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Abstract. In this paper, the discrete unified gas-kinetic scheme (DUGKS) is extended
to the convection heat transfer in porous media at representative elementary volume
(REV) scale, where the changes of velocity and temperature fields are described by
two kinetic equations. The effects from the porous medium are incorporated into
the method by including the porosity into the equilibrium distribution function, and
adding a resistance force in the kinetic equation for the velocity field. The proposed
method is systematically validated by several canonical cases, including the mixed
convection in porous channel, the natural convection in porous cavity, and the natu-
ral convection in a cavity partially filled with porous media. The numerical results
are in good agreement with the benchmark solutions and the available experimental
data. It is also shown that the coupled DUGKS yields a second-order accuracy in both
temporal and spatial spaces.

AMS subject classifications: 82B40, 76S05, 76E06

Key words: Coupled discrete unified gas-kinetic scheme, generalized Navier-Stokes equations,
porous media, convection heat transfer.

1 Introduction

Convection heat transfer in porous media has long been a subject of research due to its
extensive applications in engineering, such as heat exchangers, electronic cooling instru-
ments, and pollutant diffusion [1–4]. Over the past several decades, considerable inves-
tigations and applications have been devoted to the convection heat transfer in porous
media through various traditional numerical methods, such as the finite volume method,
the finite difference method, and the finite element method.

∗Corresponding author. Email addresses: liupeiyao@hust.edu.cn (P. Liu), peng wang@hust.edu.cn

(P. Wang), jvlong@hust.edu.cn (L. Jv), zlguo@hust.edu.cn (Z. Guo)

http://www.global-sci.com/cicp 265 ©2021 Global-Science Press



266 P. Liu et al. / Commun. Comput. Phys., 29 (2021), pp. 265-291

In general, the modelling of porous flow can be classified into two categories, i.e.
the pore-scale model and the representative elementary volume (REV) scale model. In
the pore-scale study, the detailed geometric information of the pores should be known,
and each pore requires sufficient grid resolution in the simulations. Thus, the compu-
tational domain size cannot be too large in view of the limited computer resources. An
alternative approach is to investigate the averaged quantities at the REV scale. At this
scale, a number of models based on some semi-empirical relations have been developed.
Up to date, most investigations at the REV scale are based on the Darcy law [5, 6] as
the Reynolds number based on pore diameter is smaller than 1 [7] such that inertial effect
can be ignored. For flows with larger Reynolds numbers, various extended Darcy models
have been proposed. For instance, the Darcy-Brinkman model [8,9], which considers the
viscous dissipation introduced by solid boundary, allows to study high-porosity porous
flows, while the Darcy-Forchheimer model [10,11] includes an additional nonlinear resis-
tance term (Forchheimer term), and a generalized model was further developed in which
both the Brinkman and Forchheimer effects are included [12, 13], such that the flows in
wide range of flow regimes can be described. Based on this generalized model, a number
of flow and heat transfer problems in porous media have been studied [14–16]. For ex-
ample, Arpino et al. studied the transient natural convection in partially porous annuli,
and clarified impacts on both porous medium properties and geometrical characteristics
of the domain [17].

In the past years, several types of kinetic methods, which can be viewed as alternative
numerical tools to traditional ones, have been successfully employed for porous media
flows based on generalized model [18–20]. Particularly, the lattice Boltzmann method
(LBM) has been recognized as a powerful tool for such flows. Guo et al. proposed a LBM
with the Bhatnagar-Gross-Krook collision operator (LBGK) for flow and heat transfer at
the REV scale [21], and a model with multiple-relaxation-time (MRT) model was subse-
quently proposed to improve the numerical stability [22, 23]. In addition to the standard
LBM, a finite-volume LBM was also developed for thermal flows in porous media [24].
Although the LBM models mentioned above have gained much success, some limitations
still exist. For example, the computational time step and grid size are coupled, so that the
flexibility of relaxation time and the numerical stability are very limited [25].

Recently, another kinetic method, a discrete unified gas–kinetic scheme (DUGKS) has
been presented for both hydrodynamic and rarefied flows [26–30]. As a finite-volume
method, the DUGKS can be easily implemented on non-uniform or unstructured meshes
to satisfy the local accuracy requirement [25, 31, 32]. Although DUGKS was originally
developed for multiscale flows beyond continuum regime, it can also be applied to con-
tinuum flows on which the LBM focuses. Under such circumstances, the DUGKS exhibits
several distinctive features in comparison with LBM. In fact, several comparative stud-
ies of the standard LBM and DUGKS have been preformed systematically for laminar
flows [25, 33], turbulent flows [34, 35], and natural convection flows [36, 37] in previous
work. Generally, for flows without solid boundaries, for example the decaying turbu-
lent flow, the accuracy of standard LBM is slightly better than the DUGKS [34], while
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for flows involving solid boundaries, the DUGKS is even more accurate than the stan-
dard LBM [25, 33]. Furthermore, owing to the semi-implicitness in the construction of
gas distribution function at the cell interfaces, the stability and robustness of DUGKS
are better than LBM [25, 33]. Most importantly, benefitted from the finite-volume na-
ture, the efficiency of DUGKS can be significantly improved by employing a non-uniform
mesh according to the local accuracy requirement [25], without loss of accuracy and ad-
ditional efforts. However, although DUGKS has been applied to a variety of flow prob-
lems [28,35,36], no studies have been reported for flow and hear transfer in porous media.
In this work, we aim to extended the DUGKS to such systems.

The rest of this paper is organized as follows. The governing equations of the gener-
alized model for thermal flows in porous media are described in Section. 2. The kinetic
model equations and the DUGKS are presented in Section 3. The model validation are
given in Section 4, followed by a summary and discussion in Section 5.

2 Generalized model for thermal porous flows

Under the Boussinesq assumption, the thermal flow of an incompressible fluid in a homo-
geneous isotropic porous medium can be described by the following generalized Navier-
Stokes equations [21, 38, 39],

∇·u=0, (2.1a)

∂u

∂t
+(u·∇)

(u

ǫ

)

=− 1

ρ f
∇(ǫp)+νe∇2u+F, (2.1b)

σ
∂T

∂t
+u·∇T=∇·(αm∇T), (2.1c)

where u, p, and T are the volume-averaged velocity, pressure, and temperature, respec-
tively; νe is the effective viscosity; ǫ is the porosity; the parameter σ=ǫ+(1−ǫ)ρscps/ρ f cp f

is the thermal capacity ratio between the solid and fluid phases, in which ρ f (ρs) and cp f

(cps) are the density and specific heat of fluid (solid) phase, respectively; αm = km/ρ f cp f

is the effective thermal diffusivity, with km being the effective thermal conductivity of
porous media. The force term F denotes the total force induced by porous media and
other body forces [19],

F=−ǫν

K
u− ǫFǫ√

K
|u|u+ǫG, (2.2)

where K is the permeability of porous medium, ν is the viscosity of the fluid, and usually
ν=νe [40]. The body force G is given by

G= gβ(T−Tre f )+a, (2.3)

where the first term denotes the buoyancy force, g is the gravitational acceleration, β is
the thermal expansion coefficient, Tre f is the reference temperature, and the second term
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a is the acceleration due to other external force. According to experimental results, the
geometric function Fǫ and the permeability K can be expressed as [41]

Fǫ =
1.75√
150ǫ3

, K=
ǫ3d2

p

150(1−ǫ)2
, (2.4)

where dp is the diameter of the solid spherical particle of the porous medium.

The flow governed by Eq. (2.1) is characterized by several non-dimensional param-
eters, including the Darcy number Da, the Prandtl number Pr, the Reynolds number Re
(for mixed convection), the Rayleigh number Ra (for natural convection), and the viscos-
ity ratio Je, which are defined as

Da=
K

L2
, Pr=

νe

αm
, Re=

LU

ν
, Ra=

gβ∆TL3

ναm
, Je=

νe

ν
, (2.5)

where ∆T is the temperature difference (characteristic temperature), L and U are the
characteristic length and velocity, respectively.

3 Coupled discrete unified gas-kinetic scheme

3.1 Kinetic model equations

The following Boltzmann equations with Bhatnagar-Gross-Krook (BGK) collision opera-
tors are employed [36],

∂ f

∂t
+ξ ·∇ f = Ω̄≡Ω+S≡ f eq− f

τν
+S, (3.1)

∂g

∂t
+ξ ·∇g=Ψ≡ geq−g

τc
, (3.2)

where f = f (x,ξ,t) and g=g(x,ξ,t) are gas distribution functions for velocity and temper-
ature fields, respectively, and both f and g are functions of space x, molecular velocity ξ,
and time t; f eq and geq are the equilibrium distribution functions; Ω and Ψ are collision
terms, with τν and τc being the relaxation times. S is an external force term.

To account for the effect of porous media, the porosity ǫ and the thermal capacity ratio
σ are introduced into f eq and geq, respectively. The modified equilibrium distribution
functions f eq and geq take the following forms for low Mach number flows [21],

f eq =Wα

[

1+
ξ ·u
RT0

+
(ξ ·u)2

2ǫ(RT0)2
− |u|2

2ǫRT0

]

, (3.3)

geq =Wβ

[

σ+
ξ ·u
RT0

]

, (3.4)
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where Wα =
ρ

(2πRT0)D/2 exp( |ξ|2
2RT0

), Wβ =
T

(2πRT0)D/2 exp( |ξ|2
2RT0

), D is the spatial dimension, R

is the gas constant, T0 is the constant variance which determine the artificial sound speed
of the velocity, ρ and T are the density and temperature of the fluid, respectively. For
continuum flows, the total force term S can be approximated as [42]

S=−F ·∇ξ f eq =
F ·(ξ−u)

RT0
f eq. (3.5)

Notice that
∫

Sdξ =0, and
∫

Sξdξ= ρF. The density, velocity and temperature (ρ, u, and
T) are defined as the moments of the distribution functions,

ρ=
∫

f dξ, ρu=
∫

ξ f dξ, σT=
∫

gdξ. (3.6)

Through the Chapman-Enskog procedure (some details can be found in the Appendix),
Eqs. (3.1) and (3.2) can recover the macroscopic governing equations given in Eq. (2.1) ex-
actly under the incompressible limit, with the effective viscosity

νe =τνRT0, (3.7)

and the effective thermal diffusivity

αm =στcRT0. (3.8)

It is noted that the Prantdl number can be written as

Pr=
νe

αm
=

τν

στc
. (3.9)

Therefore, Pr can be modified by choosing appropriate τν and τc.

3.2 DUGKS for velocity field

The DUGKS formulates a discrete form of the Boltzmann equation. As a finite-volume
scheme, the computational domain is divided into a set of control volumes. First, inte-
grating Eq. (3.1) on a control volume Vj centered at cell xj from time tn to tn+1 = tn+∆t
(∆t is the time step), the updating equation can be written as

f n+1
j − f n

j +
∆t

|Vj|
Fn+1/2=

∆t

2

(

Ω̄n+1
j +Ω̄n

j

)

, (3.10)

where the midpoint rule for the integration of flux term, the trapezoidal rule for the
collision term and force term are used, Fn+1/2 is the micro-flux across the cell interface,

Fn+1/2=
∫

∂Vj

(ξ ·n) f (x,tn+1/2)dx, (3.11)
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where n is the unit vector normal to the cell interface. In order to convert implicit form to
an explicit version in Eq. (3.10), two auxiliary distribution functions related to the original
distribution function f are introduced,

f̃ = f −∆t

2
Ω̄, f̃+= f +

∆t

2
Ω̄. (3.12)

With these facts, evolution equation of DUGKS can be rewritten as

f̃ n+1
j = f̃+,n

j − ∆t

|Vj|
Fn+1/2. (3.13)

Above all, we can explicitly track the evolution of f̃ instead of the original one. Since
the collision term Ω is mass and momentum conservative, the fluid density ρ and the
velocity u can be directly computed from f̃ as that of f given in Eq. (3.6).

The key in updating the f̃ is to get the micro-flux Fn+1/2, which can be determined by
the distribution function f (xb,ξ,tn+1/2) at cell interface. To this end, integrating Eq. (3.1)
with a half time step h (h=∆t/2) along the characteristic line ended at the cell interface
(xb), and using the trapezoidal rule for collision and force terms, we can obtain

f (xb,ξ,tn+h)− f (xb−ξh,ξ,tn)=
h

2
[Ω̄(xb,ξ,tn+h)+Ω̄(xb−ξh,ξ,tn)]. (3.14)

To remove the implicity of Eq. (3.14), we introduce another two distribution functions,

f̄ = f − h

2
Ω̄, f̄+= f +

h

2
Ω̄. (3.15)

Then Eq. (3.14) can be simplified to

f̄ (xb,ξ,tn+h)= f̄+(xb−ξh,ξ,tn). (3.16)

For smooth flows, f̄+(xb−ξh,ξ,tn) can be approximated by its Taylor expansion around
xb,

f̄+(xb−ξh,ξ,tn+h)= f̄+(xb,ξ,tn)−hξ ·σb, (3.17)

where the gradient σb =∇ f̄+(xb,ξ,tn) can be approximated by linear interpolation. As a
result, Eq.(3.16) can be reconstructed as

f̄ (xb,ξ,tn+h)= f̄+(xb,ξ,tn)−hξ ·σb. (3.18)

Again using the conservative property of Ω, the conserved variables at the cell interface
can be computed from f̄ (xb,ξ,tn+h). From the obtained variables, the equilibrium dis-
tribution function f eq(xb,ξ,tn+h) can be determined. As such, the original distribution
function f (xb,ξ,tn+h) at cell interface can be extracted from f̄ ,

f (xb,ξ,tn+h)=
2τν

2τν+h
f̄ (xb,ξ,tn+h)+

h

2τν+h
f eq(xb,ξ,tn+h)+

τνh

2τν+h
S, (3.19)
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from which the micro-flux Fn+1/2 can be computed from Eq. (3.11). By now, the update
of the distribution function f̃ can be done according to Eq. (3.13). The required variables
in the evolution are

f̄+=
2τν−h

2τν+∆t
f̃ +

3h

2τν+∆t
f eq+

3τνh

2τν+∆t
S, (3.20)

f̃+=
4

3
f̄+− 1

3
f̃ . (3.21)

As a discrete ordinate method, the remaining task in DUGKS is to discretize the veloc-
ity space. For two-dimensional flows considered in this study, the two-dimensional and
nine velocity (D2Q9) model [43] is employed in velocity field. As a result, the molecular
velocity is

ξ i=











(0,0), i=0,

(cos[(i−1)π/2],sin(i−1)π/2)c, i=1−4,

(cos[(i−5)π/2+π/4],sin(i−5)π/2+π/4)
√

2c, i=5−8,

(3.22)

where c =
√

3RT0 is the model speed of sound. The corresponding weight coefficients
{ωi|i=0,1,··· ,8} are ω0 =

4
9 , ω1−4 =

1
9 , ω5−8 =

1
36 . With this velocity space, the discrete

equilibrium distribution function can be expressed as

f
eq
i =ωiρ

[

1+
ξ i ·u
RT0

+
(ξ i ·u)2

2ǫ(RT0)2
− |u|2

2ǫRT0

]

. (3.23)

The macroscopic quantities ρ and u are calculated by

ρ=
8

∑
i=0

f̃i, ρu=
8

∑
i=0

ξ i f̃i+
∆t

2
ρF. (3.24)

Since the linear and non-linear force given in Eq. (2.2) contain the velocity term, Eq. (3.24)
represents a nonlinear equation for the velocity. Due to this situation, the fluid velocity u

can be explicitly calculated by a temporal velocity v, i.e.

u=
v

c0+
√

c2
0+c1|v|

, (3.25)

where

ρv=
8

∑
i=0

ξ i f̃i+
∆t

2
ǫρG, c0=

1

2

(

1+ǫ
∆t

2

ν

K

)

, c1=ǫ
∆t

2

Fǫ√
K

. (3.26)
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3.3 DUGKS for temperature field

For the update of the temperature fields, similar treatments as the DUGKS for the velocity
field can be implemented on Eq. (3.2). Firstly, Eq. (3.2) is integrated at the same control
volume Vj in a time step, and the same integration rules are adopted, one can get the
updating equation

gn+1
j −gn

j +
∆t

|Vj|
F̄n+1/2=

∆t

2
[Ψn+1

j +Ψn
j ], (3.27)

where the micro-flux F̄n+1/2 across the cell interface is

F̄n+1/2=
∫

∂Vj

(ξ ·n)g(x,tn+1/2)dx. (3.28)

Two auxiliary distribution functions are introduced to make Eq. (3.27) explicit,

g̃= g−∆t

2
Ψ, g̃+= g+

∆t

2
Ψ. (3.29)

Then the evolution equation of Eq. (3.27) can rewritten as

g̃n+1
j = g̃+,n

j − ∆t

|Vj|
F̄n+1/2. (3.30)

Based on the conservative property of Ψ, the conserved variable can be directly computed
from g̃ as that of g given in Eq. (3.6).

The next task is to evaluate the microflux F̄n+1/2. We again integrate Eq. (3.2) within
a half time step h along the characteristic line with the end point xb at the cell interface,
and adopt the trapezoidal rule to evaluate the collision term, one can obtain

g(xb,ξ,tn+h)−g(xb−ξh,ξ,tn)=
∆t

2
[Ψ(xb,ξ,tn+h)+Ψ(xb−ξh,ξ,tn)]. (3.31)

Also another two new distribution functions are introduced to remove the implicity in
the above equation,

ḡ= g− h

2
Ψ, ḡ+= g+

h

2
Ψ. (3.32)

Then Eq. (3.31) can be rewritten as

ḡ(xb,ξ,tn+h)= ḡ+(xb−ξh,ξ,tn). (3.33)

After the Taylor expansion of ḡ+(xb−ξh,ξ,tn) made around the cell interface xb, Eq. (3.33)
can be rewritten as

ḡ(xb,ξ,tn+h)= ḡ+(xb,ξ,tn)−hξ ·∇ḡ+(xb,ξ,tn). (3.34)

Based on Eq. (3.32), the temperature T related to ḡ at cell interface can be obtained like
that of g given in Eq. (3.6). Together with the conserved variables in velocity field, the



P. Liu et al. / Commun. Comput. Phys., 29 (2021), pp. 265-291 273

equilibrium distribution function geq(xb,ξ,tn+h) can be fully determined. Therefore, the
original distribution function g(xb,ξ,tn+h) can be obtained,

g(xb,ξ,tn+h)=
2τc

2τc+h
ḡ(xb,ξ,tn+h)+

h

2τc+h
geq(xb,ξ,tn+h), (3.35)

from which the micro-flux F̄n+1/2 can be computed from Eq. (3.28). In the implementation
of DUGKS, ḡ+ and g̃ at cell center can be effectively computed by

ḡ+=
2τc−h

2τc+∆t
g̃+

3h

2τc+∆t
geq, (3.36)

g̃+=
4

3
ḡ+− 1

3
g̃. (3.37)

Up to this point, the discretization of the Boltzmann equation Eq. (3.2) in time and
space domains is completed. Here, the following two-dimensional and five velocity
model (D2Q5) is employed to discretize the velocity space,

ξ i=

{

(0,0), i=0,

(cos[(i−1)π/2],sin(i−1)π/2)c, i=1−4,
(3.38)

where c=
√

3RT0. The associated weights {ωi|i=0,1,··· ,4} are ω0=
1
3 , ω1−4=

1
6 , and the

discrete equilibrium distribution function is

g
eq
i =ωiT

[

σ+
ξ i ·u
RT0

]

. (3.39)

The temperature T of the fluid is

σT=
4

∑
i=0

g̃i. (3.40)

It is noted that the D2Q9 model can also be employed to discretize the velocity space.
Actually, several comparative studies of LBM with the D2Q9 and D2Q5 models have
been conducted [44, 45], and the results showed that the D2Q5 model is adequate for
the convection-diffusion equation governing the temperature. Furthermore, the equilib-
rium distribution of D2Q5 model ignores the nonlinear velocity terms, and is thus more
computational efficient. Therefore, in the present study we use the D2Q5 model for the
temperature field.

3.4 Kinetic boundary conditions

In this subsection, we will introduce several kinds of kinetic boundaries for the velocity
and temperature distribution functions. For velocity field, the bounce-back scheme is
employed at the wall xw, which can be expressed as [36]

f̄ (xw,ξ i,t+h)= f̄ (xw,−ξ i,t+h)+2ρwωi
ξ i ·uw

RT0
, ξ i ·n>0, (3.41)
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where n is the unit vector normal to the wall pointing to the cell, ρw and uw are the
density and velocity at the wall, respectively. For nearly incompressible flows, the ρw can
be approximately equal to the constant density.

The bounce-back rule for an adiabatic wall is [36]

ḡ(xw,ξ i,t+h)= ḡ(xw,−ξ i,t+h), ξ i ·n>0. (3.42)

While for a wall with a fixed temperature Tw, the boundary condition is [36]

ḡ(xw,ξ i,t+h)=−ḡ(xw,−ξ i,t+h)+2ωiTw, ξ i ·n>0. (3.43)

4 Results and discussions

In this section, several numerical simulations of two-dimensional convective heat trans-
fer problems in porous media at REV scale are conducted to validate the present DUGKS.
The test problems include the mixed convection in a porous channel, natural convection
in a porous cavity, and the natural convection in a cavity partially filled with porous
medium. The algorithm is coded in C programming language and implemented on a
cluster (Dual Inter Xeon CPU E5-2680 v3 with 64 GB RAM memory). In the test, certain
Cartesian meshes are employed with grid-independent resolutions. In all cases, we set
σ= 1, Je= 1, gβ= 0.1. Tre f is set as the average temperature in the flow domain. From

Eqs. (3.7) and (3.8), τν and τc can be determined by τν=
√

gβ∆TL3Pr
Ra /RT0 and τc=τν/Pr/σ,

respectively. Besides, in order to ensure that the flow is nearly incompressible, we set
RT0 = 10 to obtain a small Ma ≈ u0/

√
RT0, where u0 =

√

gβ∆TH is the characteristic
velocity. The time step is given by ∆t = η∆xmin/C, where ∆xmin is the minimum grid
length, C is the magnitude of the maximal discrete velocity, and the Courant-Friedrichs-
Lewy (CFL) number is set to η=0.5. For steady-state problems of interest, the following
criterion is used,

√

√

√

√

√

∑i,j ||un
i,j−un−1000

i,j ||2

∑i,j ||un
i,j||

2
<10−8. (4.1)

4.1 Mixed convection in a porous channel

The first test case is the mixed convection in a porous channel of width H and length
L. The upper plate is held at a fixed temperature Tc and moves with a constant velocity
u0 in the horizontal direction (x-direction), and the static bottom plate is held at a fixed
temperature Th (Th >Tc). The fluid is injected through the bottom plate and withdrawn
at the same rate v0 from the upper one. In this test, an external body force is imposed in
vertical direction (y-direction),

ay =
ν

K
v0−gβ∆T

[

exp(yv0/αm)−1

exp(Hv0/αm)−1

]

. (4.2)



P. Liu et al. / Commun. Comput. Phys., 29 (2021), pp. 265-291 275

Without the nonlinear force term (Fǫ =0), which is considered in our simulations the
analytical solutions of this problem can be obtained [21],

u∗=u0exp
[

r1

( y

H
−1

)] sinh(r2 ·y/H)

sinh(r2)
, (4.3a)

v∗=v0, (4.3b)

T∗=Tre f +∆T
exp(PrRe·y/H)−1

exp(PrRe)−1
, (4.3c)

where Re is the Reynolds number defined by Re = Hv0/ν, the reference temperature
Tre f =(Th+Tc)/2, r1 and r2 are given by

r1=
Re

2ǫ
, r2=

1

2ǫJe

√

Re2+
4ǫ3Je

Da
. (4.4)

In our simulations, the periodic boundary conditions are imposed on the inlet and
outlet of the porous channel, respectively, and the boundary conditions given by Eq. (3.41)
and Eq. (3.43) are imposed on the upper and the bottom walls. The other parameters are
set as follows, H = L = 1, ∆T = Th−Tc = 1.0, Pr= 1.0, Da = 0.01, Ra = 100, ǫ = 0.4, and
u0 = 0.1. A mesh with uniform spacing in x-direction and non-uniform spacing in y-
direction is employed in this subsection unless otherwise stated, where the center of cell
(xi,yj) is given by xi =

L
Nx

· 2i+1
2Nx

, and i=0,1,··· ,Nx−1, yj =(ζ j+ζ j+1)/2, with

ζ j =0.5+
tanh[a(j/Ny−0.5)]

2tanh(a/2)
, j=0,1,··· ,Ny−1, (4.5)

where Nx and Ny are the grid number in x-direction and y-direction, respectively, a is a
coefficient which ensures a reasonable mesh distribution.

First, the numerical accuracy of the present method is tested at different Reynolds
numbers. A nonuniform 32×32 mesh is used, with uniform spacing in x-direction, and
the mesh points in y-direction are generated by Eq. (4.5) with a=2.5. The minimum cell
spacing is thus 3.125×10−2. The normalized velocity and temperature profiles together
with analytical solutions are plotted in Fig. 1. It can be seen that numerical results are in
excellent agreement with the analytical solutions.

In what follows, the numerical accuracy of the present method is tested at Re= 10.
Here, the uniform cells are used for both vertical and horizontal directions, and the grid
size ∆x varies from 1/32 to 1/80. The global relative error Eφ in terminal velocity and
temperature fields is defined as

Eφ=

√

∑i,j |φi,j−φ∗
i,j|2

√

∑i,j |φ∗
i,j|2

, φ=u or T, (4.6)
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Fig. 1: Profiles of (a) velocity and (b) temperature of mixed convection for different Re at Da=0.01, Ra=100,
Pr=1.0, ǫ=0.4 with a mesh size of 32×32. Solid lines: analytical solutions; Symbols: numerical results.
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Fig. 2: Global relative errors in velocity and temperature fields against grid size at Re=10, Da=0.01, Ra=100,
Pr=1.0, and ǫ=0.4. Symbols: numerical results; Solid lines: fitting lines.

Table 1: The global relative errors in velocity and temperature fields.

grid size 32×32 48×48 64×64 80×80

Eu 9.772868×10−2 4.258826×10−2 2.267580×10−2 1.372878×10−2

ET 4.051952×10−3 1.586637×10−3 7.629909×10−4 4.164931×10−4

where φ is the numerical solution, φ∗ is the analytical solution given by Eq. (4.3). The
errors in velocity and temperature fields are shown in Table 1 and plotted in Fig. 2. It is
clear that the present method for flow and temperature fields has second-order spatial
accuracy.
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Fig. 3: Profiles of velocity (left) and temperature (right) of mixed convection with low viscosities (a) ν=5×10−4

and (b) ν=1.3×10−4 at Da=0.01, Ra=100, Pr=1.0, ǫ=0.6 with a mesh size of 32×32.

Furthermore, we performed simulations with low viscosities at Re=5, Pr=1.0, Da=
0.01, Ra=100, and ǫ=0.6. A nonuniform 32×32 mesh is used, with uniform spacing in
x-direction, and the mesh points in y-direction are generated by Eq. (4.5) with a=2.5. The
minimum cell spacing is thus 3.125×10−2. In Fig. 3, the velocity and temperature profiles
of the coupled DUGKS with two viscosities (ν=5×10−4 and ν=1.3×10−4) are plotted. As
seen in the figure, the present model can give satisfied results. For comparison, we also
simulated this problem with the LBGK model [21] with the same equilibrium distribution
function and discrete velocity set, and not shown here. It is found that with the same
mesh, numerical instability occurs at ν = 5×10−4 (the same phenomenon can be found
in Ref. [22]). The results demonstrate that the DUGKS has better numerical stability than
the corresponding LBGK model.

4.2 Natural convection in a porous cavity

The classical natural convection in a square porous cavity has been studied extensively as
a benchmark solution for numerical methods [38, 49, 50]. The configuration of the prob-
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Fig. 4: Geometry of the flow domain and boundary conditions for the natural convection in a porous cavity.

lem is shown Fig. 4, where the upper and lower walls of the cavity are adiabatic, while
the left and right walls maintain constant temperatures Th and Tc (Th >Tc), respectively,
and the height of the cavity is H=1. At steady state, the heat transfer can be quantified by
the volume average Nusselt number Nuv in the domain or the average Nusselt number
Nu of the hot wall,

Nuv =1+
〈uT〉

αm∆T/H
, (4.7)

Nu=−
∫ H

0

∂T

∂x
dy, x=0, (4.8)

where u is the horizontal velocity and 〈·〉 represents the average over the whole flow
domain.

We first apply the present DUGKS model to the case in which the ǫ→1, and Da tends
to infinity with 103 ≤Ra≤106. Thus, the convection heat transfer problem actually turns
to the case in the absences of porous medium. Both the uniform and the non-uniform
meshes are employed for the comparison purpose, and mesh sizes are both set to be Nx×
Ny =64×64. The cell center (xi,yj) of the non-uniform is generated by xi =(ζi+ζi+1)/2
and yj =(ζ j+ζ j+1)/2, where ζi and ζ j are defined by Eq. (4.5) with i=0,1,··· ,Nx−1, and
j=0,1,··· ,Ny−1, respectively. Here, we set a=4 in x-direction, and a=2.5 in y-direction,
respectively. Numerical results and the benchmark data [46] are shown in Table 2 for Da=
106, Pr=0.71, and ǫ=0.9999. The quantities compared include the maximum horizontal
velocity umax and the corresponding y-coordinate ymax on the vertical centerline (x =
H/2), the maximum vertical velocity vmax and the corresponding x-coordinate xmax on
the horizontal centerline (y=H/2), and Nuv. Here, all the velocities are normalized by the
reference velocity α/H, and the x- and y-coordinates are normalized by H. It can be seen
that results from both the uniform and non-uniform meshes are in good agreement with
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Table 2: Comparisons of numerical results by present DUGKS with the benchmark solutions [46] for four Ra

(Da=106, Pr=0.71, ǫ=0.9999, and grid size: 64×64).

Ra 103 104 105 106

uniform 3.6335 16.1046 34.1831 60.8429

umax non-uniform 3.6427 16.1224 34.6414 64.0726

Ref. [46] 3.649 16.178 34.73 64.63

uniform 0.8047 0.8203 0.8516 0.8516

ymax non-uniform 0.8187 0.8188 0.8499 0.8499

Ref. [46] 0.813 0.823 0.855 0.850

uniform 3.6799 19.4637 67.1285 205.6321

vmax non-uniform 3.6943 19.5796 68.6006 219.7266

Ref. [46] 3.697 19.617 68.59 219.36

uniform 0.1797 0.1171 0.0703 0.0391

xmax non-uniform 0.1806 0.1121 0.0648 0.0402

Ref. [46] 0.178 0.119 0.066 0.0379

uniform 1.1169 2.2313 4.04373 8.4107

Nuv non-uniform 1.1178 2.2432 4.5196 8.8035

Ref. [46] 1.118 2.243 4.519 8.8

the data in Ref. [46], and the results from non-uniform mesh is better. To demonstrate the
quantitative difference between results of two meshes, the relative errors in umax, vmax

and Nuv are measured,

δ=
|Φ−Φa|
|Φa|

, (4.9)

where Φ and Φa are the numerical result and benchmark solution in Ref. [46], respec-
tively. The curves of the relative error in umax, vmax and Nuv are plotted in Fig. 5. It is
obvious that the results from the non-uniform mesh are more accurate.

Cases with moderate Da and ǫ are also simulated to test the influence of porous
media. Fig. 6 shows the streamlines and isotherms predicted by present DUGKS for
Ra∗=Da×Ra=100, Pr=1, and ǫ=0.4. Non-uniform meshes with size of 64×64, 80×80
and 96×96 are adopted for Da=10−2, Da=10−4, and Da=10−6, respectively. As can be
seen from the figure, for a fixed Ra∗, the thicknesses of velocity and thermal boundary
layers near the vertical walls become thinner with decreasing Da. It is also observed that,
as Ra increases, the patters of isotherms change from almost vertical to horizontal in the
center of cavity, and converge at the upper right and lower left corners. All these findings
agree qualitatively with those reported in the literature [21, 38, 39].

To quantify the results, the profiles of vertical velocity and temperature along the
middle of cavity for moderate Da at Ra∗ = 1000, Pr= 1, ǫ = 0.4 are plotted in Fig. 7. It
can be seen that the vertical velocity always reaches to its peak near the hot and the



280 P. Liu et al. / Commun. Comput. Phys., 29 (2021), pp. 265-291

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

Ra

δ
/(
%
)

 

 

umax

vmax

Nuv

Fig. 5: Relative errors in velocity and the volume average Nusselt number. Solid lines: results of the non-uniform
mesh; Dashed lines: results of the uniform mesh.

(a)

(b)

(c)

Fig. 6: Streamlines (left) and isotherms (right) of natural convection in a cavity for ǫ= 0.4 and Pr=1.0: (a)
Da=10−2, Ra=104; (b) Da=10−4, Ra=106; (c) Da=10−6, Ra=108.
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Fig. 7: Profiles of (a) vertical velocity and (b) temperature at mid-height (y= H/2). Solid lines: numerical
results by present method; Symbols: numerical results by LBM [21,47].

Table 3: Comparisons of the average Nusselt number Nu for moderate Da (Pr=1.0, ǫ=0.4).

Da Ra
ǫ=0.4 ǫ=0.6

Ref. [22] Ref. [39] Present Ref. [22] Ref. [39] Present

103 1.007 1.008 1.008 1.012 1.012 1.012

10−2 104 1.362 1.365 1.360 1.494 1.498 1.490

105 3.009 3.012 2.990 3.460 3.463 3.435

105 1.067 1.067 1.064 1.069 1.069 1.067

10−4 106 2.630 2.618 2.600 2.733 2.734 2.700

107 7.808 7.811 7.751 8.457 8.506 8.543

107 1.085 1.089 1.077 1.089 1.094 1.077

10−6 108 2.949 3.014 2.980 2.957 3.035 2.992

109 11.610 11.733 11.591 12.092 12.149 11.995

cold walls. In addition, the lower the Da is, the larger the velocity gradient near the hot
and cold walls will be. It is observed that the results of the present method are in good
agreement with the results of the lattice Boltzmann method [21, 47]. Besides, the average
Nusselt numbers Nu for moderate Da are also calculated. As shown in Table 3, it can be
found that the present results agree well with the data reported in Refs. [22, 39].

4.3 Natural convection with a porous layer

In this subsection, the natural convection in a square cavity partially filled with a porous
medium of thickness S is studied. Here, we consider the case in which the porous layer
lies vertically. The schematic of the problem is illustrated in Fig. 8, with cavity height H=
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(a) (b)

Fig. 8: Geometry of the flow domain and boundary conditions of the natural convection in a square partially
filled with porous medium: (a) S=1/3H; (b) S=1/2H.

Table 4: Test conditions of cases for the porous layer problem.

Case S/H Beads(dp mm) Ra Da Pr αm Fǫ

1 1/3 6.0 glass 3.7×106 1.37×10−5 6.44 1.362 0.554

2 1/3 6.35 Al 3.7×106 1.534×10−5 6.44 37.47 0.554

3 1/2 1.6 glass 3.028×107 7.354×10−7 6.97 1.397 0.6124

4 1/2 6.0 glass 3.028×107 1.296×10−5 6.97 1.383 0.5647

1. The boundary conditions are the same as the natural convection problem in Section 4.2.
The porous medium is consisted of random packing of spherical glass or aluminum (Al)
beads. We use water as the test fluid, and the other governing parameters for four test
cases are listed in Table 4. In Case 1 and Case 2, the porous layer is put in the middle of
the cavity; In Case 3 and Case 4, the porous layer is put in the right of the cavity. The
mesh size is Nx×Ny = 120×120, with progressively finer grids near the vertical walls
and porous-fluid interface. In Case 1 and Case 2, the cell center (xi,yj) is generated by
xi =(ζi+ζi+1)/2 for i= 0 to 39, xi = xi−40+H/3 for i= 40 to 79, and xi = xi−40+H/3 for

i=80 to 119, yj =
H
Ny

· 2j+1
2Ny

, for j=0,1,··· ,Ny−1, where ζi is defined by Eq. (4.5) with a=3.

Therefore, the minimum grid spacing is 2.67×10−3. In Case 3 and Case 4, the cell center
(xi,yj) is generated by xi =(ζi+ζi+1)/2 for i= 0 to 59, and xi = xi−60+H/2 for i= 60 to

119, while yj =
H
Ny

× 2j+1
2Ny

for j= 0,1,··· ,Ny−1, where ζi is defined by Eq. (4.5) with a= 3,

and thus the minimum grid spacing is 2.61×10−3.

Streamlines and isotherms predicted by DUGKS in Case 1 and Case 2 are shown in
Fig. 9. As seen in the figure, there are two eddies in the left and right fluid layers in



P. Liu et al. / Commun. Comput. Phys., 29 (2021), pp. 265-291 283

(a)

(b)

Fig. 9: Predicted streamlines (left) and isotherms (right) of natural convection in a square with a porous layer:
(a) Case 1; (b) Case 2.

Table 5: The maximum value of the stream function ψmax.

Case Ref. [21] Ref. [49] Ref. [51] Present

1 18.68 16.4 16.52 16.77

2 24.93 23.9 23.21 23.47

two cases, and in Case 1, the two eddies move toward the upper right and lower left
corners. As for the case of the aluminum beads (Case 2), the isotherms show large vari-
ations in slope at the fluid-porous interface, which can be attributed to a high effective
thermal conductivity of aluminum. All of these observations are qualitatively consis-
tent with those of previous experimental and numerical results [49, 51]. Furthermore,
the maximum values of stream function ψmax of Case 1 and Case 2 are listed in Ta-
ble 5, which show a good agreement between the present predictions and the results
in Refs. [21, 49, 51].

We now examine the Case 3 and Case 4. The flow and thermal patterns are similar
to those reported in [48], and not shown here. The temperature distributions at three
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Fig. 10: The temperature distributions at three locations: (a) Case 3; (b) Case 4. Solid lines: results predicted
by present DUGKS; Symbols: experimental data [48].

locations predicted by the DUGKS and the experimental results [48] are plotted in Fig. 10.
Again, the present numerical results are in good agreement with the experimental data.

5 Conclusion

In this work, a coupled discrete unified gas kinetic scheme is developed for simulating
the incompressible fluid flow and heat transfer convection in porous media at REV scale.
In this method, the velocity field and the temperature field are described by two DUGKS
models, and are coupled with the Boussinesq assumption. The effects of porous media
are incorporated by introducing the porosity into equilibrium distribution function and
adding the flow resistance force in the kinetic equation for velocity field.

The method is well validated by simulating three two-dimensional convection prob-
lems in porous media. The numerical results are in good agreement with previous nu-
merical and/or experimental results. It is also shown that the present DUGKS is of
second order accuracy in space. Furthermore, compared with the corresponding LBGK
model, the present model has better numerical stability. Furthermore, non-uniform meshes
can be employed to improve the computational efficiency. In summary, the present cou-
pled DUGKS can serve as an ideal numerical tool to study the convection heat transfer in
porous media at the REV scale.
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Nomenclature

αm effective thermal diffusivity

β thermal expansion coefficient

σb gradient

ξ molecular velocities

a acceleration due to other external force

G body force

g gravitational acceleration

n unit vector normal to the cell interface

u volume-averaged velocity

v temporal velocity

∆T temperature difference

∆xmin the minimum grid length

∆t time step

δ relative error

ǫ porosity

η Courant-Friedrichs-Lewy (CFL) number

∇ Hamiltonian operator

ν viscosity of the fluid

νe effective viscosity of the fluid

Ω, Ψ collision terms

ωi, ωi corresponding weight coefficients

Nuv, Nu the volume average Nusselt number, average Nusselt number in the hot
wall

ψmax the maximum values of stream function

ρ f , ρs density of fluid phase, solid phase

σ thermal capacity ratio between the solid and fluid phases

τν, τc relaxation times for velocity and temperature

Da Darcy number
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Je viscosity ratio

Ma Mach number

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

f̃ , f̃+, f̄ , f̄+ auxiliary distribution functions for velocity field

g̃, g̃+, ḡ, ḡ+ auxiliary distribution functions for temperature field

ε time scale

a coefficient to adjust mesh distribution

C the magnitude of the maximal discrete velocity

c the model speed of sound

cp f , cps specific heat of fluid phase, solid phase

D spatial dimension

dp diameter of the solid spherical particle of the porous medium

Eφ global error

f eq, geq equilibrium distribution functions

Fǫ geometric function

fi, gi gas distribution functions for velocity and temperature fields

H height of the porous channel or cavity

K permeability of porous medium

km effective thermal conductivity of porous media

L width of the porous channel

Nx, Ny grid number in x-direction and y-direction

p volume-averaged pressure

R gas constant

S total force term

T volume-averaged temperature

T0 constant variance which determine the artificial sound speed of the
velocity

Tre f reference temperature
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u0 characteristic velocity

umax, ymax the maximum horizontal velocity and the corresponding y-coordinate

vmax, xmax the maximum vertical velocity and the corresponding x-coordinate

Appendix: Chapman-Enskog analysis

The Chapman-Enskog analysis is adopted to recover the macroscopic equation (2.1) from
Eqs. (3.1) and (3.2). To this end, the following multiscale expansions in space and time
are adopted,

f = f (0)+ε f (1)+ε2 f (2), (A.1)

∂t = ε∂t0 +ε2∂t1
, ∇= ε∇0, S= εS(0). (A.2)

By substituting them into Eq. (3.1), we can obtain

O(ε0) : f (0)= f eq, (A.3)

O(ε1) : ∂t0 f (0)+ξ ·∇0 f 0=− 1

τν
f (1)+S(0), (A.4)

O(ε2) : ∂t0 f (1)+ξ ·∇0 f (1)+∂t1
f (0)=− 1

τν
f (2). (A.5)

From the equilibrium distribution function defined by Eq. (3.23), we can obtain
∫

f eqdξ=ρ,
∫

ξ f eqdξ=ρu,
∫

ξξ f eqdξ=ρuu/ǫ+pǫ, (A.6)
∫

ξξξ f eq=ρRT0(uαδβγ+uβδαγ+uγδαβ), (A.7)
∫

S(0)dξ=0,
∫

ξS(0)dξ=F,
∫

ξξS(0)dξ=Fu+uF, (A.8)

where p= ρRT0/ǫ is the pressure. Then, taking the zeroth- to second-order moments of
Eq. (A.4), respectively, we can get the following equations on the t0 scale,

∂t0 ρ+∇x0 ·(ρu)=0, (A.9)

∂t0(ρu)+∇x0 ·(ρuu/ǫ+pǫ)=F, (A.10)

∂t0 (ρuu/ǫ+pǫ)+∇x0 ·(ρRT0(uαδβγ+uβδαγ+uγδαβ))=− 1

τν

∫

ξξ f (1)dξ+Fu+uF. (A.11)

Similarly, taking the zeroth- and first-order moments of Eq. (A.5),

∂t1
ρ=0, (A.12)

∂t1
ρu+∇0 ·

∫

ξξ f (1)dξ=0. (A.13)
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Combing Eqs. (A.9) and (A.12), we can get

∂tρ+∇(ρu)=0. (A.14)

Note that for incompressible flows, Eq. (A.14) can be written as

∇·u=0. (A.15)

According to Eq. (A.11), the second moment of f (1) can be rewritten as

∫

ξξ f (1)dξ=−τcRT0ρ(∇u+∇uT)+O(Ma3). (A.16)

For the above equation, the terms of order O(u3) or higher have been neglected. Then,
substituting Eq. (A.16) into Eq. (A.13), we can get

∂t1
ρu−τcRT0ρ∇0 ·(∇u+∇uT)=0. (A.17)

For incompressible flows, Eqs. (A.10) and (A.17) are lead to

∂t(u)+∇·
(uu

ǫ

)

=−1

ρ
∇(ǫp)+νe∇·(∇u+∇uT)+F, (A.18)

where νe =τcRT0 is the effective viscosity, ρ is the density of fluid, and ∇·(∇u)T =∇(∇·
u)=0. From these treatments, Eq. (A.18) can recover Eq. (2.1a),

∂t(u)+∇·
(uu

ǫ

)

=−1

ρ
∇(ǫp)+νe∇2u+F. (A.19)

Next, the temperature equation will be derived based on Eq. (3.2). Similarly, the distri-
bution function is expanded as

g= g(0)+εg(1)+ε2g(2). (A.20)

By substituting it into Eq. (3.2) and equalling with respect to the same order of ε, we can
obtain

O(ε0) : g(0)= geq, (A.21)

O(ε1) : ∂t0 g(0)+ξ ·∇0g0=− 1

τc
g(1), (A.22)

O(ε2) : ∂t0 g(1)+ξ ·∇0g(1)+∂t1
g(0)=− 1

τc
g(2). (A.23)

According to Eq. (3.23), we can obtain

∫

geqdξ=σT,
∫

ξgeqdξ=uT,
∫

ξξgeqdξ=RT0σT. (A.24)
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Then, taking the zeroth- and first-order moments of Eqs. (A.22) and (A.23), we can obtain

∂t0(σT)+∇0 ·(uT)=0, (A.25)

∂t0(uT)+RT0∇0 ·(σT)=− 1

τc

∫

ξg(1)dξ, (A.26)

∂t1
(σT)+

∫

ξ ·∇0g(1)=0. (A.27)

After substituting Eqs. (A.26) and (A.27), we get

∂t1
(σT)−τc∇0 ·[∂t0 (uT)+RT0∇0 ·(σT)]=0. (A.28)

Combing the macroscopic equations at two time scales without the higher terms, we
finally obtain the following equation

∂(σT)

∂t
+∇·(uT)=τcRT0∇·(∇(σT)). (A.29)

In this work we assume that σ does not change with space and time, and then we can get
the macroscopic equation

σ
∂(T)

∂t
+∇·(uT)=αm∇·(∇T), (A.30)

where αm =στcRT0 is the effective thermal diffusivity.
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