi) + p(x — zg)] (s+1) g +1
(Q)=1 551 Jifk<u
1/r
SCb*[k*(k\/i)](l/V*l) MHL Z [CQ]r 1Q (X) ,
HQ) =551 Tifk>u
(Q)=| k51 Jifk<u

where £(Q) denotes the level of Q € Q, zg € Q and, forany k,i € Z, k Vi := max{k,i}.
We now prove Theorem 3.5.

Proof of Theorem 3.5. By symmetry, to show this theorem, we only need to prove that, for
any f € §,(R"),

1S6 ()l Lparey S 1Sy ()l Lparn- (3.10)

To thisend, foranyi € Z, x € R" and y € x + B, let

1) () = f*6:(y).

Then, by Lemma 3.1 and the Lebesgue dominated convergence theorem, we find that, for
anyi € Z,x € R"andy € x + B;,

BN =Y frpexbex6i(y) = Y /Rnf*lPk(Z)ek*ei(y_Z)dz

kez kez

=Y. X / f*r(2)6;  0;(y — z)dz (3.11)
kEZ 1(Q=rk51 ifk>u
(Q)=1 554 Jifk<u

in 8'(R"), where all the symbols are the same as those used in Lemma 3.4.
On another hand, by [17, Lemma 5.4], we know that, for any k, i € Z and x € R",

. InA_
InA_ pkVi)(s+1) 5

10 % 0;(x)| < b~ VIR

InA

[b(k\/i) + p(x)] (s4+1) 5 +1 |
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This further implies that, for any Q € Q with

{k—u_‘ , when k € [u,00)NZ,

(Q) = ° (3.12)

V{;MJ , when k € (—oo,u)N2Z,

there exists some zg € Q such that, forany k, i € Z,x € R",y € x+ B;and z € Q,

. nA_
InA_ p(kVi)(s+1)

|6k 0 (y — z)| S b~ CHDIEITRE

(3.13)

InA_

(b)) + p(x — ZQ)](sH)WH'

Moreover, for any Q € 2 satisfying (3.12), we have B g);, C Bi. From this, the Holder
inequality and Lemma 3.3(iv), we deduce that, for any z € Q,

|1Q| ‘/Qf*%(y)dy‘ : |1Q|/Q \f*tpk(y)lzdyy/z

1

S -
|BU€(Q)—U‘ Z+Bz7é‘(Q)+u

1/2
I pey)? dy]

r 1/2
sle [ renla] ~vPe),

where, for any k € Z and z € R",

k 2 12
WE = bk [ i nola]
Thus, for any k € Z and Q € Q satisfying (3.12),
1 . (k)
o L+ | < n Y ()2

By this, (3.11), (3.13) and Lemma 3.4, we conclude that, for any givenr € (W, 1]
and foranyi € Z,x e R"and y € x + B;,

. InA_
InA p(kVi)(s+1) us

. B A . )
RO P VI D Y ()
keZ g(Q):(k*Tﬂikau [b(k\/i) + p(x - ZQ)] (s+ )W+
Q)= *HH Jifk<u
InA_

< Y b DI e (evi)) (/1)

kezZ
1/r
. k r
< AMu | Y i [P ()E)] 10 | ()
Q) =Ikg ifkeu ”
1Q)=Lk5" Jifk<u

= J(ri) (%). (3.14)
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By (3.5), we can choose some 7 € (W, p). Therefore, from (3.14), it follows that,

for any x € R",

[Se(F) )P = Lo [ O] a2 Y o]

i€Z x+B; i€Z
This, together with the Holder inequality and the fact that r > W, implies that,
for any x € R",
[Sg(f)(x)]z <Yy b s+ D) k=il S p—lk—(kvi))(1/r—1)
icZkeZ
2/r
. k r
< AMa | L inf V()] 10 | ()
(Q)=[*54 Tifk>u
0Q)= 554 Jifk<u
2/r
SeiMa| ¥ it YP(HE)] 10| ()
k —uifieu 259
€Z 0Q)=I 51 ifk>u
UQ)=1 554 Jifk<u
®n]" 2
S {MHL<[Y¢ (f)} ) x }
kez
Thus, by the fact that » < p and Lemma 3.2, we find that
2/ r/2 1/r
k r 4
1500 ooy S (z {Ma ([ (0] ) (0} )
keZ Lp/ralr (Rw)
N\ 172
k
<||(z o) 55 e
kez Lpa(R")
which implies (3.10) holds true and hence completes the proof of Theorem 3.5. O

Recall that, for any given N € N, the radial grand maximal function M (f) of f €
§'(R") is defined by setting, for any x € R”,

MY (f)(x) == sup Mo(f)(x) (3.15)
pESN(RM)

with M?,, (f) asin (3.6).
Finally, we give out the proof of the sufficiency of Theorem 3.4(i).
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Proof of the sufficiency of Theorem 3.4(i). Let ¢ be as in Lemma 3.1, f € 8{(R") and S(f) €
LPA(R"). Then, by Theorem 3.5, we know that Sy (f) € LP4(R"). Thus, we only need to
show that f € H7(R") and

HfHHZ/"(an) s HSlI’(f)HLp,q(]Rn) . (3.16)

To this end, for any k € Z, let O := {x € R": Sy(f)(x) > 2} and

Q1= {Q €N QN > ’2Q| and |QN O] < |(22‘}
Obviously, for any Q € £, there exists a unique k € Z such that Q € 9. Let {Q¥}; be the
set of all maximal dyadic cubes in Qj, namely, there exists no Q € 9y such that Qi-‘ ; Q
for any i.
Forany Q € Q, let

Qi={(y) R =R"x (0,00) : y € Q, t ~ b @1}, (3.17)

here and thereafter, t ~ b*/(Q)+* always means

bv@(Q)+u+T S t < bv[g(Q)flh"'H”Tl (318)

where u, v are as in Lemma 3.3(iv) and £(Q) denotes the level of Q. Observe that, in the
above inequality (3.18), v is negative. Clearly, { Q}ocq are mutually disjoint and

R = J Bk (3.19)
keZ i

where, for any k € Z and i, By; := UQCQ?,QeDk Q. Then, by Lemma 3.3(ii) and (3.17), we
easily find that { By ; }xcz,; are also mutually disjoint.

Let ¢ and 0 be as in Lemma 3.1 with s as in (3.5). Then 0 has the vanishing moments
up to order s. From Lemma 3.1, the properties of the tempered distributions (see, for
instance, [46, Theorem 2.3.20]) and (3.19), we deduce that, for any f € 8((IR") such that
Sy(f) € LPA(R"), and for any x € R",

f(x) = kz fx e O(x) = i F*i(y) *0:(x —y)dydm(t) in §'(R"),  (3.20)
€z +

here and thereafter, m(t) denotes the counting measure on R, namely, for any set E C R,
m(E) is the number of integers contained in E if E has only finitely many elements, or
else m(E) := oo. Foreach k € Z, i and x € R", let

Hi(x) = [ fxpe(y) =0 (x — y)dydm(t).

By,
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Next we prove the sufficiency of Theorem 3.4(i) in three steps.
Step 1) The aim of this step is to show that

Y Y HF convergesin §'(R"). (3.21)
kez i

For this purpose, we claim that, for any given r € (1, ),
(i) foranyk € Z,iand x € R",
H(x) =) /Af «Pr(y)0(x —y)dydm(t) =1} eg(x)  (3.22)
QcQf,Qen; "9 QcQl,Qeny
holds true in L' (IR") and hence also in 8'(IR");
(ii) forany k € Z and i, hff is a multiple of a (p, 7, s)-atom.

Indeed, from [79, (3.23)], it follows that, for any x € R",

2
{59( Y EQ) (X)] S Y [Mu(cglo) (0],

QcQf,Qeny QCQ¥,Qey

where My, denotes the Hardy—Littlewood maximal operator as in (3.9) and, for any
QcC Qf?andQGQk,

cor= [ [, e Py ™)

We first show assertion (i). To this end, for any k € Z, let
~ n 1 —2u
Q= {x € R": My <1Qk> (x) > Eb }

with # as in Lemma 3.3(iv). Then, by an argument similar to that used in the estimation
of [79, (3.26)], we conclude that, for any given r € (1,00) and for any k € Z and i,

YD

QCQ¥,Qe

1/2
2
S |: Z (co) lQﬁ(ﬁk\QkH)] ’ (3.23)
LV

Lr(]Rn) QCerQEDk (]R”’)

On another hand, forany k € Z, Q € Qi, x € Qand (y,t) € Q, by Lemma 3.3(iv)
and [12, p. 8, (2.11)], we have

x—ye BZJE(Q)Jru + BUZ(Q)Jru - Bvé(Q)+u+ri
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which, combined with (3.18) and the disjointness of {Q} oc ot further implies that, for
any x € R",

2
Y (0 Tgn@a0,.,) ()

QCQFQeny
dm(t)
- L Sl F@Pay = 10060, ()
CQ;, Qe

S [Sy(f) (x)]z 1Q?ﬂ(ﬁk\0k+1)(x)'

By this and Lemma 3.3(iv) again, we find that, for any given r € (1,00) and for any k € Z
and i,

1/2||"
2
{ 2 (co) lQﬁ(ﬁk\QkH)}
Lr

k
Qc Qe &)

< [ O] 1grana,., (4
<27 |Qf

Forany k € Zand N € NN, let Q,y := {Q € Q, : [¢(Q)| > N}. Then, replacing
ZQCQ’.‘,QGQk eq by ZQch,QerN eg in (3.23), we know that, forany k € Z, N € N and i,

< 2FrpURtE < oo, (3.24)

L

QCQ¥,QeyN

1/2
2
S |: Z (CQ) 1Qﬁ(ﬁk\0k+1)]

QCQ¥,QeyN

L"(R") L'(R")

From this, (3.24) and the Lebesgue dominated convergence theorem, we deduce that, for
any givenr € (1,00) and for any k € Z and i,

Z eQ —0
QCQ;{/QGDI@N Lr(IR”)
as N — oo, and hence
/ FEpyix—y)dydm(t)| =0
Pocok e,y (R

as N — co. Therefore, ¥ = Y0cgkh0en, €0 In L"(R"). This finishes the proof of the above
assertion (i).



J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456 393

We now show assertion (ii). For this purpose, by assertion (i), we find that, for any
x € suppht, h¥(x) # 0 implies that there exists some Q C QF and Q € 9 such that
eo(x) # 0 and hence there exists a (y,t) € Q such thatx —y € By(¢(Q)—1]+u+<- By this,
Lemma 3.3(iv) and [12, p. 8, (2.11)], we have, for any x € suppeg,
X € Y+ Byjo@)-1]+utr € XQ + Bor()+u T Bope(@)-1)4utt € ¥Q + BojeQ) -1 ut2r
Therefore, we obtain
suppeq C xQ + Boje(Q)-1)+u+2t-

From this, the fact that hi‘ = ZQC O, Qe €Q (ii) and (iv) of Lemma 3.3 and [12, p. §, (2.11)]
again, it follows that

supphf ¢ <xQ + BU[E(Q)71]+M+2T>
QCcOk,Qen;
Cxge + Byggtyru + Bojo(@b)—1)ut2r
. pk
C.XQf( + BU[Z(Q?)—l]-i—u-i—ST = Bi . (325)

On another hand, by assertion (i) again, (3.23), the estimation of (3.24) and Lemma
3.3(iv), we conclude that

1/r
18]y < { i, 500 20, 00}
1/r ‘1/7*

k
i

<2 |k B!

< Cp2f

, (3.26)

where C(,) is a positive constant independent of f, k and i. In addition, recall that 6 has
the vanishing moments up to order s > |(1/p —1)Inb/InA_| and so does eg. For any
k €z iyeZ with |y| <sand x € R", let g(x) := x71g(x) with Bf as in (3.25).

Clearly, ¢ € L”(R") with r € (1,00) satisfying 1/r + 1/1' = 1. Thus, by the fact that
(L (R"))* = L"(R"), (3.25) and the inclusion

suppeq C xg + Bv[z(Q)—1}+u+zT - Bf'{/

we further have

/n hi(x)x7dx = (hf,g) = Y. (eq,8)= ), /neQ(x)x%lx =0.

QCQhQeny QcQhen; 'R

This, together with (3.25) and (3.26), implies that 1 is a multiple of a (p, r, s)-atom sup-
ported in B¥, which completes the proof of the above assertion (ii).
Now we prove (3.21). For any k € Z and i, let

k._ k

1

By

1

(UP and o = (/\’F)_lhﬁf, (3.27)
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where C,) is as in (3.26). Then, for any k € Z and i, aé‘ isa (p,r,s)-atom. To show (3.21),
we next consider two cases: i € Nandi € {1,---,I} withsome I € IN.

Case 1) i € IN. In this case, to prove (3.21), by (3.27) and [77, Propositions 2.7 and 2.8],
it suffices to show that

—0. (3.28)
HIFZ@(IRM)

To do this, from the fact that, for any [, m € IN, ¥ <jj<m Li<i<m Akak e HI7VI(RM),
Theorem 3.1, the mutual disjointness of { Qi-‘ }i for any fixed k € Z, and Lemma 3.3(iv),
we deduce that

k k
‘ ‘ Aja;

A
— 1
INA
=
IA
3
<N
A
IA
3
>
o=
=
v
-
~
N
| E— |
-
~
-
2
—
IA
R
3
N
A
A7
3
N
2
i~
on]
o
N——
-
~
=
| I
-
~
-

with the usual modification made when g = co. This, combined with the fact that Sy (f) €
LPA(IR™), (3.2) and the completeness of the space LP1(R"), implies that (3.28) holds true
and hence so does (3.21) for Case 1).

Case2)i € {1,---,I} with some I € IN. In this case, to show (3.21), it suffices to
prove that

= 0. (3.29)
HYI(R?)

Indeed, by a proof similar to that of (3.28), we easily find that (3.29) also holds true. This
finishes the proof of Case 2) and hence of (3.21).

Step 2) In this step, we prove that

f=Y Y Al in $'(R"). (3.30)

keZ i

To this end, for any x € R", let

fo) = DY@ =LY [ frte)x - yaydm(e) in (R

keZ i keZ i
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here and thereafter, for any k € Z and i, By is as in (3.19). Then, to show (3.30), we only
need to prove that

f=f in 8'(R"). (3.31)

To do this, by the above assertion (i), (3.17) and (3.18), we know that, for any given r €
(1,00) and for any k € Z, i and x € R”,

i (x )= lim | ]Rnf Pe)O(x =), gy, t)dydm(t)
Q<N
= Iyg;o o V)0 x =), (y, )dydm(t) (3.32)

holds true in L"(IR") and also in §'(R"), where, for any N € N, 7(N) := b?NF4*1 and
7(N) := b~ ?IN+D+u+1 with v and u as in Lemma 3.3(iv). We next consider two cases:
ie Nandi€ {1,---,I} withsome I € N.

Case 1) i € IN. To deal with this case, for any M € IN and x € R", let

Fua() = £() - >/ [ F ()6 x = y)dyan().

\k\ezm[o M]i=1

Then, by (3.19), (3.20) and (3.32), we conclude that, forany M € IN and x € R”,

- ]\1]1i>’noo f ¥e(y)6i (x y)lUkeZUieNBk,i (y, t)dydm(t)
B I\}lg}n f * lpt ) ( y)lulk\EZ+Q[O/M]Uf\ilBk,i (y’ t)dydm(t)
N—)oo/ f * wt ) ( y)lu\k\ENﬂ[MJrl,oo)U?iMJrlBk,i (y’ t)dydm(t) (333)

holds true in 8'(R"). Observe that H(R") is continuously embedded into §'(R")
(see [77, Proposition 2.7]). Therefore, to show (3.31), it suffices to prove that

HfM‘ [0 as My (3.34)

HP‘]

For this purpose, we borrow some ideas from the proof of the atomic characterizations of
HY(R") (see [77, Theorem 3.6]). Indeed, for any ¢ € (0,1), M € N and x € R", let

w/e
= /s /]R"f* lpt(y)gf(x _y)1U‘k‘ENm[M+1,OO)U?iMHBk,i(y/ t)dydm(t)/
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here and thereafter, a := b~?*2(#+1)| Then, from the Lebesgue dominated convergence
theorem, it follows that, for any € € (0,1), M € IN and x € R”,

Mw= ¥ 3 / e = ), v, Dy

[k|ENN[M+1,00) iENN[M+1,00)

=Y Y o)

|k|ENN[M+1,00) iENN[M+1,00)

in 8'(R").
On another hand, for any ¢ € (0,1) and Q € Q, let

Q; := {(y,t) €ER" X (g,a/e): y€ Q and t ~ b”g(Q)“’},

where v and u are as in Lemma 3.3(iv) and ¢(Q) denotes the level of Q. Obviously, for
any given ¢ € (0,1), {Q¢} geq are mutually disjoint and

R" x (e,a/e) = U UBkz’

keZ ieN

where, forany k € Zandi € N, B]Ei.) = UQ cOk e, Qg. Then, by Lemma 3.3(ii), we eas-

ily know that, for any givene € (0,1), {B ,Ei.) }kezieN are also mutually disjoint. Moreover,
by some arguments similar to these used in the proofs of the above assertions (i) and (ii)
in Step 1) with some slight modifications, we conclude that, for any ¢ & (0,1), M € N,
k|, i€ NN [M+1,00)and x € R",

h,ﬁj?(x): Y eg>(x) in 8'(R"),
QCOk,Qen;

where, for any Q C Qi-‘, Qe Qrand x € RY,
g (x) = [ )6 —y)dyim(t)

and, for any given r € (1,00), hl(fi)

is a multiple of a (p, , s)-atom, namely, there exist
{/\k,i}\k|,ieNm[M+1,oo) cC

and a sequence of (p,r,s)-atoms, {al(fi)h K iENN[M+1,00), SUppOTted, respectively, in

{Br,i }klieNn[M+1,00) C B
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such that, for any |k|, i € NN [M + 1,00), hl(fl.) = )\k,ial(fl.) and Ay; ~ 2F |Bkri|1/p, here,
for any |k|, i € NN [M+1,00), Ax; and By ; are independent of e. Thus, for any given
e€(0,1), M e Nand x € R",

)= Y Y Awal)(x) in 8'(RY), (3.35)
|k|ENN[M+1,00) iENN[M+1,00)

and

1/q

{ ) ( ). )Mi”)q/p] < oo (3.36)

[k|ENN[M+1,00) \i€NN[M-+1,00

with the usual modification made when g = co.
Forany M € N, [kl e NN[M+1,00) and p € (0,1], let

1/p
Inb InA_ 1
‘uM,k = Z |Bk/|> and ‘B = ( —+ N( ) — 1> > =,
(ieNﬁ[M+1,oo) : InA_ P Inb ~ p

where N, is as in Definition 3.2. Then, for any r € (1,0), there existsa 6 € (1/r,1) such
that % < Jdp < 1. We now rewrite (3.35) as

=Y ¥ Ael(x) in 8'RY),

kEZ icNN[M+1,00)

where, for any |k| € Z, N[0,M] and i € NN [M + 1,00), Ay; = 0. In addition, let
¢:=(N)with N € NN [[=%-1]| +1,00). Then, by (3.33), we find that

O (fm) = MY im FOY(N) imi 0 (F(r(N)
My, (fM) =My, <I\1]1§;0 M ) < hI\IHLloIJfMN(P) (fM ), (3.37)

where M?\]w is as in (3.15) with N replaced by N(,). Notice that, for any fixed kg € Z and
for any x € R",

) () @)

ko—1 00 1) 00
SM%(p)<Z )y Ak,ia,iz(N”> O+ Y L My (o™ ()

0
MN(

k=—oc0i=M+1 k=ky i=M+1
= 1 ¢, (%) + Wi, (x).

To prove (3.34), we now consider two cases: q/p € [1,0] and q/p € (0,1).
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Case 1.1) q/p € [1,0]. In this case, to show the desired conclusion, by a calculation
similar to that of [77, (3.22)], we claim that

K ]’ < ke koo Kk - ks, 17
20 [dp, ()] £ ¥ [2 0’| and 2, 29 S N [0
——00 =ko
where dy, - and dy,  are as in (3.1) with f replaced, respectively, by ¢, and wy,. Then,
from [12, p. 17, Proposition 3.10], (3.37), [1, Lemma 1.2], the facts that § € (0,q/p) and

By i| ~ V‘z"k/;'p, we deduce that, forany M € N,
_ P 0 7(r(N))
HfM’ HY'(IR") ’ (fM) LPA(R") — hI\IHLleMN@) ( M ) LPa(R")
q/p /4
1132 i S| ( Y. Mki’P>
‘ { }kez 0 1 kez \ieNN[M+1,00)
i q/p] 1/
~ )3 ( Yoo Al? ) ~ (3.38)
_|k\e]Nﬂ[M+1,oo) ieNN[M+1,00)

This, combined with (3.36), implies that (3.34) holds true.
Case 1.2) q/p € (0,1). In this case, similarly to [77, (3.23) and (3.26)], we conclude
that, forany M € N,

o
2k0]!7 [d¢ zko} Z 27 VMk ] and 2k0§dek0(2ko) S Z [Zké‘uM,k]p

k=ko

This further respectively implies that

2k [ [y e R+ gy (x) > 200 4|77
Pkq

koeZ
ko—1 k
< Y 20/ N 27 ()
koeZ k=—o0
~Y ¥ oko(g—9/8)0% (ap)? < Y2 299 (),
KeZ ko—kt1 kez

and

{x € R": wy,(x) > szHq/p

Z 2koq

koeZ

5 Z Zkqu i |:2k(1_g)]’lM,k:|q

ko€Z k=Ko
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k

SO MELRIV D SIS ESD DELICYIN

keZ ko=—00 keZ

where 6 := 1775. From this, [12, p. 17, Proposition 3.10], (3.37), the facts that |By ;| ~ ‘z’;;;‘p
and gk = (252 aren |Bri|) /P, it follows that, for any M € N, (3.38) holds true, which,
together with (3.36), implies that (3.34) also holds true in this case. This finishes the proof
of (3.34) and hence of (3.30) for Case 1).

Case2)i € {1,---,I} with some I € IN. For this case, repeating the proof of (3.30)
for Case 1) with some slight modifications, it is easy to see that (3.30) also holds true for
Case 2), which completes the proof of (3.30).

Step 3) By (3.30), the mutual disjointness of {Q¥}; for any fixed k € Z, Lemma 3.3(iv)
and (3.2), we know that
q/p
BY )
_ 1/q

q/p 1/q
- sz"():!Q?) ] g(D’“f\mW) ~ 189 (F)llpare)

keZ keZ

1/q

keZ i keZ

[ a/p] 11
e ey S | 2 <ZM§|”> ] ~ {Z (ZZ"V

with the usual modification made when q = co, which implies that f € HY(R") and
(3.16) holds true. This finishes the proof of the sufficiency of Theorem 3.4(i). O

Remark 3.3. Let all symbols be the same as those used in the proof of the sufficiency of
Theorem 3.4(i). Observe that, in the original proof of the sufficiency of Theorem 3.4(i)
(namely, [79, Theorem 2.7]), the authors used the following two equalities: for any f €
8, (R") such that S(f) € LP(IR"), and any x € R",

frpe(y) = 0:(x — y)dydm(t) = ) 2/ F*e(y) = 0:(x —y)dydm(t)  (3.39)

+1
R’} keZ i

in 8'(R") (see [79, p. 15]) and, for each k € Z,i and x € R",

i fxe(y) % 0i(x —y)dydm(t) = / fxi(y) % 0i(x —y)dydm(t)  (3.40)
o QCQk Qe

in 8'(R") (see [79, (3.22)]); however, the authors therein did not prove these two equal-

ities. In the present article, we present the proofs of both (3.39) and (3.40) and hence

seal these gaps existing in the original proof of the sufficiency of [79, Theorem 2.7]; see,

respectively, the proofs of (3.31) and (3.22) above for the details.
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3.4 Real interpolation of H7(IR")

In this subsection, as an application of the atomic decomposition of the anisotropic
Hardy-Lorentz space H(IR"), we give the real interpolation properties on H,7(R");
see [77, Subsection 6.1].

We first recall some basic notions about the real interpolation (see [6,102]). Assume
that (X1, X2) is a compatible couple of quasi-normed spaces, namely, X; and X» are two
quasi-normed linear spaces which are continuously embedded in some larger topological
vector space. Let

X1+Xo:={fi+fa: 1€ Xy, fo € X2}

For any t € (0, 0], the Peetre K-functional on X; + X is defined by setting, for any
f e X1+ Xy,

K(t, f; X1, Xo) == inf{| fillx, + tlf2llx, : f=fi+ fo, fi € X1and fo € Xo}.

Moreover, for any 6 € (0,1) and g € (0, 0], the real interpolation space (X1, X2)g,q is
defined as

00 1/q
(X1, X2)o,9 1= {f € X1+ X2: [[fllog:= [/0 {tigK(trf} X1;X2>}q it] < 00} (341)

with the usual modification made when g = co.
The following Theorem 3.6 is just [77, Theorem 6.1].

Theorem 3.6. Let p € (0,00) and q1,4,q2 € (0, c0].
(i) If p1,p2 € (0,00) satisfy py # poand 1/p = (1 —0)/p1 +60/pr with 6 € (0,1), then

(HZL% (lR” )’ Hizlfiz (]Rn ) ) 04 — HZ'q (]R” )

(i) If1/qg = (1—0)/g1 4+ 60/q2, where 6 € (0,1), then

(HE"(R"), HY"(R")), = HY'(R").

As an immediate consequence of Theorem 3.6(i), we easily obtain the following con-
clusion; see also [77, Corollary 6.5].

Corollary 3.1. Let g € (0,c0]. Assume that p,p1,p2 € (0,00) satisfy p1 # p2and 1/p =
(1—6)/p1+6/ps with6 € (0,1). Then

(H} (RY), HE(RY),, = HY(R),

where both HY' (R™) and H' (R") denote the anisotropic Hardy spaces of Bownik [12].
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Remark 3.4. (i) If A := dl,«, for some d € R with |d| € (1,00), here and there-

(ii)

(iii)

3.5

after, I,,»,, denotes the n x n unit matrix, then Hﬁi’qi (R™), Hfl’qi (R"),i € {1,2}, and
HY'(R") in Theorem 3.6 become the classical isotropic Hardy-Lorentz spaces. In
this case, by Theorem 3.6(i), we know that

(HP (R"), HP2(R"),, = HPA(R")

with all indexes as in Theorem 3.6(i), which is a well-known real interpolation result
for classical isotropic Hardy—Lorentz spaces (see [37, p. 75, (2)]). In addition, by
Theorem 3.6(ii), we have

(HPA (R?), HPE(R")),, = HPA(R?)
with all indexes as in Theorem 3.6(ii), which generalizes [1, Theorem 2.5].

If A is as in (i) of this remark, then H}! (R"), H??(R") and H,"(R") in Corollary 3.1
become, respectively, the classical isotropic Hardy and Hardy-Lorentz spaces. In
this case, by Corollary 3.1, we have

HP'(R™), HP?(R" = HP(R") with all indexes as in Corollary 3.1.
0.9 y

In particular, (HP1(R"), H"? (an))G,p = HP(R"), provided that1/p = (1 —0)/p1 +
0/p2, 0 € (0,1).

For any given p € (1,00) and g € (0, o], from Corollary 3.1 and [84, Theorem 3],
we deduce that

Hy'(R") = (Hj (R"), H)(R"))g,, = (LM (R"), LP*(R")),,, = LP(R"),

0,9

where p1, p2 € (1,00) with p; # ppand 6 € (0,1) such that1/p = (1—-0)/p1 +
9/]:72

Applications to the boundedness of Calderén-Zygmund operators

As another application, in this subsection, we present the boundedness of anisotropic
Calderon—-Zygmund operators. To this end, we first recall the notion of anisotropic
Calderéon—-Zygmund operators from [12] as follows.

Definition 3.8. Let 6 € (0, %], T be as in (2.2) and T a linear bounded operator on
L?(R"). Then

(i)

T is called an anisotropic convolutional J-type Calderén-Zygmund operator if its
kernel k € 8'(R") coincides with a locally integrable function on R" \ {0,} and
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satisfies that there exists a positive constant C such that, for any x,y € R" with
2
p(x) > b"p(y),

K(x — y) —k(x)] < c[fW (3.42)

and, for any f € L2(R"), T(f)(x) := p.v.k * f(x).

(ii) T is called an anisotropic non-convolutional -type Calderén-Zygmund operator if
it satisfies that, for any f € L?(R") with compact support and x ¢ supp f,

(A = [ Ky,

supp f

where X denotes a standard kernel on (R” x R") \ {(x,x) : x € R"} in the follow-
ing sense: there exists a positive constant C such that, for any x,y,x,y € R”,

C

|K(x,y)] < m, when x # y,
(2, y) — K(x,7)] < CH when p(x — ) > B*p(y - 7),
K(x,y) — K(Ey)| < H when p(x — y) > b%p(x — %)

In [77, Theorem 6.8 and Remark 6.10], the authors obtained the boundedness
of anisotropic é-type Calderén-Zygmund operators from H (R") to LP*°(IR") (or to
H%®(R")) in the critical case.

Theorem 3.7. Let 6 € (0, ™2~ and p = =

(i) If T is an anisotropic convolutional (or non-convolutional) é-type Calderén—Zygmund op-
erator, then there exists a positive constant C such that, for any f € H' (R"),

1T ererry < ClIfllp (me)-

(ii) If T is either an anisotropic convolutional é-type Calderén—Zygmund operator or non-
convolutional é-type Calderén—Zygmund opemtor satisfying T*1 = O (namely, for any
a € LYR") with compact support, if [gnd(x)dx = 0, then [p, T(@)(x)dx = 0), then

there exists a positive constant C such that, for any f € HY, 7 (R™),

Tzt ey < CI Nl o
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Remark 3.5. (i) If A is as in Remark 3.4(i), then % =1 and H/ (R") and H}”(R")
become, respectively, the classical isotropic Hardy and weak Hardy spaces. In this
case, by Theorem 3.7(ii), we know that, if 6 € (0,1], p = ;%55 and T is the Calderon-

Zygmund operator satisfying all conditions of Theorem 3.7(ii) with (3.42) replaced
by

ol
k(x—y) = K| S i xl 2 20yl
where the implicit positive constant is independent of x and y, then T is bounded
from H#s (R") to Hm5°(IR"), which is just [72, Theorem 1]. Here s is called
the critical index. In this sense, Theorem 3.7(i) also establishes the boundedness of
Calderén-Zygmund operators from H’ (R") to LP°(IR") in the critical case under

the present anisotropic setting.

(i) Let 6 € (O, %] and p € (135,1]. For the boundedness of anisotropic -type
Calderén-Zygmund operators from H/ (R") to itself (or to LP(IR")), we refer the
reader to [12, p. 68, Theorem 9.8 and p. 69, Theorem 9.9].

The following boundedness of -type Calderén-Zygmund operators from HY’(R")
to itself (or to LP1(IR")) was presented in [77, Theorem 6.16].

Theorem 3.8. Let 6 € (0,"1=], p € (135, 1] and g € (0, 0],

(i) If T is as in Theorem 3.7(i), then there exists a positive constant C such that, for any
f € HY'(RY),
ITCF) lmagrey < ClE g

(i) If T is as in Theorem 3.7(ii), then there exists a positive constant C such that, for any
f € H{'(R"),
1T gy < CIF I ppa gy

Remark 3.6. If A is as in Remark 3.4(i), then hl‘n)‘b‘ = % and T becomes the classical J-type
Calder6n-Zygmund operator. In this case, we know that, if 6 € (0,1}, p € (HLM, 1] and
g € (0, 00], then Theorem 3.8 implies that T is bounded from the classical Hardy-Lorentz
space HP1(IR") to itself (or to LP4(IR™)). Moreover, when p = ¢, (i) and (ii) of Theorem 3.8
imply the boundedness of classical J-type Calderén—Zygmund operators from H” (R")
to LP(R"), respectively, from H?(R") to HP(R") for 6 € (0,1] and p € (;%5,1], which is
a well-known result (see, for instance, [3,96]).

Theorem 3.9. Let p € (0,1], g € (p, 0], r € (1,00) and k be the kernel of some Calderén—
Zygmund operator T. Moreover, assume that T is bounded from L"(IR") to L"*(R") and w,
satisfies a Dini-type condition of order q/(q — p), namely,

1 (a=p)/q
o /(q—p) do
Apa) = {/0 [wp(@)]" 7 } < oo, (3.43)
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where, for any 6 € (0,1],

N =

w :u—
@ =sup [,
B |B| Jo(x—ys)> “B{

k(x,y) = Y, (v —ys)Pks(x,y5)

p
dy| dx,
IBI<N

[(1/p—1) 2], B:=(B1,-- ., Bu) € 2",

(x yp) := Ea k(x, ¥) ly=ys

and the supremum is taken over all dilated balls B € B centered at yg. Then there exists a positive
constant C such that, for any f € HY'(R"),

1/p
1T ey < € [Agpa] " 1l

Remark 3.7. (i) If A is as in Remark 3.4(i), then lrl1n)\b, =n, N = [n(1/p—1)] and

(ii)

(iii)

HY(R") becomes the classical Hardy-Lorentz space. In this case, Theorem 3.9 is
just [1, Theorem 2.2].

It is well known that the Héormander condition implies the boundedness of the
Calderén-Zygmund operator T from H} (R") to L'(R"). Observe that H} (R") &
H}(R") with ¢ € (1,00]. Thus, to define T on Hy'(R") with ¢ € (1,00, it is
natural to require T to satisfy some conditions stronger than the usual Hérmander
condition. This was accomplished by the variable dilations (the Dini-type condition
(3.43)) of Fefferman and Soria [39] (see also [1]). Moreover, recall that we consider

p =15 0r p € (135, 1] with 6 € (0, 1r112\b | in Theorem 3.7 and Remark 3.5(ii), which

implies
Inb (1
= - <1.
e ()]

While, in Theorem 3.9, we consider p € (0,1]. If p becomes smaller, then N be-
comes larger. Thus, more regularity of the kernel of T is needed. This justifies the
definition of wy(d) in Theorem 3.9.

We point out that both the dual spaces and the wavelet characterizations of
anisotropic Hardy-Lorentz spaces H,?(IR") are still unknown. In addition, one can
also consider the corresponding multiplier theorem on the space H",?(R"), similar
to that studied by Wang in [110] on anisotropic Hardy spaces H’; (R").

4 Anisotropic variable Hardy spaces

In this section, we first recall the definition of anisotropic variable Hardy spaces Hf;(') (R™)
and then give the real-variable theory of these spaces; see [75].
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4.1 Definition of anisotropic variable Hardy spaces

For any measurable function p(-) : R" — (0, 0], let

p— :=essinfp(x), py:=esssupp(x) and p:=min{p_,1}. 4.1)
x€R" x€R" -
Denote by P(IR") the set of all measurable functions p(-) satisfying 0 < p— < p; < co.
For any p(-) € P(IR"), the variable Lebesgue space LP()(RR") is defined to be the
set of all measurable functions f such that ¢,.)(f) < oo, equipped with the quasi-norm
|1 re (rn)» Where, for any measurable function f, the modular functional g,,(.) (f) and the
Luxembourg (also c‘alled Luxembourg-Nakano) quasi-norm || f|| L0 (RY) of f are defined,
respectively, by setting

00 () = [ IFIdx,
1Al roy ey = inf{A € (0,00) : 0,y (f/A) < 1} ,

see, for instance, [22,26].

Let C°8(IR") be the set of all functions p(-) € P(IR") satisfying the globally log-Holder
continuity condition, namely, there exist Ciog(p), Coo € (0,00) and pe € R such that, for
any x, y € R",

Clo (p)
P =P < e 1 o =) (42)
and
P(x) = pool € > (43)

= Togle+ p(0)°

The following anisotropic variable Hardy space was originally introduced in [75, Defini-
tion 2.4]

Definition 4.1. Let p(-) € C'°8(R") and

1 Inb
{(P - 1> lnA_J —|—2,oo> , (4.4)

where pis asin (4.1). The anisotropic variable Hardy space H Z(') (R") is defined by setting

NeINnNn

HE(RY) = {f € $'(R") : M(f) € LPO(R")}

and, for any f € HZ(')(]R”), let HfHH%.)(W) i= |[|Mn(f) | 1p0) (rn), Wwhere Mn(f) denotes

the non-tangential grand maximal function of f as in (3.4).
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Remark 4.1. (i) The quasi-norm of H f‘(') (R") in Definition 4.1 depends on N, however,

by Theorem 4.1 below, we know that the space HZ(')(]R”) is independent of the
choice of N as long as N is as in (4.4). In addition, when p(-) = p € (0, ), the

space H Z(') (R") becomes the anisotropic Hardy space H/; (R") from [12] and, when

A :=dl,, for some d € R with |d| € (1,c0), the space HZ(')(]R”) goes back to the
classical variable Hardy space (see [23,87]).

(ii) Recall that, in [51], Huang et al. established various real-variable characterizations
of anisotropic mixed-norm Hardy spaces H', (R"). We point out that the integrable

exponent of the Hardy space Hi (R") from [51] is a vector § € (0,00)", whose
associated basic function space is the mixed-norm Lebesgue space L?(IR"), which
has different orders of integrability in different variables; however, the integrable

exponent of the anisotropic variable Hardy space H Z(') (R") is a variable exponent
function,

p(-): R" — (0,00],

satisfying the so-called globally log-Holder continuity condition, whose associated
basic function space is the variable Lebesgue space LP()(R"). Obviously, L7 (R")
and LP)(R") cannot cover each other, so do the anisotropic mixed-norm Hardy

space H f‘ (R"™) of [51] and the Hardy space H f‘(') (R") in Definition 4.1.

(iii) Let H?()4()(R", A) be the anisotropic variable Hardy-Lorentz space defined via
the variable Lorentz space £ ()a() (R™) (see [2,31]), where

p(+), q(-) : (0,00) = (0,00)

are two measurable functions (see also Remark 3.1(iii)). As was mentioned in [59,
Remark 2.6], the space £7()4()(R") in [31] never goes back to the space LP()(R"),
because the variable exponent p(-) in £P()1()(IR") is only defined on (0, c0) while

not on R". Thus, it is easy to see that the space HZ(')(]R”), in this article, is not
covered by the space H?()4()(R", A) in [2].

4.2 Equivalent characterizations of H Z(‘) (R")

In [75, Theorem 3.10], the authors established the radial or the non-tangential maximal
function characterizations of Hf;(') (IR") as follows.

Theorem 4.1. Let p(-) € C'8(IR") and ¢ € S(IR") satisfying [, ¢(x)dx # 0. Then, for any
f € 8'(R"), the following statements are mutually equivalent:

(i) f e HO (R,
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(ii) My(f) € LPO(R");
(iii) M§(f) € LPO(R"),

where Mg (f) and~Mg (f) are, respectively, as in (3.3) and (3.6). Moreover, there exist two positive
constants C and C, independent of f, such that

1120 ey < € MY s gy < CIMp O rtrgrery < U gy

(R"

We now recall the notions of anisotropic variable atomic Hardy spaces and finite
atomic Hardy spaces from [75].

Definition 4.2. Let p(-) € C'%8(R"), g € (1, 0] and

e [|(2 1) )z 0

(i) Ananisotropic (p(-),q,s)-atom (shortly, a (p(+), g, s)-atom) is a measurable function
a on R" satisfying
(i1 suppa:={x € R": a(x) # 0} C B, where B € B and B is as in (2.1);

|B[!/4

@2 lallisw) < gy

(i)3 forany y € Z' with |y| <'s, [, a(x)x7dx = 0.

(ii) The anisotropic variable atomic Hardy space H f\(')’q’s (R") is defined to be the set of
all f € &'(R") satisfying that there exist {\; }icy C C and a sequence of (p(-),q,s)-
atoms, {a;};cn, supported, respectively, in { B! },cn C B such that

f: Z )\,‘(Zl' in Sl(IRn).

ieIN

Moreover, for any f € HZ(')’”]’S (R™), let

py1/p
Y _Aige |
ieN HlB(i)||LP(~)(Rn)

where the infimum is taken over all the decompositions of f as above.

= inf ,

||f“ Hﬁ(')rq/s (]Rn)

Ln(-)(]Rn)

(iii) The anisotropic variable finite atomic Hardy space HZ(,E)I’?’S(]R”) is defined to be

the set of all f € 8'(R") satisfying that there exist I € IN, {A;}iep v € C
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and a finite sequence of (p(-),q,s)-atoms, {a;}c1,)jnn, supported, respectively, in
{B(i)}ié[l,l]ﬁN C *B such that

I
f = Z)\iai in SI(RH).
i=1

Moreover, for any f € HZ() °(R™), let

fin
1/p
! PP A
N 005 oy = inf {Z [13 :
H Lfin (]Rn 1 i . n
7 S o loomn ] Lo
where the infimum is taken over all the decompositions of f as above.

The following atomic and finite atomic characterizations of H Z(') (R") were just [75,
Theorems 4.8 and 5.4].

Theorem 4.2. Let p(-) € C'98(R"), g € (max{p,,1},00] with p, as in (4.1), s be as in (4.5)
and N as in (4.4). Then

(i) HZ(')(IR”) = Hf\(')’q’s (R") with equivalent quasi-norms;

(i) ||+ |y 242 () and || - HHZU Ry 37 equivalent quasi-norms on Hﬁ(ﬁ)n (R™) for each g €
(max{m, 1}, 00);
(iii) || - H “(R") and || - HHff )Ry T equivalent quasi-norms on HZ&J.)I’IOO’S (R") N C(R").

4.3 Littlewood-Paley function characterizations of HZ(') (R")

In this subsection, we present the characterizations of HZ(')(IR") in terms of the
anisotropic Lusin area function, the anisotropic Littlewood-Paley g-function or g3-
function; see [75]. Meanwhile, we also correct some errors existing in the proof of the
sufficiency of [75, Theorem 6.1], namely, the Lusin area function characterizations of

First, recall that the following Fefferman-Stein vector-valued inequality of the max-
imal operator My on the variable Lebesgue space LP{)(R") was established in [78,
Lemma 4.3].

Lemma 4.1. Let r € (1,00]. Assume that p(-) € Cl°8(R") satisfies 1 < p_ < p4 < 0. Then
there exists a positive constant C such that, for any sequence { fi } ke of measurable functions,

1/r 1/r
{ Y. [MHL(fk>]r} <C (Z !fk\r>
kelN L) (R kelN 1r0)

PO (R?)
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with the usual modification made when r = oo, where My, denotes the Hardy—Littlewood maxi-
mal operator as in (3.9).

Via Lemmas 4.1 and 3.4, following the proof of Theorem 3.5 with some slight modifi-
cations, we easily obtain the following conclusion; the details are omitted.

Theorem 4.3. Let p(-) € C'°8(R") and 6, ¢ be as in Lemma 3.1 with s as in (4.5). Then there
exists a positive constant C such that, for any f € 8,(R"),

1
C ”SG(f)HLP(-)(IR”) < Hslp(f)Hm»)(]Rn) <C ||59(f)HLP(')(]Rn) ’

where Sg(f) and Sy(f) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via 0 and .

In [75, Theorems 6.1 through 6.3], the authors characterized the space HZ(') (R™), re-
spectively, in terms of the anisotropic Lusin area function, the anisotropic Littlewood—
Paley g-function or g;-function as follows.

Theorem 4.4. Let p(-) € CI°8(IR"). Then

(i) f e HZ(')(]R”) ifand only if f € 8)(R") and S(f) € LPU)(R"). Moreover, there exists a
positive constant C such that, for any f € HEU (™),

1
c IS ey < 1l gpo ey < CASr0 ey -

(ii) The conclusion as in (i) remains true if S(f) is replaced, respectively, by g(f) or g4 (f) with
2
)\ S (1 + m, OO)

To show the sufficiency of Theorem 4.4(i), we need the following lemma, whose proof
is similar to that of [52, Lemma 4.7] (see also the proof of [91, Lemma 4.1]); we omit the
details here.

Lemma 4.2. Let p(-) € C'8(R"), kg € Z, e € (0,00) and r € [1,00] N (p4, 0] with p as

in (4.1). Assume that {A;}ien C C, {BD}en C B and {mgg)}ieN C L"(IR") satisfy that, for
any e € (0,00) and i € N,

suppmfs) = {x eR": mgs)(x) # 0} c AkBl),
o, <
Collr e [0 o (rey

< oo,

1/
y | Aillsn 0
ieEN HlB(i)HLP(J(Rn)

LPO)(RM)
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1/p
v] .

where C is a positive constant independent of A;, BY), m

with p as in (4.1). Then

A <C

ry1l/p
Y Y U
ieEN ||]'B(i)HLP(')(]Rn)

©

lim inf [Z

1
e—0 ieN

LPC)(R7) LPO) (R™)

and e.

Now we prove the sufficiency of Theorem 4.4(i).

Proof of the sufficiency of Theorem 4.4(i). Let ¢ be as in Lemma 3.1, f € 8{(R") and S(f) €
LP()(R™). Then, by Theorem 4.3, we know that Sy(f) € LP()(IR"). Thus, to show the

sufficiency of Theorem 4.4(i), we need to prove that f € HZ(') (R") and
Ll oy = NS0 U gy (4.6)
For this purpose, for any k € Z, let (O := {x € R": Sy(f)(x) > 2"} and

Q1= {Q €N QN > ’2Q’ and |QN O] < ‘g‘}
Clearly, for any Q € 9, there exists a unique k € Z such that Q € Q. Let {Q}; be the
set of all maximal dyadic cubes in Qj, namely, there exists no Q € 9y such that Q;‘ ; Q
for any i.
For any Q € 9, let

Qi={(nt) RN =R x (0,00): y € Q, t ~ b1}, @7)

where t ~ b?/(Q+" means the same as in (3.18). Obviously, {Q}Q@Q are mutually disjoint
and

R = J UBi (4.8)
keZ i

where, for any k € Z and i, By := UQchf,Qer Q Then, by Lemma 3.3(ii), we easily find
that { By }xcz,; are also mutually disjoint.

Let ¢ and 0 be as in Lemma 3.1 with s as in (4.5). Then 6 has the vanishing moments
up to order s and, for any f € 8} (IR") such that Sy(f) € LP()(R"), and for any x € R",
similarly to (3.20), we have

fe) =Y frwpenbe(x) = [ fripey) 0 (x — y)dydm(t) (4.9)

keZ ]Riﬂ
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in 8'(R"), where m(t) denotes the counting measure on R as in (3.20). For each k € Z, i
and x € R", let

hi(x) == [ faipr(y) = 0n(x — y)dydm(t).

By

Next we prove the sufficiency of Theorem 4.4(i) in three steps.
Step 1) The target of this step is to show that

Y Y hf convergesin §'(R"). (4.10)
keZ i

To this end, following the proofs of assertions (i) and (ii) in the proof of the sufficiency
of Theorem 3.4(i) with some slight modifications, we conclude that, for any given r €

(max{p4,1},00),
(i) foranyk € Z,iand x € R",

M = X [ w)e = y)ddm() @.11)
QcQt,Qen; * 9

holds true in L"(IR") and hence also in 8'(R");

(ii) forany k € Z and i, h;‘ = Ai-‘ai-‘ is a multiple of a (p(+), r,s)-atom, where, for any k €
Z and i, A¥ ~ 25| 1| o (rry With the positive equivalence constants independent

of kand i, and ai-‘ isa (p(-),r,s)-atom satisfying, forany r € (max{py,1}, ),k € Z,
iand v € Z' as in Definition 4.2(i)3,

suppal C Bf := Xk + Byjg(gty-1)+urar With vand u as in Lemma 3.3(iv),

ak

; and af(x)x7dx = 0.

]R”i

k)l/r
i

< Hl
L’(]R”) -

k
B; LPO)(Rn)

To show (4.10), we next consider two cases: i € Nandi € {1,---,I} with some I € IN.
Case 1) i € IN. In this case, by [75, Lemma 4.3], to prove (4.10), it suffices to show that

lim
|—00

> M

I<|k|<mI<i<m

=0. (4.12)
HL (R)

Indeed, for any k € Z and i € N, by the fact that |Q¥ N (| > ‘%ﬂ , we find that, for any
x € R",

1 QFN O] 1
M (1Q,kmk) (x) 2 oF /Qk Lgkna, (V)dy ~ o 25
1 1 1
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where My, denotes the Hardy-Littlewood maximal operator as in (3.9). This, together
with [75, Lemma 3.4] and Lemma 4.1, implies that, for any [, m € IN,

1/p
YooY (P1)

1<|k|<mI<i<m

LPO/E(Rn)
712 2/p
= [ DY 2kp(1s,k)]

I<|k|<mI<i<m Lzr(')/E(IR”)

(x5 o] |

S
I<|k|<mI<ism 12°0)/2 (R
1/p
Sl X (g0a) , (4.13)
I<|k|<m1<i<m L’”(’)/E(]R")

where p is defined in (4.1). In addition, from the fact that, for any I, m € N,

Y<K <m Li<i<m Akak € HZ(') (R"), Theorem 4.2(i) and [75, Lemma 3.4] again, we deduce
that

Y L Ma
I<|k|<m I<i<m HZ(‘)(Rn)
1/
S X X mr
1< |k|<m I<i<m || Bf.‘HLP(')(IR”)
LPO)(RM)
p]'E
2z @wy
I<[k|<m I<i<m LPO)(R7)
o||'”
~l T L (1) : (4.14)
I<|k|<m I<i<m l LPO)/P(Rn)

where p is as in (4.1). On another hand, from [75, Lemma 3.4], it follows that, for any [,
meN,
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) 1/p||E N 1/p||P
k P - k+1 =
= Z (2 1Qk\0k+1) ] + <2> [ (2 - 1Qk+1> ]
1<lk[<m 17O (R) <kl <m LIO) (R?)
Therefore, as I — oo, we have
b2 1
k £ k -
[ E (2 ]‘Qk) ] ~ [ Z (2 1Qk\0k+1) ] (4.15)
1<|k|<m L0 (R I1<[k|<m LPO)(R7)
This, combined with (4.14) and (4.13), further implies that, as | — oo,
Y, Y Aaj
|2 p|'
k P
N T
<|k|<m I<i<m LPO/P (R I<|k|<m LPC) (Rm)
) 1/p p
~ [ Z (zlek\Qk+1>] ~ SIP(f)< Z ]'Qk\Qk+1> — 0.
1< k[ <m L0 (R) F<lk|<m LrO (R?)

Thus, (4.12) holds true and so does (4.10) in Case 1).
Case2)i € {1,---,I} with some I € IN. In this case, to show (4.10), it suffices to
prove that

=0. (4.16)
H ()

Indeed, by a proof similar to that of (4.12), it is easy to see that (4.16) also holds true. This
finishes the proof of (4.10) in Case 2) and hence of (4.10).

Step 2) In this step, we prove that

f=Y Y Akk in §'(R"). (4.17)

keZ i
To this end, for any x € R", let
=L@ =L [ frlw)ex - y)dyam()
kez i kezZ i
in 8'(R"), where, for any k € Z and i, By is as in (4.8). Then, to show (4.17), it suffices to
prove that

f=Ff in 8'(R"). (4.18)
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For this purpose, by the above assertion (i) and (4.7), we know that, for any given r ¢
(max{p4,1},00) and for any k € Z, i and x € R",

i (x) = z\lflglo oS P8 (x = )1, Ugeot oo oy, t)dydm(t)
YN

holds true in L"(IR") and also in 8'(IR"), where, for any N € N, 7(N) and 7(N) are as in
(3.32). For the convenience of symbols, we rewrite f as, for any x € R”,

= & [ £ 0 )0ulx = y)dydm(e),

(eN

where {R(“)} cp is an arbitrary permutation of {By;}tez,;. Forany L € N and x € R”,
let

_ L
Fuw) = S0) = X2 [ F ) = )i,

Then, from (4.8), (4.9) and (4.19), it follows that, for any L € IN and x € R",

- Alzlflo o PEW)Ox =)L g0 (y, ) dydm ()
. 17(N)
— lim /7 - o S #9rW)0(x — )T oo (y, E)dydm (1)
Nﬁoo/ ]R”f* e (y)0: (x _y)lu;;mR(‘f) (y, t)dydm(t) (4.20)

holds true in 8'(R").

Note that HZ(')(IR”) is continuously embedded into 8'(IR") (see [75, Lemma 4.3]).
Thus, to prove (4.18), we only need to show that

Hﬁ R

—0 as L — oo. (4.21)
Rll)

To do this, we borrow some ideas from the proof of the atomic characterizations of
HZ(')(]R”) (see [75, Theorem 4.8]). Indeed, for any € € (0,1), L € IN and x € R", let

w/e
= /E /]Rnf* ()0 (x _y)lu;‘;LHR(@ (y, )dydm (),
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where « := b~ ?"2(+1) with v and u as in Lemma 3.3(iv). Then, by the Lebesgue domi-
nated convergence theorem, we find that, forany ¢ € (0,1), L € N and x € R",

0@ = 5 [T Fen e p)go (s Deydm(t) = Y KO

(=L+1"¢ (=L+1

in 8'(R"). Moreover, by some arguments similar to those used in the proofs of as-
sertions (i) and (ii) in the proof of the sufficiency of Theorem 3.4(i) with some slight
modifications, we conclude that, for any ¢ € (0,1), r € (max{p4,1},0), L € N

and £ € NN L+ 1,00), hgf) is a multiple of a (p(-),r,s)-atom, namely, there exist
{Me}rennii41,0) C € and a sequence of (p(-),r,s)-atoms, {agg)}zen\m[LH,oo), supported,
respectively, in {B(L])}geNﬂ[HLoo) C B such that, forany / € NN [L+1,00), hés) = /\g&lés),

where, for any £ € NN [L+1,00), A, and B are independent of e. Therefore, for any
e€(0,1),L € Nand x € R",

F9x) = i Aeal (x) in §'(R") (4.22)
{=L+1

© ry1/p
5 Aellgey |~
T | 1ol ey

On another hand, for any given

and

< oo (4.23)

LPO) (IR?)

()] =)

with p as in (4.1), let MZO\,O denote the radial grand maximal function as in (3.15) with N

NoeINN

replaced by Ny. Then, by the fact that, for any ¢ € (0,1) and L € NN, {aég) }eeNA[L+1,00) 18
a sequence of (p(-),r,s)-atoms and [78, (4.8)], we know that, for any £ € IN N [L + 1, c0)
and x € R",

1

[Mur (150) ()]P,  (4.24)
0l L0 (rr)

MR, (af) (x) € MY, (af) (¥) 140500 () + i

where T is as in (2.2) and

Inb 1
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Moreover, since r > 1, then, from the boundedness of My, on L"(IR") (see [78, Lemma
3.3(ii)]), we deduce that, forany ¢ € (0,1),L € Nand / € NN [L+1,00),

) 1/r
¢) < (e) | |BY]
HM ( )1ATB Ol ey ~ HMHL (af >1ATB“) LR~ [ 100 [ ot ey
which, combined with Lemma 4.2, further implies that
o 2P
limigf{ Y. [|/\g| MY, <g28)> 1ATB<4)]}
e—0 (=L+1 LF”(')(IR”)
p 1/p
© Agl1 -1 -
< { 5 [1| (150 ] } | w2
o | 1o e (rey O
In addition, let ¢ := y(N) with N € NN [[ =41 | + 1,00). Then, by (4.20), we find that
_ Z(v(N)) . 0 (7(v(N))
(fL> = <hm h > < 11]\]nl>1£fMN0 ( h ) .

From this, [12, p. 17, Proposition 3.10], (4.22) and (4.24), it follows that, for any L € IN,

< P 0 (Flr(N))

HfL’ Hp - lll{anoIJf MNO < L > LV(')(]R")
< [[lim inf Z Ao MY, ( (v (N)))
N—o0 {=L+1 Lp(»)(]Rn)
< ||lim inf Z |/\p|MO (v(N)) 1,450
N—=eo, TT01 ( ) LPO) (Rn)
= A

+ [Mir (150)]°

I=L+1 HlATB([) HLF(')(IR”) Lp(‘>(R”)

This, together with (4.26), [75, Lemma 3.4], Lemma 4.1, (4.25), further implies that, for
any L € N,

o0 1/P
. . N B -
HfL ]Rn N h]\[l’rl}gf{ Z |:|A£‘M?\70 (aév( ))> 1A~(B(1:‘):| }
(=L+1 _—
Y Vel
+ { L W[MHL (1B<z>)]ﬁ}
=L 1B PO LAP() (IR™)

~

o0 py 1/p
Y el 1"
(=L+1 H 1B<é‘) HLP(')(]Rn)

LrO)(Rn)
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By this and (4.23), we know that (4.21) holds true, which completes the proof of (4.17).

Step 3) By (4.17), Theorem 4.2(i) and some arguments similar to those used in the
estimations of both (4.13) and (4.15), we conclude that

)\i-(lBk E v
1 g0 ey ~ k;ZZ [ )
LPO) (R
[ p]'? |2
S [P I ) b o CE
LkeZ i L0 (RY) keZ i LP(')/K(]Rn)
r ; 1/p . 1/p
S Z (2k10k)7 ~ Z <2k10k\0k+1)7
keZ keZ
Lice LPO)(R") € LPO)(R")
1/3
<[00 | £ 1o STERT
keZ Lr0) (R")

which implies that f € HZ(‘)(]R”) and (4.6) holds true. This finishes the proof of the
sufficiency of Theorem 4.4(i). O

Remark 4.2. Let us point out that, in the original proof of the sufficiency of Theorem
4.4(i) (namely, [75, Theorem 6.1]), the method used therein is the same as that used in the
proof of the sufficiency of [79, Theorem 2.7]; see [75, p. 1199]. Thus,

(i) similarly to Remark 3.2, the following fact is needed: for any f € §;(IR"), the
LP)(R") quasi-norms of the anisotropic Lusin area function S(f) are independent
of the choices of § and 1 as in Lemma 3.1. However, in the original proof of the suf-
ficiency of [75, Theorem 6.1]), the authors did not give the proof of this necessary
fact. In the present article, we seal this gap in Theorem 4.3 above;

(ii) similarly to Remark 3.3, both the equalities (3.39) and (3.40) are also used in the orig-
inal proof of the sufficiency of Theorem 4.4(i) (namely, [75, Theorem 6.1]). However,
the authors therein did not prove these two equalities. In the present article, we also
seal these gaps existing in the original proof of the sufficiency of [75, Theorem 6.1];
see, respectively, the proofs of (4.18) and (4.11) above for the details.

4.4 Some applications

In this subsection, we give some applications for the anisotropic summability of Fourier
transforms introduced in [76].
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Let f € LP(IR") for some p € [1,2]. Recall that the Fourier inversion formula, namely,
for any x € R”,

f@)= [ F(t)e?™ -ty

holds true if j? € L'(R"), where f denotes the Fourier transform of f as in (3.7). This
motivates the following definition of summability. We always assume that

0 cCo(R), 6(|-|)€LY(R"), 6(0)=1 and @iseven, (4.27)

where Co(R) denotes the set of all continuous functions f on R satisfying that
lim,| o f(x) = 0. Let A* be the adjoint matrix of A. The m-th anisotropic 6-mean of
the function f € LP(R"), with p € [1,2], is defined by setting, for any m € Z and x € R",

~

U,if(x) ::/ 0 (\(A*)’mu|)f(u)ezmx'“du.

n

Let 6p(x) := 6(|x|) for any x € R" and assume that
6o € L'(R"). (4.28)

It was proved in [76] that, for any m € Z, f € L}(R") and x € R", we can rewrite ¢}, f as
) =6 [ FOfA"(x - 1)t

Moreover, we can extend the definition of the anisotropic f-means to any f € LP()(R")
with p_ € [1,00) by setting, for any x € R”,

o F(x) = b" /]R flx—Do(A" .

Then we define the maximal f-operator o by setting, for any f € LP()(R") with p_ €
[1,00),

ol f .= sup ‘Ufnf‘ . (4.29)

meZ

The following boundedness of maximal #-operators from HZ(')(IR”) to LPO)(R") is
just [75, Theorem 7.4].

Theorem 4.5. Let 6 and 6 be, respectively, as in (4.27) and (4.28) satisfying that there exists a
constant B € (1,00) such that, for any « € Z' and x € R" \ {0,},

000 (x)| < Cpup ¥,
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where C(,g) is a positive constant independent of x. If p(-) € Clos(R"),

€ ﬁoo and € ﬂoo
Felina P=S\gmr_ )"

then there exists a positive constant C
f e Hi (R,
|o?f

Remark 4.3. If A := dl,., for some d € R with |d| € (1,00), then %2 = 1 and Theorem
4.5 goes back to the classical result with B € (n,00) and p € (n/p, o) (see Weisz [111]).
The classical result was proved in a special case, namely, for the Bochner-Riesz means, in
Stein et al. [97]. For the same case, a counterexample was also given in [97] to show that
the same conclusion is not true for p € (0,n/p].

p_p.) With p_ and p. as in (4.1), such that, for any

Corollary 4.1. Let all the assumptions be the same as in Theorem 4.5.

(i) If f € HZ(') (R™), then of f converges pointwisely almost everywhere as well as in the
LPC)(R™) quasi-norm as m — oo;

(i) If f € Hfl(')(lR") and there exists a subset I C R" such that the restriction f|, € L'C)(I)
withr_ € [1,00), then

lim o7, f(x) = f(x)

m—r 00

pointwisely for almost every x € I as well as in the LP") (I) quasi-norm;
(iii) If f € LPO)(R™) with p_ € (1,00), then
lim o? f(x) = f(x)

m—00
pointwisely for almost every x € R" as well as in the LP() (R") norm.

Remark 4.4. Corollary 4.1(iii) for the Bochner-Riesz means in the classical case (namely,
when p(-) = a constant € (0,0) and A := dl,,«, for some d € R with |d| € (1,0)) can
be found in Stein et al. [97] and Weisz [111].

Let « € (0,00) and v € IN. Recall also that the Bochner-Riesz summation and the
Weierstrass summation are, respectively, defined by setting, for any t € R",

[ (1—=1t7)*, when |t €]0,1),
bo(t) := { 0, when [t| € [1,00), (4.30)
and
0o (t) := e 1t7/2, (4.31)

As special cases of Theorem 4.5, we further obtain the following conclusions (see [75,
Theorems 7.10 and 7.11]).
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Theorem 4.6. Let p(-) € C°5(IR").
(i) If Oy is as in (4.30) with

« € [ max n—1 Inb =n+l oo | and € Inb )
2 ‘InA- 2 ' P=S\nA_(m/2vax1/2) ")

then there exists a positive constant C
f & HY (R,

(ii) If O is as in (4.31), then (4.32) also holds true for any f € Hfl(') (R") with p_ € (0, c0).

popi) with p_ and p as in (4.1), such that, for any

9 .

Remark 4.5. (i) Let 6y be as in (4.30) or (4.31). Then the corresponding conclusions in
Corollaries 4.1 hold true as well.

(if) We point out that the dual spaces and the characterizations, respectively, in terms of

wavelets and molecules, of the anisotropic variable Hardy space H f\(') (R") are still
unknown. In addition, it is an interesting question to consider the boundedness of

Calder6n-Zygmund operators on H Z(') (R").

(iif) Recall that Wang [110] obtained a multiplier theorem on anisotropic Hardy spaces

H' (R"); however, the corresponding conclusion on the space H Z(') (R™) is still un-
clear.

5 Anisotropic variable Hardy-Lorentz spaces

In this section, we present the real-variable theory of anisotropic variable Hardy-Lorentz
spaces from [76,78]. To do so, we first recall the following notion of variable Lorentz
spaces LP()4(IR™), which are known as special cases of the variable Lorentz spaces
LP()a0) (R") investigated by Kempka and Vybiral in [59].

Definition 5.1. Let p(-) € P(IR"). The variable Lorentz space LP()1(R") is defined to be
the set of all measurable functions f such that

q dAYa
LPO) (Rn) /\} , when g € (0,00),

[/OOO A Hl{XER”= |F(x)|>A}

sup [)\ Hl{xe]R”: F(x)|>A)
A€ (0,00)

HfHLP(‘)/q(]Rn) =

, when g = o,

is finite.
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Moreover, in [78, Definition 2.10], the authors introduced anisotropic variable Hardy—
Lorentz spaces as follows.

Definition 5.2. Let p(-) € CI°%(IR"), ¢ € (0,00] and N be as in (4.4). The anisotropic
variable Hardy-Lorentz space H Z(')’q (R") is defined by setting

H (R = {f e S(R") : MY(f) € PR |

and, for any f € Hf\(')’q(]R”), let

11 0m gy = 1M ) romcny

where MY;(f) denotes the radial grand maximal function as in (3.15).

Remark 5.1. (i) Even though the quasi-norm of H Z(')’q(]R”) in Definition 5.2 depends

(ii)

5.1

on N, it follows from Theorem 5.1 below that the space H Z(‘)’q(IR”) is independent
of the choice of N as long as N is as in (4.4). If p(-) = p € (0,0), then the space
HZ(')’q(IR”) is just the anisotropic Hardy-Lorentz space H7(IR") investigated by
Liu et al. in [77] (see also Definition 3.2) and, if A := dI, «x, for some d € R with
|d| € (1,00) and g = oo, then the space HZ(')’OO(]R”) becomes the variable weak
Hardy space introduced by Yan et al. in [114].

Very recently, via the variable Lorentz spaces £P()}41()(IR") in [31], where

p(+), q(-) : (0,00) = (0,00)

are bounded measurable functions, Almeida et al. [2] investigated another sort of
anisotropic variable Hardy-Lorentz spaces H?()1()(R", A). As was mentioned
in [59, Remark 2.6], the space £P()1()(R") in [31] never coincides with the space
L) (R™), because the variable exponent p(-) in £P()()(R") is only defined on
(0,0) while not on R". On another hand, the space HZ(')’q(IR”), in Definition 5.2,
is defined via the variable Lorentz space LP()1()(R") (with q(-) = a constant €
(0, 00]) from [59], which is not covered by the space HP()1()(R", A) in [2]. More-
over, as was pointed out in [2, p. 6], the key tool of [2] is the fact that the set
LL (R") N HPUAC(R", A) is dense in HP()4() (IR, A). Therefore, the method used
in [2] does not work for Hf\(')’q(IR”) in [78], due to the lack of a dense function sub-
space of HZ(')’OO(]R”) even when p(-) = aconstant € (0,00) and A := dl,., for
some d € R with |d| € (1, c0).

Several equivalent characterizations of H f‘(')’q(]R”)

The following radial or non-tangential maximal function characterizations of H f\(')’q (R™)
are established in [78, Theorem 3.8].
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Theorem 5.1. Suppose that p(-) € CI°¢(R") and ¢ € S(R") satisfying [, ¢(x)dx # 0. Then,
forany f € 8'(R"), the following statements are mutually equivalent:

(i) f e HYOA(R);
(ii) My(f) € LPLIA(R™);
(iii) MY(f) € LPOA(R™),

where My (f) and Mg (f) are, respectively, as in (3.3) and (3.6). Moreover, there exist two positive
constants C and C, independent of f, such that

1500y < C[MIE sy < CIME raqmey < CIA N pragny

Definition 5.3. Let p(-) € Clog(]R”), g € (0,00], 7 € (1,00] and s be as in (4.5).

J4(IRM)

(i) The anisotropic variable atomic Hardy-Lorentz space H f\(')’r’s’q (R") is defined to be
the set of all f € 8'(IR") satisfying that there exist a sequence of (p(-),7,s)-atoms,
{’Zi‘{}ie]N,keZ/ supported, respectively, in {Bf};cn kez C B and a positive constant C
such that, forany x € R"and k € Z, } ;e 1ot (x) < C with some jo € Z\ N, and

f= EZA in 8'(R"),

keZicN
where A% ~ 2K[|1 ]| 1oy forany k € Z and i € IN with the positive equivalence

constants independent of k and i. Moreover, for any f € Hf\(')’r’s’q (R™), let

Ak py 1/p||"

1 5 P

IF N pomaa o i= INf _ iR
Ha kg ig\l 1 gell o) ()

LrO)(Rm)

1/q

with the usual modification made when g = oo, where the infimum is taken over
all the decompositions of f as above.

(ii) The anisotropic variable finite atomic Hardy-Lorentz space I—If;(ﬁ)n “A(R") is de-

fined to be the set of all f € & (IR”) satisfying that there exist K, I € IN, a fi-
nite sequence of (p(-),r,s)-atoms, {a* e, nnNkelt, KJN/ supported, respectively, in

{B¥ iep,nnnkepkjnn C B and a positive constant C, independent of I and K, such
that -1 1 1,,5(x) < C for any x € R” and k € [1,K] NN, with some jo € Z \ N,
and

K 1
f=Y Y Afad in §'(R"),

k=1i=1
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where, for any k € [1,K|NNandi € [1,I]NIN, AF ~ 2k|\1Bk]|L,,(.>(Rn) with the
positive equivalence constants independent of k, K, i and I. Moreover, for any

f € HAQ P (R"), let

1

1/p||7 q

I S [ 1
(rsa gy += 0 [ETP.

LPO) (IR™)

with the usual modification made when g = oo, where the infimum is taken over
all the decompositions of f as above.

The following conclusions are just [78, Theorem 4.8] and [76, Theorem 2.14].

Theorem 5.2. Let p(-) € CI°(R"), g € (0, 0] and s be as in (4.5) and r € (max{p,1}, 0]
with p as in (4.1). Then

(i) HPOA(R?) = HRO7(IR™) with equivalent quasi-norms;

(i) || - | PO () and || - || HA ey OT equivalent quasi-norms on H%ﬁ)r’lr’s’q(IR”) for each
r € (max{py,1}, ),
(iii) || - HHZ%,:O,M(R”) and || - HHZ(')”’(]R”) are equivalent quasi-norms on Hg%)r’loo’s’q(l[{”) NC(R").

5.2 Littlewood-Paley function characterizations of HZ(')’q(lR”)

In this subsection, we display the characterizations of Hi(')’q(]R”) in terms of the
anisotropic Lusin area function, the anisotropic Littlewood-Paley g-function or g3-
function; see [76,78]. Meanwhile, we also correct some errors existing in the proof of
the sufficiency of [78, Theorem 5.2], namely, the Lusin area function characterizations of
HZ(')/Q (]Rn )

The following Fefferman-Stein vector-valued inequality of the maximal operator
My, on the variable Lorentz space Lr)a (R") is just [76, Lemma 3.5].

Lemma 5.1. Let r € (1,00]. Assume that p(-) € Cl°(IR") satisfies 1 < p_ < p4 < co. Then
there exists a positive constant C such that, for any sequence { fi }xew of measurable functions,

1/r 1/r
{ )3 [MHL(fk)]r} <C (Z !fk!’>
keN LrO)4(Rm) keN LrO)a (IRm)

with the usual modification made when r = oo, where My, denotes the Hardy—Littlewood maxi-
mal operator as in (3.9).
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Via Lemmas 5.1 and 3.4 as well as a proof similar to that of Theorem 3.5, we have the
following conclusion; the details are omitted.

Theorem 5.3. Let p(-) € C'°8(R") and 6, ¢ be as in Lemma 3.1 with s as in (4.5). Then there
exists a positive constant C such that, for any f € 8,(R"),

1
156 () a0 asirngrey < €186 (F) st

where So(f) and Sy (f) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via 0 and .

In [78, Theorem 5.2] and [76, Theorems 2.9 and 2.10], the authors established the char-

acterizations of the space H A(')’q(]R”), respectively, in terms of the anisotropic Lusin area
function, the anisotropic Littlewood-Paley g-function or g;-function as follows.

Theorem 5.4. Let p(-) € C°8(IR"). Then

(i) fe HZ(')’GI(IR”) ifand only if f € 8)(R") and S(f) € LPL)A(R"). Moreover, there exists
a positive constant C such that, for any f € Hﬁ(')’q(]R”),

1
c IS o < 1 llgroa ey < €IS Lroagrs) -

(ii) The conclusion as in (i) remains true if S(f) is replaced, respectively, by g(f) or g5 (f) with

Remark 5.2. We point out that, in the original proof of the sufficiency of Theorem 5.4(i)
(namely, [78, Theorem 5.2]), the method used therein is the same as that used in the proof
of the sufficiency of [79, Theorem 2.7]; see [78, p. 385]. Thus,

(i) similarly to Remark 3.2, the following fact is needed: for any f € §;(IR"), the
LPO)A(IR™) quasi-norms of the anisotropic Lusin area function S(f) are indepen-
dent of the choices of 6 and ¥ as in Lemma 3.1. However, in the original proof
of the sufficiency of [78, Theorem 5.2], the authors did not give the proof of this
necessary fact. In the present article, we seal this gap in Theorem 5.3 above;

(ii) similarly to Remark 3.3, both the equalities (3.39) and (3.40) are also used in the
original proof of the sufficiency of [78, Theorem 5.2]. However, the authors therein
did not prove these two equalities. Indeed, by a proof similar to that of the suf-
ticiency of Theorem 3.4(i) (or the sufficiency of Theorem 4.4(i)]), we can also seal
these gaps existing in the original proof of the sufficiency of [78, Theorem 5.2]; we
omit the details.
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5.3 Real interpolation between HZ(') (R") and L®(R")

For any given compatible couple of quasi-normed spaces (X3, X7), their real interpolation
space (X1, X2)g,, with 8 € (0,1) and g € (0, c], is defined as in (3.41).
In [78, Theorem 6.2], the authors obtained the following real interpolation result.

Theorem 5.5. Let p(-) € C°(IR"), g € (0,00] and 6 € (0,1). Then it holds true that
(HA R, 7R = HER,

1 _1-90
where 50 = 90

As a consequence of Theorem 5.5, [119, Corollary 4.20] and [59, Remark 4.2(ii)], we
immediately obtain the following conclusion.
Corollary 5.1. Let p(-) € C'°8(R"). If p_ € (1,00) and q € (0,0, then
H)(RY) = 17O (R?)
with equivalent quasi-norms.

Remark 5.3. (i) When p(-) = p € (0,1], Theorem 5.5 goes back to [77, Lemma 6.3],
which states that

(HL(R"), L2(R")), . = HY PR, 6€(0,1) and g€ (0,00].

(ii) When p(-) = p € (1,), Theorem 5.5 coincides with [77, Remark 6.7] (see also [89,
Theorem 7]), namely,

(LP(R"), L®(R")), = LP/0-O4(R"), 9 €(0,1) and q € (0,].

(iii) Let A := dl,x, for some d € R with |d| € (1,0). Then H, (R") and Hfl/(lfg)’q(]R”)
in (i) of this remark become, respectively, the classical isotropic Hardy and Hardy—
Lorentz spaces. In this case, the result in (i) of this remark is just [37, Theorem
1]. In addition, H f\(') (R") and H f\(')’q(IR”) in Theorem 5.5 become, respectively, the
classical isotropic variable Hardy and Hardy—Lorentz spaces. In this case, Theorem
5.5 includes the result in [120, Theorem 1.5] as a special case, and Theorem 5.5 with
p— € (1,00) coincides with [59, Remark 4.2(ii)].
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5.4 Some applications

The following boundedness of the maximal 6-operator from HZ(') T(R™) to LPOIA(R") is
just [76, Theorem 2.17].

Theorem 5.6. Let 0 and 6y be, respectively, as in (4.27) and (4.28) satisfying that there exists
some constant B € (1, 00) such that, for any « € Z" and x € R"\ {0},

900 (x)| < Clap I,

where the positive constant C(, g, is independent of x. If p(-) € C'°8(IR"), q € (0, 0],

S Inb S and € _Inb o
Pe\ina P=S\gma_>)"
then there exists a positive constant C

fe Hf\(‘)/'i(an),
ot

where 0¥ f denotes the maximal 6-operator of f as in (4.29).

p_piq) With p—and p. as in (4.1), such that, for any

L?"(')J](]Rn) S C(Pﬂlﬂwﬁl) ||fHHZ()'q(]R”)’

Remark 5.4. A comment similar to Remark 4.3 also holds true for Theorem 5.6.

Corollary 5.2. Let all the assumptions be the same as in Theorem 5.6.

(i) Ifg € (0,00) and f € Hf‘(')’q(]R”), then of, f converges pointwisely almost everywhere as
well as in the LP)A(R") quasi-norm as m — oo;

(ii) If g € (0,00) and f € Hf‘(‘)’q(lR”) satisfy that there exists a subset I C R" such that the
restriction f|; € L')3(I) withr_ € [1,00) and s € [1,00], then

lim of,£(x) = f(x)

m—oo
pointwisely for almost every x € I as well as in the LP()4(I) quasi-norm;
(iii) If p— € (1,00),q € [1,00) and f € LPO)A(IR™), then

lim 0%, f(x) = £(x)

m—oo
pointwisely for almost every x € R" as well as in the LP()1(R") norm.

As special cases of Theorem 5.6, we further obtained the following conclusions
(see [76, Theorems 2.25 and 2.28]).

Theorem 5.7. Let p(-) € C'°8(R") and g € (0, 0]
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(i) If 6 is as in (4.30), with

ve (ma n—1 1nb_n—|—1 o) and c Inb .
V2 'InA- 2 7 P=S\mA_(mn/21a+1/2)7)"

with p_ and p4 as in (4.1), such that, for

then there exists a positive constant C
any f € HZ(')"](]R”),

p-.p+4)

olf (5.1)

(ii) If O is as in (4.31), then (5.1) also holds true for any f € HZ(')’Q(]R”) with p— € (0,00).

Lr’('),q(]Rn) < C(Pﬂm,q) HfHHZ(')’q(]R")'

Remark 5.5. (i) Let 6 be as in (4.30) or (4.31). Then the corresponding conclusions in
Corollary 5.2 hold true as well.

(ii) The boundedness of Calderén-Zygmund operators from H f‘(')’q(]R”) to LPO)(R™)
(or to itself) was obtained by Liu et al. in [82].

(iii) We point out that the dual spaces and the characterizations, respectively, in
terms of wavelets and molecules, of the anisotropic variable Hardy-Lorentz space

H Z(')’q (R") are still unknown.
(iv) A remark similar to Remark 4.5(iii) should be also made for the space HZ(')’q (R™).

(v) Moreover, observe that the exponent q € (0, c0] in H f‘(')’q(]R”) is only a constant. If
the exponent g is replaced by a variable exponent function,

g(+) : R" — (0, 00],

satisfying some reasonable conditions (for instance, the so-called globally log-
Holder continuity condition), then an interesting question is how to develop
a real-variable theory of this sort of anisotropic variable Hardy—Lorentz spaces

6 Anisotropic Musielak—Orlicz Hardy spaces
In this section, we first recall the notion of anisotropic Musielak—Orlicz Hardy spaces

H%(R") introduced in [68] and then give their dual spaces as well as characterizations
via molecules and wavelets, established recently in [73,74].
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6.1 Definition of anisotropic Musielak—Orlicz Hardy spaces

We begin with recalling the classes of uniform anisotropic Muckenhoupt weights associ-
ated with A from [68] as follows.

Definition 6.1. Let g € [1,00). The class of uniform anisotropic Muckenhoupt weights,
Ag(A) = A4(R"; A), is defined to be the set of all measurable functions ¢ : R" x
[0,00) — [0, 00) satisfying, when g € (1, 0),

1 _1 -1
sup su ,b)d }{/ LB td } < 00
te(O}o)o Beg{‘B’/ <y ) Y ’B’ B[(P(y )] Y

and, wheng =1,

sup sup { |;| / (y,t)dy} {ess sup[(p(y,t)]_l} < 00,

te(0,00) BEB yEB

where ‘B is as in (2.1). Moreover, let

U A4

q€[1,00)

Recall also that a function ® : [0,00) — [0,00) is called an Orlicz function if P is
non-decreasing, ®(0) = 0, lim;_,co (t) = oo and, for any t € (0,00), ®(t) € (0,0) (see,
for instance, [60]). For a given function ¢ : R” x [0,00) — [0, 00) satisfying, for any given
x € R", ¢(x,-) is an Orlicz function, ¢ is said to be of uniformly upper (resp. lower) type
p for some p € (—oo,00) if there exists a positive constant C such that, for almost every
x € R", s € [1,00) (resp.s € (0,1)) and t € [0,0), ¢(x,st) < CsP@(x,t). Denote by i(¢)
the critical uniformly lower type index of ¢, namely,

i(@) :==sup{p € (—o0,00) : ¢ is of uniformly lower type p} . (6.1)
The following notion of anisotropic growth functions is just [68, Definition 3].

Definition 6.2. A function ¢ : R" x [0,00) — [0,00) is called an anisotropic growth
function if ¢ satisfies the following conditions:

(i) @ is a Musielak-Orlicz function, namely;,

(1)1 for each given x € R", ¢(x,-) : [0,00) — [0, c0) is an Orlicz function;

(i), foreach givent € [0,00), ¢(-,t) is a Lebesgue measurable function on R”".
(i) ¢ € Ac(A).

(ili) ¢ is of uniformly lower type p for some p € (0,1] and of uniformly upper type 1.
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Forany ¢ € A (A), let

q(¢) :=inf{g € [1,00) : ¢ € Ay(A)}. (6.2)

For any ¢ as in Definition 6.2(i), the Musielak-Orlicz space L?(IR") is defined to be the
set of all measurable functions f with their quasi-norms

[ fllLomny := inf{/\ € (0,00) : /IR” o(x, [f(x)]/A)dx < 1} < oo.
Moreover, in [68, Definition 5], the authors introduced the anisotropic Musielak-

Orlicz Hardy spaces as follows.

Definition 6.3. Let N € IN and ¢ be an anisotropic growth function as in Definition 6.2.
The anisotropic Musielak—Orlicz Hardy space H Z(f,, 4 (IR") is defined by setting

HY 4(R") := {f € 8'(R") : Mn(f) € L?(R")}
and, for any f € H;f],A(lR”), let HfHH;f,A(IR”) := [[MN(f)l|ro(rr), Where My(f) denotes the
non-tangential grand maximal function of f € 8'(R") as in (3.4).

Remark 6.1. (i) By [68, Theorem 33], we know that the space H I(\Pi, 4 (R") is independent
of the choice of N as long as N € N N [m(¢), o), here and thereafter, for any given
¢ as in Definition 6.2,

o |[19 - 2

with () and i(¢), respectively, as in (6.2) and (6.1). Thus, throughout this article,
we always denote simply by H% (IR") the anisotropic Musielak-Orlicz Hardy space.

(ii) Recall that, in Definition 4.1 (see also [75, Definition 2.4]), we present the anisotropic
variable Hardy space HZ(') (R") with p(+) € Cl8(R") (see (4.2) and (4.3)). Similarly
to [114, Remark 2.8], we know that, if

@(x,t) :=t'®) forany x € R" and te€ (0,00), (6.4)

then HY (R") = H f\(') (R"). However, a general Musielak-Orlicz growth function
@ as in Definition 6.2 may not have the form as in (6.4). On another hand, as was
proved in [114, Remark 2.14(iii)], there exists a variable exponent function p(-) sat-
isfying (4.2) and (4.3) which were required in Definition 4.1, but t7() is not a uni-
form Muckenhoupt weight which was required in Definitions 6.2 and 6.3. Thus,
the anisotropic Musielak-Orlicz Hardy space Hfﬁ (R") and the anisotropic variable

Hardy space H Z(') (R™) cannot cover each other.
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(i) When A := dl,, for some d € R with |d| € (1,0), the space HY (R") becomes
the Musielak-Orlicz Hardy space H?(R") (see [60]), which includes the classical
Hardy space of Fefferman and Stein [38] and the classical weighted Hardy space
of Garcia-Cuerva [43] as well as the classical Orlicz-Hardy space of Janson [54] as
special cases. In addition, if, for any p € (0,1], x € R" and t € (0, ),

o(x,t) = w(x)t?

with w € As(A) being an anisotropic A, Muckenhoupt weight (see, for in-
stance, [16]), then the space HY (R") coincides with the weighted anisotropic Hardy
space HF (R"; A) (see [16]), which includes the anisotropic Hardy space H Z (R™) of
Bownik [12] as a special case.

(iv) We should point out that Li et al. [68] also characterized HY (R"), respectively, in
terms of the radial or the non-tangential maximal function and the atom; see, re-
spectively, [68, Theorems 9 and 40] for more details.

6.2 Molecular characterizations of Hfz (R") and their applications

Let ¢ be as in Definition 6.2. For any measurable subset E C IR", the space LZ,(E ) with
g € [1,00] is defined to be the set of all measurable functions f on E satisfying

1 /4
q
Fllage = rctom S Nt ] < oo when g e 1,e), 65)
[ fllze=(E) < oo, when g = oo,

here and thereafter, for any t € [0,00), ¢(E,t) := [, ¢(x, t)dx (see [60]).
The following notion of anisotropic Musielak—Orlicz molecules is just [71, Definition
2.8], which is an anisotropic version of [50, Definition 4.4].

Definition 6.4. Let ¢ be as in Definition 6.2, g € (g(¢), o] with g(¢) as in (6.2), s €
Z, and ¢ € (0,00). A measurable function m is called an anisotropic Musielak-Orlicz
(¢,4,s,¢)-molecule (shortly, a (¢, g, s, ¢)-molecule), associated to some dilated ball B :=
xo + B;, € B with xo € R", iy € Z and B as in (2.1), if

(i) foreachjec Z,, ‘
HmHL;’;)(uj(B)) < bi]sHlBHLfrpl(]Rn)r

where Uy(B) := B and, forany j € N,
Uj(B) = Uj (xo + Bj,) := x0 + [(AjBio) \ (Aj*le)] ;

(ii) for any multi-index & € Z" with |a| <, [, m(x)x*dx = 0.
y + R
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By using (¢, g, s, ¢)-molecules, in [73, Definition 3.3], the authors originally introduced
the anisotropic Musielak-Orlicz molecular Hardy space H¥’ A 01 "(IR™) as follows.

Definition 6.5. Let ¢, g, s and ¢ be as in Definition 6.4. The anisotropic Musielak-Orlicz
molecular Hardy space Hfz 17/ (IR") is defined to be the set of all f € §'(IR") satisfying

that there exist {A; }ZGN C C and a sequence of (¢, g, s, ¢)-molecules, {m; };cN, associated,
respectively, to {B()};cny C 9B such that f = ¥, Aim; in 8’ (IR") and

Lo (B, 1Al 1m0, ) < oo

Moreover, for any f € Hﬁ’qse(IR”) let

mol
||fHH§',‘III’i’j(]R") i= inf {A({Aimi}ien) }

with the infimum being taken over all the decompositions of f as above, where

. ; A
A({/\Zml}leN) = inf {/\ S (0,00) . Z gD (B(l), )\H]_H> S 1} .
=N B || Lo (R

The following molecular characterizations of H (R") were established in [73, Theo-
rem 3.12].

Theorem 6.1. Let ¢ and q be as in Definition 6.2, s € Z.. N [m(¢), o0) with m(¢) as in (6.3),
N e NN [m(¢)+2,00)and

e € (max{1, (s +1)log, (A+/A_)}, ). (6.6)

Then H5(R") = HY ‘Zlfoi(lR”) with equivalent quasi-norms.

Remark 6.2. (i) When A is as in Remark 3.4(i), H%(R") and HZEOT(R”) become,
respectively, the classical isotropic Musielak-Orlicz Hardy space (see [60]) and
Musielak-Orlicz molecular Hardy space (see [50]. In this case, Theorem 6.1 co-
incides with [50, Theorem 4.13].

(i) When A is a diagonal expansive matrix (see [71]), Theorem 6.1 goes back to [71, The-
orem 2.11]. In addition, Li et al. recently also obtained a kind of molecular charac-
terizations for the space HZ’(IR”) (see [66, Theorem 2.10]), where the size condition
of the (¢, g, s, €)-molecule m associated to some dilated ball B, namely,

HmHLZ,(B) < HlBHZwl(]Rn)
and, for any j € N and x € U;(B) with U;(B) as in Definition 6.2,
im(x)| < bijs”lBHZ«pl(]R )

is much stronger than that used in Definition 6.4(i). In this sense, Theorem 6.1
extends the corresponding result obtained in [66, Theorem 2.10].
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(iif) We should also point out that both [71, Theorem 2.11] and [66, Theorem 2.10] re-
quire the index ¢ to belong to

(max{q(¢)/i(¢),slog,(A+) +1},00)

with g(¢) and i(¢), respectively, as in (6.2) and (6.1), which is just a proper subset
of
(max {1, (s +1)log, (A1 /A_)} o)

from (6.6). In this sense, the conclusion obtained in Theorem 6.1 is also stronger
than that obtained in [71, Theorem 2.11] or [66, Theorem 2.10].

We next give some applications of Theorem 6.1 to the boundedness of linear oper-
ators. For this purpose, we need to recall the definition of anisotropic Musielak-Orlicz
(¢,4,s)-atoms from [68, Definition 30].

Definition 6.6. Let ¢ be as in Definition 6.2 and g(¢) as in (6.2).

(i) An anisotropic triplet (¢, q,s) is said to be admissible if g € (g(¢), 0] and s €
Z.N[m(¢p), o) with m(¢p) asin (6.3).

(ii) For any given anisotropic admissible triplet (¢, g, s), a measurable function 4 on R"
is called an anisotropic Musielak-Orlicz (¢, g, s)-atom (shortly, a (¢, g, s)-atom) if

(ii); suppa:={x € R": a(x) # 0} C B, where B € B and B is as in (2.1);
(ii)2 HaHL?p(]R”) < HlBHE/}(W)?

(ii)3 forany y € Z" with |y| <'s, [p. a(x)x7dx = 0.

In [73, Theorem 4.5], the authors established a criterion on the boundedness of linear
operators on H% (R") as follows.

Theorem 6.2. Assume that T is a linear operator defined on the set of all measurable functions.
Let (¢, q,5) be an anisotropic admissible triplet (see Definition 6.6(i)). If there exist some jo €
Z and a positive constant C such that, for any (¢, q,s)-atom a supported in some dilated ball
xo + Bi, € Bwithxy € R", iy € Zand B asin (2.1), %T(ﬁ) isa (¢, q,s,¢&)-molecule associated
to xo + Bivj,, where s and ¢ are as in Theorem 6.1, then T has a unique bounded linear extension
on HY (R").

In what follows, for any » € IN, denote by C"(IR") the set of all functions on R"
whose derivatives with order not greater than r are continuous. Recall that Liao et al. [71]
introduced the following notion of integral anisotropic Calderén-Zygmund operators.

Definition 6.7. Let 7 € N, g € (1,00) and ¢ € A (A). An anisotropic Calderén-
Zygmund operator T (see Definition 3.8(ii)) is called an integral anisotropic Calderén-—
Zygmund operator of order r if its kernel X is a C"(R") function with respect to
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the second variable y and there exists a positive constant C such that, for any di-
lated ball B := xo + B;, € B with xp € R", ijp € Z and B as in (2.1), m € N,
x € x0 + (Big+m+r+1 \ Bigrm+r) and & € Z" with1 < |a| <7,

< Ch o,

1 ~ .
/ (11l 1an% (x, tA‘lO_m-> dt||
0 L%(B)

where ¢ := ¢1/(1-9), L?F;(B) is as in (6.5) with ¢, E and g replaced, respectively, by ¢, B

and ¢’ and, for any x,y € R” satisfying x # A"y, K(x,y) := K(x, Abtmy).

Remark 6.3. (i) Foranyr € IN, the anisotropic Calderén-Zygmund operator of order r
in [66, Definition 4.3], which originates from [12, p. 61, Definition 9.2], is an integral

anisotropic Calderén-Zygmund operator of order r as in Definition 6.7; see [71,
Remark 4.4(i)] or [73, Remark 4.8(i)] for more details.

(ii) By [71, Remark 4.4(ii)], we know that, for any r € IN, the classical isotropic
Calderéon—-Zygmund operator of order r (see [96, p. 289]) is also an operator as in
Definition 6.7 in the case when A := dl,», for some d € R with |d| € (1, c0).

The following vanishing moment condition is just [66, Definition 4.5], which origi-
nates from [12, p. 64, Definition 9.4].

Definition 6.8. Let ¢ be as in Definition 6.2, r € IN and

q(9) _, _ (nA)?
i(p) 1< lnbln/\+r'

where g(¢) and i(¢) are, respectively, as in (6.2) and (6.1). An integral anisotropic
Calder6n-Zygmund operator T of order r is said to satisfy T*(x*) = 0 for any & € Z"
with |a| < m(¢), where m(¢) is as in (6.3), if, for any f € L2(R") with compact support
and satisfying that, for any v € Z" with |y| <7, f]Rn f(x)x7dx = 0, it holds true that, for
any « € Z' with |a| < m(¢), [g. T(f)(x)x*dx = 0.

As a further application of the criterion established in Theorem 6.2, we have the fol-
lowing boundedness of integral anisotropic Calderén-Zygmund operators from H% (R")
to itself (or to L?(IR")); see [73, Theorems 4.13 and 4.14].

Theorem 6.3. Let ¢, 1, q(¢), i(¢) and m(¢) be as in Definition 6.8. Assume that T is an integral
anisotropic Calderén—Zygmund operator of order r and satisfies T*(x*) = 0 for any & € Z with
|| < m(g). Then there exists a positive constant C such that, for any f € HY% (R"),

ITCA) s oy < Cl s ey

Theorem 6.4. Let ¢ be as in Definition 6.2 and m(¢) as in (6.3). Assume that T is an integral
anisotropic Calderon—Zygmund operator of order ¥ with 7 € IN N [m(¢) + 1,00). Then there
exists a positive constant C such that, for any f € H% (R"),

1T lLewey < Cllfll o rm-



434

J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456

Remark 6.4. (i) When A is a diagonal expansive dilation (see [71, p. 3]), Theorems 6.3

(ii)

(iii)

(iv)

v)

6.3

and 6.4 coincide, respectively, with [71, Theorems 4.7 and 4.6].

By Remark 6.3(i), we know that Theorems 6.3 and 6.4 extend the corresponding
results obtained in [66, Theorems 4.8 and 4.7], respectively.

Letr € N and p € (0,1] satisfy

2
1 A1
p “ InbInAy

(6.7)
If, for any x € R" and t € (0,00), ¢(x,t) := t, theng(¢) = 1,i(¢) = pand H} (R")
and L?(R") become the anisotropic Hardy space H/ (R") of Bownik [12] and the
Lebesgue space L¥(IR"), respectively. In this case, by Theorems 6.3 and 6.4 and
Remark 6.3(i), we find that, for any r € N and p € (0,1] as in (6.7), the anisotropic
Calderén-Zygmund operator of order r (see [12, p. 61, Definition 9.2]) is bounded
from H', (R") to itself (or to LP(R")) (see [12, p. 68, Theorem 9.8 and p. 69, Theorem

9.9]). Moreover, let A := dl,«, for some d € R with |d| € (1,00), 7 = 1. Then

ﬁrblﬁfﬁi r = 1 and HY(R") and L?(IR") become the classical isotropic Hardy space

HP(R") and the Lebesgue space LP(IR"), respectively. In this case, by Theorems
6.3 and 6.4, and Remark 6.3(ii), we further conclude that, for any p < (nLH, 1],
the classical Calder6n-Zygmund operator is bounded from H”(IR") to itself (or to
LP(IR™)), which is a well-known result (see, for instance, [3,96]).

Letr := land p € (Inb/[Inb+1InA_],1]. If, for any x € R” and t € [0, ),
¢(x,t) := w(x)tP, where w is an anisotropic A; Muckenhoupt weight (see [16]),
then q(¢) = 1, i(¢) = p and H%(R") becomes the weighted anisotropic Hardy
space Hf,(IR"; A) (see [16]). In this case, by Theorem 6.3, we know that, for any p €
(Inb/[Inb+1InA_],1], the anisotropic Calderén-Zygmund operator (see Definition
3.8(ii)) is bounded on HY,(R"; A), which is just [118, Theorem 3.2].

Recently, Sun et al. [99] established the molecular characterization of the anisotropic
weak Musielak-Orlicz Hardy space WHY(R"); as applications, in [99], they
also obtained the boundedness of Calderén-Zygmund operators from H% (R") to
WHY (IR") in the critical case.

Littlewood-Paley function characterizations of HY (R")

In this subsection, we present the characterizations of H (IR") in terms of the anisotropic
Lusin area function, the anisotropic Littlewood-Paley g-function or g} -function; see [67].
Meanwhile, we also correct some errors existing in the proof of the sufficiency of [67,
Theorem 2.8], namely, the Lusin area function characterizations of Hfﬁ (R™).
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Let ¢ be a Musielak-Orlicz function on R” (see Definition 6.2(i)). For any r € (0, ),
the space L?(IR", ¢") is defined to be the set of all { f; };cy of measurable functions on R"
satisfying

1/r
(Z |ij> € L?(R")
icIN

and, for any { fi}ieny € L?(IR", ¢"), let
1/r

{fi}ienllLoroery := Zlfllr

ieIN

L?(IR")

The following Fefferman-Stein vector-valued inequality on the Musielak—Orlicz
space is just [67, Lemma 3.6].

Lemma 6.1. Let r € (1,00, ¢ be a Musielak-Orlicz function with uniformly lower type p,, and

uniformly upper type pg, q € (1,00) and ¢ € Ag(A). If (@) < p, < p,; < oo with q(¢) as
in (6.2), then there exists a positive constant C such that, for any { fi}ieny € L?(R", ("),

1/r Y
/” @ (X, {Zﬂ:\l [MHL(fi)(x)]r} ) dx < C/]Rn ¢ (x, [ZZM(JC)V] ) "

where My, denotes the Hardy-Littlewood maximal operator as in (3.9).

Via Lemmas 6.1 and 3.4, similarly to Theorem 3.5, we obtain the following conclusion;
the details are omitted.

Theorem 6.5. Let ¢ be as in Definition 6.2 and 0, i as in Lemma 3.1 with s € Z. N [m(¢), o0),
where m (@) is as in (6.3). Then there exists a positive constant C such that, for any f € 8,(R"),

1
186 oimey < 186 oy < €186 (N o

where Sg(f) and Sy(f) are the anisotropic Lusin area functions as in (3.8) defined, respectively,
via 0 and .

Let (¢,g,s) be an anisotropic admissible triplet as in Definition 6.6(i). Notice that a
(¢,4,5)-atom as in Definition 6.6(ii) is also a (¢, g, s, ¢)-molecule for any € € (0,00) as in
Definition 6.4. Thus, by [73, Lemma 3.7], we obtain the following conclusion.

Lemma 6.2. Let (¢, q,s) be an anisotropic admissible triplet and N € IN N [m(¢) + 2, 00) with
m(¢) as in (6.3). Then there exists a positive constant C 4 ), depending on A, @, q and s,
such that, for any A € (0,00) and (¢, q, s)-atom a supported in some dilated ball B € ‘B,

[ 9 o AMN@) () dx < Claggero (B ATl )

holds true, where B is as in (2.1) and My as in (3.4).
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In [67, Theorems 2.8, 3.1 and 3.9], Li et al. established the characterizations of Hff; (R™),
respectively, in terms of the anisotropic Lusin area function, the anisotropic Littlewood-
Paley g-function or g;-function as follows.

Theorem 6.6. Let q € [1,00) and ¢ € A,(A) be as in Definition 6.2. Then

(i) f € HY(R") if and only if f € 8)(R") and S(f) € L?(R"). Moreover, there exists a
positive constant C such that, for any f € H5 (R"),

1
C IS oy < N fIleg@ey < CUSU Lo gy -
(ii) The conclusion as in (i) remains true if S(f) is replaced, respectively, by g(f) or g5 (f) with
A€ (29/p, ).

To show the sufficiency of Theorem 6.6(i), we also need the following two lemmas,
which are just, respectively, [71, Lemma 3.5] and [60, Lemma 4.3(i)].

Lemma 6.3. Let ¢ be an anisotropic growth function as in Definition 6.2. Then there exists a
positive constant C such that, for any {(x, t;) }ien C R" X [0, 00),

¢ (x, ), ti) <CY ox ).
ieIN ieIN

Lemma 6.4. Let ¢ be as in Lemma 6.3. Then, for any given positive constant C, there exists a
positive constant C such that, for any A € (0, 00) and measurable function f on R",

/n ) <x, \f(/\x)]) dx < C implies ||f||L<p(]Rn) < CA.

Now we prove the sufficiency of Theorem 6.6(i).

Proof of the sufficiency of Theorem 6.6(i). Let ¢ be as in Lemma 3.1, f € 8((R") and S(f) €
L?(R"). Then, by Theorem 6.5, we know that Sy(f) € L?(IR"). Therefore, to finish the
proof of the sufficiency of Theorem 6.6(i), we need to prove that f € H (R") and

£ g mery S NSy () Lo (rn- (6.8)
To this end, for any k € Z, let O := {x € R" : Sy(f)(x) > 2*} and
Q= {Q €N: QN > ‘2Q’ and |QN O] < ‘2Q’}

Clearly, for any Q € 9, there exists a unique k € Z such that Q € Q. Let {Qf }i be the
set of all maximal dyadic cubes in Qj, namely, there exists no Q € 9y such that Qﬁ‘ ;Cé Q
for any i.
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For any Q € 9, let

~

Q:={(yh) ERITi=R" x (0,00) : y € Q,t ~ b"(*1 1, (6.9)

where t ~ b?!(Q+" means the same as in (3.18). Obviously, {Q\}QEQ are mutually disjoint
and

R = | Bk (6.10)
keZ i

where, for any k € Z and i, By := UQcQﬁ.‘,QeDk Q Then, by Lemma 3.3(ii), we easily find
that { By ; }rez,; are also mutually disjoint.

Let ¢ and 6 be as in Lemma 3.1 with s € Z, N [m(¢), c0), where m(¢) is as in (6.3).
Then 6 has the vanishing moments up to order s and, for any f € §;(IR") such that
Sy(f) € L?(R"), and for any x € R", similarly to (3.20), we have

flx) =) fripexb(x) = i [ 9e(y) %0 (x — y)dydm(t) (6.11)
keZ +

in 8'(IR"), where m(t) denotes the counting measure on R as in (3.20). For each k € Z, i
and x € R", let

HE(x) == [ faipr(y) = 0n(x — y)dydm(t).

By

Next we prove the sufficiency of Theorem 6.6(i) in three steps.
Step 1) The aim of this step is to show that

Y Y hf convergesin §'(R"). (6.12)
kez i

For this purpose, repeating the proofs of assertions (i) and (ii) in the proof of the suffi-
ciency of Theorem 3.4(i) with some slight modifications, we conclude that, for any given
r € (q(¢@), o) with g(¢) as in (6.2),

(i) foranyk € Z,iand x € R",
@ = X [ e y)dydm() (6.13)
QcQt Qe "9
holds true in 8'(R");

(i) forany k € Z and i, h;‘ = )\faf is a multiple of a (¢, r,s)-atom, where, for any k € Z
and i, AF ~ 2K[|1,|| Lo(r+) With the positive equivalence constants independent of
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k and i, and ai‘ is a (¢, r,s)-atom satisfying, for any r € (q(¢), ), k € Z, i and
¥ € Z' as in Definition 6.6(ii)3,

suppal C B := Xk + Bv[Z(Qﬁf)fl]JrquST with v and u as in Lemma 3.3(iv),

k -1

a;

: < HlB.k and af(x)x7dx = 0.

L?(R") R

LY (R"

To show (6.12), we next consider two cases: i € Nandi € {1,---,I} with some I € IN.
Case 1) i € IN. In this case, by [68, Propositions 6 and 7], to prove (6.12), it suffices to
show that

=0. (6.14)

Hj(R")

k
Indeed, by the facts that AF ~ 2"\\135 Lo (rr), 1QF N Q| > @, [73, Lemma 3.4] and the

mutual disjointness of {Q};c for any fixed k € Z, we find that, for any I, m € N and
A€ (0,00),

Y Y e (B
VMgl e (e

I<|k|<mI<i<m
2k

- ve(i)~ T ¥ oe(a])

1<[k|<m I<i<m 1<[k|<m I<i<m

k k
~ ) @(Qfmok,wg )y qo(ﬂk,i).

I<|k|<ml<i<m I<|k|<m
This, combined with [68, Theorem 40] and the fact that, for any A € (0, o),
o S
Y ¢ <Qk/2> S / @ (x, ¢(f)(X)> dx < oo, (6.15)
iz A n A

further implies that (6.14) holds true and hence finishes the proof of (6.12) in Case 1).
Case 2)i € {1,---,I} with some I € IN. In this case, to show (6.12), it suffices to
prove that

= 0. (6.16)

H(R")

Indeed, by a proof similar to that of (6.14), it is easy to see that (6.16) also holds true,
which completes the proof of (6.12) in Case 2) and hence of (6.12).
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Step 2) In this step, we prove that

f=Y Y Alaf in 8'(R"). (6.17)

keZ i
For this purpose, for any x € R", let
W= LYH@= T X [ o) pdyan(t) in /R,
keZ i keZ i

where, for any k € Z and i, B, is as in (6.10). Then, to show (6.17), it suffices to prove
that

f=f in 8(R"). (6.18)

To do this, by the above assertion (i) and (6.9), we know that, for any given r €
(9(¢), 00) and forany k € Z, iand x € R,

k — ~
) = gim [7 [ Fep@B -t oy Ddydm()
[L(Q)I<N
= li v 0 1 t)dydm(t 6.19
= tim [1 0[P~ )L, (v Oy 619

holds true in 8'(R"), where, for any N € N, 7(N) and #(N) are as in (3.32). For the
convenience of symbols, we rewrite f as, for any x € R",

= ¥ [ fe0)u(x — y)dydm (1)

teN

where {R()},cp is an arbitrary permutation of {Bki}kez,i Forany L € N and x € R",
let

~ L
Ful) = £0) = 1o [ F = 9w = iy ).

Then, from (6.10), (6.11) and (6.19), it follows that, for any L € IN and x € R”,

= lim o L PEW)Ox = )T g0 (y, ) dydm ()

N—oo
’Y(N

_I\lllglo o0 Jeo T IO =)y oo (y, D)y ()

= lim/ / fxp(y)i(x —y)1 U, ,)(y,t)dydm(t) (6.20)

N—oco
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holds true in 8'(R").
Note that H%(IR") is continuously embedded into 8'(R") (see [68, Proposition 6]).
Therefore, to prove (6.18), we only need to show that

HfL H?(R

®) —0 as L — oo. (6.21)

To this end, we borrow some ideas from the proof of the atomic characterizations of
H%(R") (see [68, Theorem 40]). Indeed, for any ¢ € (0,1), L € N and x € R", let

w/e
= /8 /]Rn frp()0r(x —y) e po(y, t)dydm(t),

where & := b~?"2(“+1) with v and u as in Lemma 3.3(iv). Then, by the Lebesgue domi-
nated convergence theorem, we find that, for any givenany ¢ € (0,1), L € Nand x € R”,

Z/ e (y)0:(x = y) 1o (y, t)dydm(t) B

{=L+1 (=L+1

in 8'(R"). Moreover, by some arguments similar to those used in the proofs of asser-
tions (i) and (ii) in the proof of the sufficiency of Theorem 3.4(i) as well as in the proof of
(6.14) with some slight modifications, we conclude that, for any ¢ € (0,1),r € (q(¢), ),
LeNand/ € NNI[L+1,00), h( )is a multiple of a (go,r s)-atom, namely, there exist
{Me}rennii41,00) € € and a sequence of (¢, 7,s)-atoms, {ae }eeNn[L+1,00), SUppOTted, re-
spectively, in {B(Y)} jcnn(41,0) C B such that, for any £ € NN [L 4 1,00), hgg) = /\gaég),
where, for any £ € IN N [L+1,00), Ay and B are independent of e. Therefore, for any
€(0,1),L e Nand x € R",

F9(x) = i Mal (x) in 8'(RY), (6.22)
(=L+1

and

(=L+1 ||1B<f> HL‘P(]R”)

On another hand, for any given N € IN N [m(¢) 4 2, c0) with m(¢) as in (6.3), let My de-
note the non-tangential grand maximal operator as in (3.4) with N replaced by N. More-
over, lete := (N) with N € NN [| =1 ] + 1, 00). Then, from (6.20), we deduce that

s () = o (i ) < pinton (7).
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This, together with (6.22) and Lemmas 6.3 and 6.2, further implies that, for any L € IN,

o o (7))
/ @ | x, 11m1nfMN (AEAY(N)))> dx

S/]R" ¢ (x lim inf Z |M\MN( al? (N)))> dx

{=L+1

< g, Ml )
Z:;&-lq) ( 10 [ o (rr)

By this and (6.23), we easily know that (6.21) holds true, which completes the proof of
(6.17).

k
Step 3) By (6.17), the facts that A;‘ ~ 2k||1B£<HL(p(]Rn), ]Qi‘ NQyl > ‘Q”|, [73, Lemma

n

=

2
3.4] and the mutual disjointness of {Q¥};ciy for any fixed k € Z, we find that, for any
A € (0,00),

By (s -
" Mg v

~Lro(m3)~Lre(e})
“Ere(@nai)spe(e)

From this and (6.15), it follows that, for any A € (0, ),

|Af] N Sy(f)(x) .
k§;¢< l,/\HlBkHL‘/’ R > g/”qo( A )d ’

which, combined with [68, Theorem 40], implies that f & Hfg(]R”) and (6.8) holds true.
This finishes the proof of the sufficiency of Theorem 6.6(i). O

Remark 6.5. (i) Let Sy(f) and Sy(f) be the anisotropic Lusin area functions defined,
respectively, by using 6 and . We point out that, in the original proof of the suf-
ficiency of Theorem 6.6(i) (namely, [67, Theorem 2.8]), the authors used both Sy(f)
and Sw( f); see, respectively, the proofs of [67, (2.22) and (2.25)]. Thus, the follow-
ing fact is needed: for any f € §((IR"), the L?(IR") quasi-norms of the anisotropic
Lusin area function S(f) are independent of the choices of 6 and ¥ as in Lemma 3.1.
However, in the original proof of the sufficiency of [67, Theorem 2.8], the authors
did not give out the proof of this necessary fact. To seal this gap, we present the
above fact in Theorem 6.5.
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(ii) Let all symbols be the same as those used in the proof of the sufficiency of Theo-
rem 6.6(i). Observe that, in the original proof of the sufficiency of Theorem 6.6(i)
(namely, [67, Theorem 2.8]), the authors used the following two equalities: for any
f € 8,(R") with S(f) € L?(R"), and x € R",

fxe(y) * 0r(x — y)dydm(t)

n+1
R’

=) Z/Bk}f * i (y) * 0:(x — y)dydm(t) (6.24)

keZ i

in 8'(IR") (see [67, p. 294]) and, for each k € Z,i and x € R",
[ ()« 0 (x = y)dyam (1)
k,i

= ) /Af « P (y) * 0:(x — y)dydm(t) (6.25)
QcQboen, ’¢

in 8'(R") (see [67, p. 294 and (2.20)]); however, the authors therein did not prove
these two equalities. In the present article, we give the proofs of both (6.24) and
(6.25) and hence seal these gaps existing in the original proof of the sufficiency
of [67, Theorem 2.8]; see, respectively, the proofs of (6.18) and (6.13) above for the
details.

6.4 Dual spaces with applications in wavelet characterizations of Hfz (R™)

In this subsection, via establishing a John-Nirenberg inequality for elements from
anisotropic Musielak—Orlicz Campanato spaces Lfl’l’s (R™), we first present that the dual
space of HY (R") is Lﬁ’l’s (R"™). Then, via this duality, we give the characterizations of
H% (R") in terms of the so-called tight frame multiwavelets. '

Let A be some fixed dilation. For any j € Z and k € Z", let Q;x := A7/([0,1)" + k)
and

Q:=J9:=U{Qp: kez"}. (6.26)
JEZ jEZ
For each j € Z and k € Z", Qi is called a dilated cube (see, for instance, [15, p. 1475]).
Clearly, for any kq,ky € Z" with k1 # kz, |Qjk, N Qjx,| = 0. In addition, for each dilated
cube Qj, denote by cq,, its center, by xq,, its lower-left corner A7k and by £(Qj) its
level, namely, the integer —j. Then [14, Lemma 2.9(a)] implies that there exists some
Jam) =:jo € N, only depending on A and #, such that, for any x € Qj,

B, (Clek,b—]'o—]') C Qj,k C B, (x, bfo—f) ,
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where, for any x € R" and r € (0,00), B,(x,7) := {y € R": p(x —y) <r}.
For any s € Z., denote by P;(IR") the set of all polynomials on R" with degree not
greater than s. For any given f € L] (R") and forany Q € Qand s € Z, let P f be the

unique polynomial P € P;(IR") such that, for any R € P;(R"),

/Q [f(x) = P(x)]R(x)dx = 0,
The following anisotropic Musielak-Orlicz Campanato space was first introduced
in [74, Definition 3.1].

Definition 6.9. Let ¢ be as in Definition 6.2, 4 € [1,00) and s € Z,. The anisotropic
Musielak-Orlicz Campanato space £%7°(IR") is defined to be the set of all f € LL (R")
such that their quasi-norms

x) —Psf(x)] ]’
Wlaey =sup i [ IO (o) e

oco 11ollLe(rn) p(x, HlQHZtPl(IR”))

1/q

<o,
where the supremum is taken over all the dilated cubes Q € Q with Q as in (6.26).

Remark 6.6. (i) When A := dI,., for some d € R with |d| € (1,00), the space
L% (R") becomes the Musielak-Orlicz Campanato space Lg,0s(R") from [70].
Moreover,

(i); if, for any given p € (0,1] and for any x € R" and t € (0,0), ¢(x,t) := tP,
Y8 P y ¢
then, £%7°(R") is just the classical isotropic Campanato space Li,,_1,4s(R")
(see [20]);

(i) if, for any given p € (0,1] and for any x € R" and t € (0, ), ¢(x, ) := w(x)t?
with w being an A, Muckenhoupt weight (see, for instance, [43]), then, the
space £%7°(R") coincides with the weighted Campanato space; see [43] for
n =1and, see [117] for n € IN.

(i) When g = 1 and s = 0, the space £%"°(R") becomes the anisotropic BMO
space of Musielak-Orlicz type, BMOY (R") (see [33]), which includes the clas-
sical space BMO(R") of John and Nirenberg [56], the anisotropic BMO space
BMOy4 (R") of Bownik [12], the weighted BMO space BMO,,(R") of Muckenhoupt
and Wheeden [86] and the Orlicz BMO-type space BMOP(]R”) of Janson [54] and
Stromberg [98] as well as the Musielak-Orlicz BMO-type space BMOY(IR") of
Ky [60] as special cases (see [33,70] for more details).

(iii) If, forany p € (0,1], x € R" and t € (0,0), ¢(x,t) := t?, then the space £L%"*(R")
becomes the anisotropic Campanato space C;épfl (R") of Bownik (see [12]).
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For any given k € Z" and for any i € IN, we divide the cube [0,1)" + k into 2in

mutually disjoint subcubes of equal size and denote by @fk) the set of these subcubes.
Moreover, let

Ok) := [ JO" and © := {AJ’I: j€ZandI € Ok) withk € Z”}.
ieN

In [74, Theorem 3.8], the authors established a John-Nirenberg inequality for func-
tions from Lf’f{l’s (R") as follows.

Theorem 6.7. Let ¢ and s be as in Definition 6.9. Then there exist positive constants Cy, C and
Cs such that, for any f € Lfl’l’s(]R”), QeQUOand B € (0,00), when ¢ € A1(A),

o ) } L )
q’({ S ot ol Py el

<Ciexp{ — C2p
TRy e

and, when ¢ € Ay(A) for some q € (1,00),

If(x) — Paf ()] ;
9 ({ €0t el ﬁ},nlgnmm)
,q’
1+ B ] -

1l gos oy Lo Lo ey

<GC;

Remark 6.7. When A is as in Remark 6.6(i), Theorem 6.7 coincides with [70, Theorem
2.5]. Moreover,

(i) if, forany x € R" and t € (0,00), ¢(x,t) := tand s = 0, then, by Theorem 3.1,
we know that there exist two positive constants C and C such that, for any f €
BMO(R"), cube Q C R" and § € (0, c0),

{x € Q: |f(x) — fol > B}| < Ce=P/Ilmvomn ],

which is the well-known John-Nirenberg inequality obtained by John and Niren-
berg [56];

(ii) if @ is as in Remark 6.6(i);, then Theorem 3.1 was obtained by Li [69];

(iii) if, for any x € R" and t € (0,00), ¢(x,t) := w(x)t with w as in Remark 6.6(i),
and s = 0, then Theorem 6.7 is the John—-Nirenberg inequality for functions from
the weighted BMO space BMO,, (IR"), which was established by Muckenhoupt and
Wheeden [86].
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As a corollary of Theorem 6.7, we have the following conclusion, which shows that
the space £%7°(IR") is independent of the choice of the index g as long as g € [1, [q(¢)]");
see [74, Lemma 3.6 and Theorem 3.8].

Theorem 6.8. Let ¢ be as in Definition 6.2, s € Z and q € [1,[q(¢)]"), where q(¢) is as in
(6.2). Then, for any f € L. _(R"), the following statements are mutually equivalent :

loc
(i) ,
HfHLﬁrl/s(]Rn)- SUPMQHMI/QV( — Pof(x |dx<oo
(ii)
1/q
1 f(x) = Py f(x)] ] .
I e = 5P T —— 1 | X g (x 10l ) dx
f LA (]R) Qeg ||1QHL(P(]R") Q q)(x’HlQHL(pl(]Rn)) ( Q L‘/’(IR ))
<00,
(ii)

o 1 . / |f(x) = P(x)]
e i=SUp————— inf -
e gos oy o Mollrwe { Pep.(R") JQ [(p(x, olle(gs)

1/q
TACAL dx} <,

where Q is as in (6.26).

Letr € (1,00]. A function ¢ : R" x [0,00) — [0, 00) is said to satisfy the anisotropic
uniformly reverse Holder condition, denoted by ¢ € RH,(A) := RH,(R"; A), if, when
€ (1,00),

sup su ,td} {/ Lt 7d} < 00
tE(OIZo Beg{|B|/ (y ) Y |B| B[(P(y )] Y

and, when r = oo,

-1
sup sup{ } ess sup[@(y, t)] p < oo,
te(0,00) BEDB ’B| y€EB

where B is as in (2.1). Moreover, U,e(1,00] RH(A) = Upep,e) Ap(A) = Ax(A) (see, for

instance, [73,115]). Then, for any ¢ € A (A), let
r(@) :=sup{re (1,0]: ¢ € RH,(A)}. (6.27)
Foranyr € (0,00) ands € Z, let L] ;(IR") be the set of all f € Lr(]R”) with compact
support, satisfying that, for any multi-index « € Z" with |a| <'s, [, f(x)x*dx = 0. The

following dual space of H (R") was given in [74, Theorem 3.17].
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Theorem 6.9. Let ¢ be as in Definition 6.2 and s € [m(¢p),o0) N Z., where m(¢) is as in (6.3).
Then the dual space of H% (R"), denoted by (H% (R"))*, is Lﬂ’l’s(]R”) in the following sense:

(i) Let g € L%"°(R"). Then the linear functional
Lot fr Lelf) = [ Fg(o)is, 629

initially defined for any f € L (R"), where r € (q(¢)[r(¢@)]’, 00) with q(¢) and r(¢),
respectively, as in (6.2) and (6.27), has a bounded extension to Hfﬁ (R™).

(ii) Conversely, every continuous linear functional on HY (R") arises as in (6.28) with a unique
g€ LY (R,

Moreover, there exists a positive constant C such that, for any g € Lfﬁ’l’s (R™),

1
Sl enne ey < el ey < Clglegis oy

Remark 6.8. (i) When A is as in Remark 6.6(i), by Theorem 6.9, we know that [70,
Theorem 3.5] holds true. Moreover,

(i)1 when ¢ is as in Remark 6.6(i);, Theorem 6.9 was proved by Taibleson and
Weiss [100];

(i) when ¢ is as in Remark 6.6(i)2, Theorem 6.9 was obtained by Garcia-

Cuerva [43] for the case when n = 1.

(i) When s = 0 (namely, when £%"°(R") = BMOY, (R"); see Remark 6.6(ii)), Theorem
6.9 goes back to [33, Lemma 2.4].

(iv) When ¢ is as in Remark 6.6(iii), Theorem 6.9 coincides with [12, p. 51, Theorem 8.3].

Corollary 6.1. Let ¢ be as in Definition 6.2. Then, forany q € [1, [q(¢)]") and s € [m(¢), c0) N

Zy, L5 (RY) and Li’l’m((’p) (R™) coincide with equivalent quasi-norms, where q(¢) and m(¢)
are, respectively, as in (6.2) and (6.3).

Next, we present the characterizations of Hfﬁ(]R”) in terms of wavelets. Recall that
the following adapted anisotropic Musielak—Orlicz atoms and atomic Hardy spaces were
introduced in [74, Definition 4.1].

Definition 6.10. Let ¢ be as in Definition 6.2 and g(¢) and r(¢), respectively, as in (6.2)
and (6.27).

(i) Ananisotropic triplet (¢, g, s) is said to be adapted admissibleif g € (q(¢)[r(¢)]’, o]
and s € Z N [m(¢),c0) with m(¢) as in (6.3).
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(ii) For any given adapted admissible triplet (¢, g,s), a measurable function a on R” is
called an adapted anisotropic Musielak-Orlicz (¢, q,s)-atom (shortly, a (¢, 9, 5)aq-
atom) if (ii); and (ii)3 of Definition 6.6 hold true and, instead of Definition 6.6(ii);, a

satisfies
LI

a ny < .
H HL“I(]R) HlBHL‘F(]R”)

(iii) For any given adapted admissible triplet (¢,q,s), the adapted anisotropic
Musielak-Orlicz atomic Hardy space H;Pé‘?j(]R”) is defined to be the set of all
f € 8'(R") satisfying that there exist {A;}ieny C C and a sequence of (¢,q,)ad-
atoms, {a;};cN, supported, respectively, in {B®)},cn C B such that

f=) A in 8'(R"),

ieN
¥ o (B0, Al g0 ) <
icN

Moreover, for any f € H;pfj(R”), let

1[92 (o) = inf {/N\({Aiai}ieH\O}

with the infimum being taken over all the decompositions of f as above, where

A s . i |Ail
A({Aiai}ieN) = 1nf{/\ S (0,00) : Z () <B( ), )\HlB)> < 1} .

ieIN (@) H L?(R"

In [74, Theorem 4.2], the authors established a new atomic characterization of HY (R")
as follows, which is different from the one obtained in [68, Theorem 40] and also plays a
key role in the proof of Theorem 6.11 below.

Theorem 6.10. Let (¢, q,s) be adapted admissible. Then

HA(R") = HT3 (R")

with equivalent quasi-norms.

Remark 6.9. Recall that Li et al. [68, Theorem 40] also established an atomic characteri-
zation of Hff; (IR™) (see also [60] for the case A = dI,«y,). The size conditions of the atoms
used in [68] are as in Definition 6.6(ii),, but the size conditions of atoms used in The-
orem 6.10 are as in Definition 6.10(ii). This is the difference between these two atomic
characterizations.
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Forany L € IN, let
T(L):={(£,j,k): £€{l,--- L}, je Zandk € Z"} (6.29)
and, forany f € L>(R"),j € Z,k € Z"and x € R",

fik(x) = b2 f (Afx - k) : (6.30)

The following Definitions 6.11 and 6.12 are just, respectively, [12, p. 94, Definitions 4.1
and 4.2 and p. 84, Definition 1.3].

Definition 6.11. (i) Let { be a Hilbert space. A subset X C 3 is called a frame if there
exist two positive constants C and C such that, for any f € 7,

1/2
Cllfllac < | X \(f,8>\2] < C|lflls¢- (6.31)

geX

Moreover, a frame is said to be tight if (6.31) holds true with C = C.

(ii) Let L € IN. A tight frame multiwavelet is a finite sequence of L?(IR") functions,
{9}, satisfying {1/1](5() : (4,j,k) € T(L)} forms a tight frame with the constant
C = 1for L?(R"), where I'(L) and C are, respectively, as in (6.29) and (6.31) and, for

any (¢,j,k) € T(L), 1,0](5’() is as in (6.30) with f replaced by (©).
Definition 6.12. Let r € Z. . An r- regular function f is a C"(R") function satisfying, for

any i € IN and multi-index a € Z'} with |a| < r, there exists a positive constant Cli)
depending on i and «, such that, for any x € R",

[0 f ()] < Cliay(1+ [2]) 7"
Furthermore, for any L € IN, a tight frame multiwavelet {g(*)} I_, is said to be r- regular
if, forany £ € {1,--- ,L}, yb(z) is an r-regular function.
Moreover, we can define an unconditional basis of HY (R") in terms of r-regular tight
frame multiwavelets as follows.
Definition 6.13. Let ¢ be as in Definition 6.2, L € N and r € Z. Assume that {¢()}}_,
is an r-regular tight frame multiwavelet. The sequence {lp]g,i) : (4,j,k) € T(L)} is called
an unconditional basis of HY (R") if, for any f € H% (R"),
l 0 .
f= 3 <f, ¢},k)> 1/]},,3 in H}(R"), (6.32)

(4,jk)eT (L)

where the convergence is unconditional, namely, for an arbitrary permutation of T'(L),
denoted by I'(L), the equality (6.32), with I'(L) replaced by I'(L), also holds true.
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Remark 6.10. Let ¢, r, L and {¢(}}_, be as in Definition 6.13. Then, by [12, p. 94,
Theorem 4.2] and [74, Proposition 4.14], we know that, for any (¢,j,k) € I'(L), 1/1](? €
Lo (R"). Thus, for any f € HY(R") C (L% (R")* and (¢,j,k) € T(L), {f, ¢J¥fj>
makes sense.

The following conclusion was obtained in [74, Theorem 25].

Theorem 6.11. Let ¢ be as in Definition 6.2 and r € IN satisfy

alg) , _ (n) )y

i(9) Inbin Ay’

where q( @) and i(¢) are, respectively, as in (6.2) and (6.1). Assume that {pO}L_ with L € N
is an r-reqular tight frame multiwavelet.

(i) If, for any £ € {1,--- L}, the function ') has the vanishing moments up to the order
m(g) which is as in (6.3), then, for any f € HY (R"), (6.32) with the convergence being
unconditional holds true, and

1/2
2 2
g ~ ||| X |[(Fe) w},??]
L?

(£jk)€L(L)
- (R")
- 1/2
/ 2 2
~IE [Reh] | ae) ] (6.33)
(£jk)€T (L)
- Le (]R”)

with the positive equivalence constants independent of f, where, for any ¢ € {1,---,L},
E; is a bounded measurable subset of R" with |Ey| > 0 and, for any j € Z and k € Z",
(1E,)jx is as in (6.30).

(ii) If, with the assumption as in (i), {1P(€)}/%:1 is an orthonormal multiwavelet, then, for any

{C](-Il;()}(g/j/k)er(L) C R satisfying

1/2
[ v ;c;m;,@r] B
( )

0,jk)eT(L
there exists a unique f € HY (R") such that, for any (¢, j,k) € T(L), c](.’i) = (f, 1/;}53) and
(6.33) holds true.

Remark 6.11. (i) When A := dl,y, for some d € R with |d| € (1,00), the space
H%(R") becomes the classical Musielak-Orlicz Hardy space H?(RR") (see [60]).
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In this case, by Theorem 6.11, we obtain a kind of wavelet characterizations of
H?(IR"). Recall that, very recently, Fu and Yang [42] also established another sort of
wavelet characterizations of H?(IR"). We should point out that the wavelet system
used in [42] to characterize the space H?(IR") is required to have compact supports;
however, this requirement is not needed for tight frame multiwavelet used in The-
orem 6.11 to characterize the space H% (R").

(ii) Let p € (0,1]. If, forany x € R" and t € (0,00), ¢(x,t) := t¥, then the space
H%(R") becomes the anisotropic Hardy space H/,(R") of Bownik (see [12]) and
( )/i(¢) = 1/p. In this case, Theorem 6.11 goes back to [12, p. 109, Theorem 6.7].

(iif) We point out that the boundedness of maximal §-operators, defined by the way
similar to (4.29), from H%(R") to L?(IR") is still unknown. In addition, a remark
similar to Remark 4.5(iii) should be also made for the space Hf{; (R™).

(iv) Let ¢ : R" x [0,00) — [0,00) be a generalized quasi-®-function (see [48, Defini-
tion 2.1]). Recall that Ho [48] introduced a kind of Hardy-Musielak—Orlicz spaces
H?(R"), which includes the classical variable Hardy space (see [23,87]) as a special
case. Observe that, formally, the anisotropic Musielak-Orlicz Hardy space HY (R")

includes the anisotropic variable Hardy space Hf\(') (R™) as a special case, but ac-
tually they cannot cover each other due to different assumptions, respectively, on
¢ and p(-) (see Remark 6.1(ii)). An interesting and challenging question is to find
some reasonable assumptions on ¢ such that the real-variable theory on HY (R")

completely covers the corresponding one of the space HZ(') (R") as a special case.
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