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Abstract. Global linear instability analysis is a powerful tool for the complex flow di-
agnosis. However, the methods used in the past would generally suffer from some dis-
advantages, either the excessive computational resources for the low-order methods or
the tedious mathematical derivations for the high-order methods. The present work
proposed a CFD-aided Galerkin methodology which combines the merits from both
the low-order and high-order methods, where the expansion on proper basis func-
tions is preserved to ensure a small matrix size, while the differentials, incompress-
ibility constraints and boundary conditions are realized by applying the low-order
linearized Navier-Stokes equation solvers on the basis functions on a fine grid. Sev-
eral test cases have shown that the new method can get satisfactory results for one-
dimensional, two-dimensional and three-dimensional flow problems and also for the
problems with complex geometries and boundary conditions.

AMS subject classifications: 76Exx
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1 Introduction

Flow instability analysis plays a key role in understanding the origin of many complex
fluid motions including turbulence. Among all kinds of instability analysis methods,
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linear instability analysis is the simplest and most widely used one, and it can obtain sat-
isfactory results in shear flows, rotating flows, buoyancy-driven convections and surface-
tension-driven instability with steady and laminar basic state. The classic Tollmien’s the-
ory and Orr-Sommerfeld equation can deal with the linear instability of one-dimensional
parallel flow [1–4]. Consideration of another slowly evolving spatial direction will result
in parabolised stability equations [5–7]. However, when the base flow is strongly inho-
mogeneous in more than one direction, the general global instability should be taken
into account and the governing equations are no longer one-dimensional, raising the
challenges on the establishment and the solution of respective eigenvalue problems.

Pierrehumbert and Widnall (1982) [8] published the pioneering work on global lin-
ear instability and discussed the instability of shear-layer vortices using spectral collo-
cation method. Since then, the spectral collocation method and the spectral Galerkin
method have been widely used [9, 10] for simple flow problems due to the small matrix
size which benefits from the high-order accuracy of the methods. For piecewise regular
domains such as backward facing step, multi-domain technique can be applied [11]. For
more general geometry, spectral element method [12] and spectral/hp method [13] can
be introduced as the generalization of multi-domain spectral method. Many other inves-
tigations using spectral method can be seen in [7, 14–22]. Although global spectral meth-
ods are accurate and more likely to provide a small matrix for the full eigen-spectrum
computation, the mathematical derivation is often tedious, as can be seen in [17].

Due to the simplicity and flexibility, simple discretization methods, including the
finite difference method [23–28], the finite element method [29–31], the finite volume
method [25, 32, 33] and the lattice Boltzmann method [34, 35], have also been used to
study the global linear instability. In order to make the analysis accurate enough, the
simple low-order discretization methods would require large matrix size to fully charac-
terize the linear operator. With high-order finite difference schemes, the required matrix
size can be reduced [36], but it is still larger than those obtained in high-order spectral
methods.

Although matrix-free subspace iteration approach [37] can be applied to obtain the
leading eigen-modes, the computation expenses will increase heavily if more high-
accuracy modes are required. Therefore, matrix-forming approach is still the most rea-
sonable choice on condition that the matrix size is as small as possible. As suggested by
Theofilis [38], full eigenspectrum should be derived if possible because it is helpful for
a deep understanding of the problem. In fact, there are still some interesting problems
with simple geometry which can be analyzed with spectral methods (smallest matrix size
required), but it is hard to realize due to the extremely tedious derivations.

The present work is devoted to finding a new way to construct the eigenproblem ma-
trix which represents the linear operator. In the newly proposed method, the matrix is
formed with the help of globally smooth basis functions while the differential operations
are realized with the aid of the linearized CFD code. The remainder of the paper is orga-
nized as follows. Section 2 introduces the general problem setup and numerical method
in detail. The new method will be validated in Section 3 where several one-dimensional
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(1D), two-dimensional (2D) and three-dimensional (3D) test cases are used to show its
accuracy. Section 4 summarizes the present work.

2 Numerical method

2.1 Basic concepts

Considering the three-dimensional incompressible Navier-Stokes (NS) equation as the
basic governing equations (the constant density is absorbed in pressure)

∂u

∂t
+u·∇u=−∇p+ν∆u, (2.1a)

∇·u=0, (2.1b)
DΣ(u;xΣ)= fΣ(xΣ). (2.1c)

Here ν is the kinematic viscosity and DΣ(u;xΣ) is the linear spatial differential operator
defined at the boundary Σ.

With basis flow u0, the governing equation of the infinitesimal perturbation u′ can be
described by the linearized Navier-Stokes (LNS) equation

∂u′

∂t
+u0 ·∇u′+u′ ·∇u0−∇p′+ν∆u′, (2.2a)

∇·u′=0, (2.2b)
DΣ(u

′;xΣ)=0. (2.2c)

After writing the variables into a one-column vector, the LNS equation can be rewritten
as

∂U

∂t
=

∂

∂t




u′

v′

w′




=PΣP⊥



−




∂xu0 ∂yu0 ∂zu0
∂xv0 ∂yv0 ∂zv0
∂xw0 ∂yw0 ∂zw0


−u0 ·∇+ν∆



PΣ




u′

v′

w′




,PΣDPΣ




u′

v′

w′




,L(U), (2.3)

wherePΣ is the boundary condition operator setting specific linear differentials at bound-
ary to zero, and P⊥ the projection operator making the field satisfy the incompressible
conditions. Physically and mathematically, the initial discontinuity caused by boundary
condition operator would be smoothed immediately by the viscosity.
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In general, a smooth flow field can be expanded with a series of smooth basis func-
tions φi, i= 1,2,··· with the specified inner product 〈·,·〉. The basis functions should be
chosen properly (but they are not required to satisfy boundary conditions or other phys-
ical constraints) so that only a few terms could be enough to approximate the flow field

U(x)=
∞

∑
i=1

αiφi(x)≈
n

∑
i=1

αiφi(x). (2.4)

The linear operator L acting on one basis function could be described with a matrix in
the space of n basis functions

L(φi)≈
n

∑
i=1

Ljiφj, (2.5)

with

L=S−1L∗, (2.6a)

Sij,
〈
φi,φj

〉
, (2.6b)

L∗
ji,
〈
L(φi),φj

〉
. (2.6c)

If the basis functions are orthogonal with Sij=δij, (δij is the Kronecker tensor), then L=L∗.
With the above expansion, the linear operator acting on a field could be described with a
matrix-vector product for the coefficients

L(U)≈L
( n

∑
j=1

αjφj

)
=

n

∑
j=1

αjL(φj)

≈
n

∑
j=1

αj

n

∑
i=1

Lijφi=
n

∑
i=1

n

∑
j=1

Lijαjφi. (2.7)

Therefore the expansion coefficient vector α̂ = [α̂1,α̂2,··· ,α̂n]T of an eigenfunction of L
should satisfy the eigenvalue problem

Lα̂=λα̂, (2.8)

or the equivalent generalized eigenvalue problem

L∗α̂=λSα̂. (2.9)

Considering the relationship (2.6), with a black box L̃= P̃ΣD̃P̃Σ approximating operator
L, the j-th column of the matrix L∗ can be derived by doing inner product

〈
φi,L̃(φj)

〉

with i from 1 to n.
For a traditional spectral Galerkin method, the black box is the exact L and the matrix

is constructed with the above procedure. However, it demands the basis functions to sat-
isfy boundary conditions in order to avoid the discontinuity or singularity. For low-order
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methods, the basis functions are chosen to be piecewise polynomials which are consistent
with the numerical scheme. Considering a Nx×Ny×Nz grid, the coefficients form a vec-
tor with Nx×Ny×Nz entries. Each column of the matrix L∗ could be derived from a grid
field resulting from the time derivative computed with LNS code. After Nb×Nx×Ny×Nz

times of execution of the LNS code, an
(

Nb×Nx×Ny×Nz

)
×
(

Nb×Nx×Ny×Nz

)
(Nb be-

ing the number of variables) matrix could be formed. Even for a small grid number
Nx =Ny =Nz =100 and three variables Nb =3, the low-order method would create a ma-
trix with 9×1012 entries, which is very inconvenient even for the iterative eigensolvers.

In the present work, we proposed a new method which combines the merits from
both the Galerkin spectral approach and the low-order methods. In the new method, the
expansion on the basis functions is preserved to ensure a small matrix size, while the
differentials, incompressibility constraints and boundary conditions are realized by ap-
plying the low-order LNS solvers on the basis functions on a fine grid without increasing
the degree-of-freedom or the size of the derived matrix. However, if the structures in per-
turbation modes become increasingly tight with increasing Reynolds number while the
number of the basis functions is fixed, the expansion residual would increase drastically
because of the high algebraic precision. Therefore the resolution (i.e. the number of the
basis functions) of the spectral expansion must be abundant for the present method, as
what is required for a traditional spectral method.

2.2 Basic numerical procedure

Choosing one simple and grid-based discretization method (finite difference, finite vol-
ume, finite element or lattice Boltzmann) to discretize the LNS with imposing boundary
conditions as the black box, the basic procedure of the newly proposed method to com-
pute the matrix L∗

ij and Sij is straightforward as sketched in Fig. 1 and can be written in
pseudo code as follows:

FOR i=1,2,··· ,n

i Get basis function φi(x) explicitly;

ii Specify grid values φi(xk,yl ,zm) at point (xk,yl ,zm);

iii Apply LNS code to derive
[
L̃(φi)

]
(xk,yl ,zm);

iv Get interpolant
[
L̃(φi)

]
(x);

v FOR j=1,2,··· ,n

Compute L∗
ji=
〈
L̃(φi),φj

〉
and Sij =

〈
φi,φj

〉
.

END

END
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Figure 1: Pro
edure of 
omputing a 
olumn of matrix L∗
and a row of matrix S using the new method.

It should be noted that the step (iv) is not necessary to be done explicitly, since one
can also compute L∗

ji and Sij by doing numerical integrations directly on the discretization
points. If the basis functions are of some special kinds, such as the Chebyshev polynomi-
als, the step (iv) on the special collocation points could be used to promote the accuracy
and the speed of the calculation.

3 Numerical results

3.1 1D heat equation

Let’s first consider a 1D linear heat transfer equation with Dirichlet boundary condition
on both sides

∂θ

∂t
=

∂2θ

∂x2 , x∈ [0,1], (3.1a)

θ(0,t)= θ(1,t)=0. (3.1b)

In this problem, the theoretical eigenvalues and eigenmodes are

{
σ
(k)
0 =−k2π2,

θ
(k)
0 =sin(kπx),

k=1,2,··· . (3.2)
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Figure 2: Comparison of the a

ura
y and e�
ien
y of the new method and the traditional �nite di�eren
e

method. Solid lines refer to the new method and dashed lines refer to �nite di�eren
e method. (a) Relative

errors between 
omputed and theoreti
al eigenvalues. (b) Exe
ution time spent in the matrix formation and

eigenvalue 
omputation pro
esses. Computation is performed with MATLAB R2018b on Intel(R) Core(TM)

i7-2600 3.40GHz CPU.

When it is analyzed with our new method, Chebyshev polynomials of the first kind
Ti(2x−1) with i = 0,1,2,··· ,n is chosen as the basis functions. An uniform grid xk =
(2k−1)/2Nx , k = 0,1,2,··· ,Nx,Nx+1 is used to discretize the domain [0,1] where two
ghost points x0 and xNx+1 are also included for implementation of boundary condi-
tions. The operator ∂2/∂x2 is approximated by second-order central difference scheme
on the grid, arriving at ψ(xk)=

[
L̃(Ti)

]
(xk) on the inner points (k= 1,2,··· ,Nx). Dirich-

let boundary condition is approximated with ghost-point condition ψ(x0) = −ψ(x1),
ψ(xNx+1)=−ψ(xNx). After obtaining the interpolant ψ(x), we could use the inner product

〈
ψ,Tj

〉
=

4
π
(
1+δ0j

)
∫ 1

0

ψ(x)Tj (2x−1)
√

1−(2x−1)2
dx (3.3)

to obtain Lji = L∗
ji since Sij = δij. In the implementation of the new method on the

present problem, the interpolant ψ(x) is evaluated on Chebyshev-Gauss-Lobatto points
x̂k=(cos(kπ/6Nx)+1)/2, k=0,1,2,··· ,6Nx, and the above inner product with the leading
n+1 Chebyshev polynomials can be evaluated by fast Chebyshev transform (FCT).

In this simple test case, n=32 and Nx =200, 400, 800, 1600, 3200, 6400 and 12800 are
considered. QZ algorithm is used for matrix eigenvalue problem throughout this article.
After defining

∆σ(k)=σ(k)−σ
(k)
0 (3.4)

to quantify the errors, the results of the first 10 modes are shown in Fig. 2, together with
CPU time spent during matrix formation and eigenvalue computation process. Results
of traditional finite difference approach using the same central difference scheme are also
shown for comparison in Fig. 2. It can be seen from Fig. 2(a) that for the new method
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and Nx =200, the relative errors of the first 10 eigenvalues are reasonably low, as low as
0.4%. With the increase of grid density Nx in LNS code, the relative errors could be further
reduced, and the largest relative error is around 2×10−6 if Nx=12800. For finite difference
method, the relative errors are smaller but still in the same order as the present method. A
perfect scaling of |∆σ(k)/σ

(k)
0 |∼k2N−2

x could be found for both the new method and finite
difference method. This is probably because the relative truncation error of second-order
central difference scheme is exactly

1
4!

∂4θ
(k)
0

∂x4

(
1

Nx

)4

/

(
1
2!

∂2θ
(k)
0

∂x2

(
1

Nx

)2
)
∼k2N−2

x (3.5)

for the k−th eigenmode θ
(k)
0 = sin(kπx). From Fig. 2(a) and the above scaling analy-

sis, it could be inferred that with a fixed expansion of adequate order, accuracy of the
new method can be improved by simply using a denser grid, leaving the matrix size un-
changed. For the new method, the matrix size remains to be (n+1)×(n+1) = 33×33
regardless of the value of Nx, while the matrix size will be Nx×Nx for the traditional
finite difference method. The larger matrix size will increase the CPU time cost in the
eigenvalue solver, as shown in Fig. 2(b), where the CPU time spent in matrix formation
and eigenvalue computation for both methods are shown. It is obvious that the time cost
in the matrix formation increases with Nx while it is almost constant for the eigenvalue
computation process for the new method. This is reasonable since the LNS solver will
cost more time as Nx increases while the matrix size of the present method keeps the
same as 33×33. For the traditional finite difference method, the time spent during the
matrix forming and the eigenvalue computation will both increase heavily with Nx. It
should be noted that the time cost of the matrix forming process using the finite differ-
ence method is less than the new method if Nx ≤ 3200, and we attribute it to the extra
step (iv) and the FCT used during the implementation. Nevertheless, the FCT could re-
duce the time cost when Nx is further increased. Since the new method will save a lot
of time in the eigenvalue computation, such advantage may allow the new method to
outperform the finite difference method in some circumstances. In the present case, the
finite difference method requires 0.78s to establish and solve the eigenvalue problem for
Nx =3200, while the new method only requires 0.48s for Nx =12800 while it can achieve
a higher accuracy according to Fig. 2(a).

3.2 2D convection in laterally heated cavity

Now let’s consider a 2D convection in laterally heated cavity, where the upper and lower
walls are adiabatic, and the sidewalls with fixed but different temperatures. This is a test
case used in Ref. [39]. With the Boussinesq approximation and non-dimensionalization,
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the incompressible NS equation and boundary conditions can be written as

∇·u=0, (3.6a)
∂u

∂t
+u·∇u=−∇p+

1√
Ra/Pr

∆u+θj, (3.6b)

∂θ

∂t
+u·∇θ=

1√
Ra·Pr

∆θ, (3.6c)

x=0 : u=0, θ=0.5, (3.6d)
x=1 : u=0, θ=−0.5, (3.6e)

y=0, A : u=0,
∂θ

∂y
=0. (3.6f)

During the implementation of the new method, the direct products of first-kind Cheby-
shev polynomials with maximum order nx and ny respectively are chosen as basis func-
tions:

φ̂i,j=Ti(2x−1)Tj

(
2y−1

A

)
, (3.7a)

i=0,1,2,··· ,nx; j=0,1,2,··· ,ny (3.7b)

for velocity and temperature. Uniform staggered grid with Nx×Ny inner temperature
grids are used for spatial discretization of [0,1]×[0,A] with ghost-point treatment for
boundary conditions. Second-order central difference scheme are used to approximate
the spatial differentials and 2-D discrete cosine transform (DCT) are used to solve the
Poisson equation for pressure [40]. Inner product computation is achieved with the same
procedure as introduced in Section 3.1.

The cavity height is chosen to be A= 8, Rayleigh number is Ra= 306192 and Prantl
number is Pr = 0.71 as used in Ref. [39]. Number of basis functions is 3×(nx+1)×
(ny+1)=3×31×91 and grid number for finite difference scheme is Nx×Ny=512×4096.
Steady solution is achieved using the nonlinear NS code with the same algorithm as the
LNS code but with some frequency filtering technique [41]. After solving the eigenvalue
problem of the matrix with rank 3×(nx+1)×(ny+1), we obtained the first valid eigen-

value σ1 =−6.3721×10−5+1.7085i, with a relative deviation of |∆σ1/σ
(0)
1 |= 3.4×10−4

from σ
(0)
1 =0+1.70908i obtained using the Galerkin method with 30×90 basis functions

in Ref. [39]. Steady states and eigenmodes are compared with those from Ref. [39] in
Fig. 3. Here θ0 and ψ0 are steady distribution of temperature and streamfunction re-
spectively. |θ̃1| and |ψ̃1| are the modulus of complex temperature and streamfunction
perturbations of the first eigenmode. 17 contour values are homogeneously arranged
between minimum and maximum values of the field as those from Ref. [39], regardless
of the amplitudes of computed eigenmodes. It is apparent that the steady solution and
the most unstable eigenmode of the temperature and streamfunctions obtained using the
present method match very well with the results from Ref. [39], and discrepancies are
hardly discernable, demonstrating the accuracy of the present method.
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Figure 3: (a,b) Steady temperature θ0. (
,d) Temperature eigenmode modulus |θ̃1|. (e,f) Steady streamfun
tion

ψ0. (g,h) Streamfun
tion eigenmode modulus |θ̃1|. (a,
,e,g) are the results in Ref. [39℄; (b,d,f,h) are the present

results.

3.3 3D Rayleigh-Bénard instability

The third test case is the 3D Rayleigh-Bénard instability. In this problem, the convection
is thermally driven between two infinite planes and has periodic boundary condition
in horizontal directions, as shown in Fig. 4. The corresponding 3D thermal convection
equation can be written as

∇·u=0, (3.8a)
∂u

∂t
+u·∇u=−∇p+

1√
Ra/Pr

∆u+θk, (3.8b)

∂θ

∂t
+u·∇θ=

1√
Ra·Pr

∆θ, (3.8c)

u(0,y,z)=u(Lx,y,z), θ(0,y,z)= θ(Lx ,y,z), (3.8d)
u(x,0,z)=u(x,Ly,z), θ(x,0,z)= θ(x,Ly,z), (3.8e)
z=0 : u=0, θ=0.5, (3.8f)
z=1 : u=0, θ=−0.5. (3.8g)

In the implementation of the present method, the direct products of trigonometric func-
tions (x and y direction) and first-kind Chebyshev polynomials (z direction) with maxi-
mum order nx, ny and nz respectively are chosen as basis functions for all variables. The
finite difference scheme and ghost-point boundary conditions (at lower and upper walls)
are the same as Section 3.2. Considering the periodic boundary condition in horizontal
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Figure 4: Sket
h of the 3-D Rayleigh-Bénard 
onve
tion with horizontally periodi
 boundary 
onditions.

directions, the Poisson solver is based on DCT in z direction and fast Fourier transform
(FFT) in x and y directions. The inner product could be realized by doing FFT (x and y
direction) and DCT (z direction), which is similar as Section 3.1.

The parameters are chosen as Ra = 2×104, Pr = 1, Lx = Ly = 1. The steady state is
chosen to be static, which is u0=0, θ0=0.5−z. The number of basis functions is 4×(2nx+
1)×(2ny+1)×(nz+1) = 4×5×5×21 and the grid number of finite difference scheme
is Nx×Ny×Nz = 128×128×128. We define horizontal average being 〈·〉H and vertical
average being 〈·〉z. The first 8 eigenmodes are obtained, arranged into 2 groups, and
decomposed into horizontal modes

fi,j(x,y)=
〈θ̃i,j(x,y,z)〉z

max[〈θ̃i,j(x,y,z)〉z]
(3.9)

and vertical amplitudes

Θi,j(z), 〈θ̃i,j(x,y,z)/ fi,j(x,y)〉H, (3.10a)

Wi,j(z), 〈w̃i,j(x,y,z)/ fi,j(x,y)〉H. (3.10b)

Fig. 5 shows the horizontal modes of the first 8 eigenmodes. The horizontal modes of the
first 4 eigenmodes seem to be linear combinations of sin(2πx+β) and sin(2πy+γ) while
the next 4 horizontal modes seem to be linear combinations of sin(2πx+β)sin(2πy+γ).
Since there are 4 eigenmodes corresponding to one eigenvalue, any linear combination
of the 4 eigenmodes could be an eigenmode corresponding to the same eigenvalue. This
indicates that the computed eigenmodes are not necessary to be orthogonal.

According to linear stability theory, the eigenmodes should satisfy

w̃= f (x,y)W (z) , (3.11a)

θ̃= f (x,y)Θ(z) , (3.11b)

∆H f +a2 f =0, a=

√
(2mπ)2+(2nπ)2, (3.11c)
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Figure 5: Horizontal modes of the �rst 8 eigenmodes.

where ∆H = ∂2/∂x2+∂2/∂y2 and m,n = 1,2,3,··· . It is seen that a = 2π for the upper 4
eigenmodes while a=2

√
2π for the lower 4 eigenmodes shown in Fig. 5 respectively.

Define the errors based on L1 and L2 norm

err1

[
q(0),q

]
=
(

q−q(0)
)

/max
(

q(0)
)

, (3.12a)

err2

[
q(0),q

]
=

√∫

V

∣∣q−q(0)
∣∣2dV/

∫

V

∣∣q(0)
∣∣2dV, (3.12b)

and it is shown that the deviations from variable separation and the horizontal Laplacian
eigenvalue results are small:

err2
[

fi,j (x,y)Wi,j (z) ,w̃i,j
]
<2×10−13, (3.13a)

err2
[

fi,j (x,y)Θi,j (z) , θ̃i,j
]
<3×10−13, (3.13b)

err2
[
−a2

i fi,j (x,y),∆H fi,j (x,y)
]
<5×10−11. (3.13c)

To further examine the accuracy of the present result, Chebyshev collocation method on
65 Chebyshev-Gauss-Lobatto points is applied to solve the 6-th order Orr-Sommerfeld
equation, obtaining the reference vertical amplitudes. The relative deviation of eigen-
values

∣∣∆σi,j/σi
(0)
∣∣<1×10−4. In Fig. 6 the deviations between vertical amplitudes Θ(z)

and W(z) are shown. The results showed satisfactory accuracy of the present method in
3D case. In addition, Fig. 6 shows that the computed eigenmodes corresponding to the
same eigenvalue are very close to each other in the vertical amplitudes. Such consistency
is probably due to the homogeneity of both the finite difference method and spectral
expansion in the x and y directions.
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Figure 6: Deviation of verti
al amplitudes between the present method and Chebyshev 
ollo
ation method. (a)

Temperature perturbation. (b) Verti
al velo
ity perturbation. The supers
ript "0" denotes the results from

Chebyshev 
ollo
ation method.

3.4 2D mixed convection flow

Previous cases have shown the reliability of the new method, and it is necessary to
demonstrate the effectiveness of the new method in a problem with relatively complex
boundary conditions. Let’s consider the mixed convection flow introduced in Ref. [42].
As shown in Fig. 7, the upper wall is adiabatic and the lower wall has both adiabatic and
isothermal regions. Such problem with mixed and non-homogeneous boundary condi-
tion simulates the winds or currents flowing past solid ground with non-uniform tem-
perature, thermal capacity and thermal conductivity.

Figure 7: Sket
h of 2-D mixed 
onve
tion �ow.

The non-dimensionalized governing equations and boundary conditions can be writ-
ten as

∇·u=0, (3.14a)
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Figure 8: Temperature and 
ondu
tivity parameter on the lower wall.

∂u

∂t
+u·∇u=−∇p+

1
Re

∆u+θj, (3.14b)

∂θ

∂t
+u·∇θ=

1
RePr

∆θ, (3.14c)

y=0 : u=0, αd(θ−θd)+(1−αd)
∂θ

∂n
=0, (3.14d)

y=2 : u=0,
∂θ

∂n
=0, (3.14e)

u(0,y)=u(Lx,y), θ(0,y)= θ(Lx,y), (3.14f)

θd =
[

tanh
(

10sin
πx

2

)
+1
]
/2, (3.14g)

αd =
[
−tanh

(
5sin(πx)

)
+1
]
/2, (3.14h)

with αd and θd being continuous, which is suitable for the spectral expansion in the x
direction. θd(x) and αd(x) are shown in Fig. 8.

It is troublesome to use classic Galerkin method for such problem because the ba-
sis functions for temperature cannot be given analytically. However, with the present
method, all variables can be expanded with basis functions being direct products of
trigonometric functions and first-kind Chebyshev polynomials. The treatment of com-
plex boundary conditions are left to the LNS code. The LNS code and interpolation pro-
cedure in the vertical and horizontal direction are similar as those in Section 3.3.

In the implementation, the parameters are chosen as Re=60, Ra=1×105, Pr=1, Lx=4,
nx×ny=81×30, Nx×Ny=512×256. Steady solution is computed with the same procedure
as Section 3.2. Reference results of the first eigenvalue and eigenmode are obtained with
the time-advancing algorithm, and the first eigenvalue is 0.268900+3.59830i. The first
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Figure 9: (a,b): Real and imaginary part of the �rst temperature eigenmode θ̃1 from the present new method;

(
): Relative deviations between time-stepping results Re(θ̃
(0)
1 ) and the result Re(θ̃1) from the new method.

(d) Relative deviations between Im(θ̃
(0)
1 ) and Im(θ̃1).

eigenvalue from the eigenvalue problem of the matrix constructed with the new method
is 0.268835+3.59827i, and the relative deviation is less than 2.0×10−5. Fig. 9(a,b) show
the real and imaginary part of the temperature eigenmode obtained from the new method
and Fig. 9(c,d) show their relative deviations from the time-advancing results. Relative
deviation of order 10−3 is obtained, which shows a surprising accuracy of the new matrix-
forming method even for non-traditional boundary conditions. Deviations are relatively
larger when the flow on the hot wall comes to the adiabatic wall. This is probably because
the hot boundary layer separates at the end of the hot wall, and the sharp transition of
boundary condition makes the local field more difficult to resolve.

3.5 Lid-driven flow in L-shaped cavity

Finally, in order to show the reliability of the new method for complex geometry, let’s con-
sider the lid-driven flow in L-shaped cavity [43,44]. Inside an infinitely long channel with
L-shaped cross section D=D×(−∞,∞)=(([0,1]×[0,1])\((0,0.5)×(0,0.5)))×(−∞,∞), the
fluid is driven along x direction by the top wall y=1. The basic equation and boundary
conditions can be written as

∇·u=0, (3.15a)
∂u

∂t
+u·∇u=−∇p+

1
Re

∆u, (3.15b)

∂D\([0,1]×{1}×(−∞,∞)) : u=0, (3.15c)

[0,1]×{1}×(−∞,∞) : u=[1−(2x−1)18]2ex. (3.15d)
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With a 2D base flow u(x,y) = (u0,v0,0), the flow could be unstable and the evolution
of the infinitesimal perturbation with given wavenumber β in z direction satisfies a 2D
equation which could be solved with an adapted 2D LNS code.

Unlike the multi-domain strategy used in Ref. [44], we attempt to expand the 2D fields
in the L-shaped cross section with simple combination of Chebyshev polynomials

φ̂i,j=Ti(ξ)Tj(η), (3.16a)

i=0,1,2,··· ,nξ ; j=0,1,2,··· ,nη (3.16b)

after the variable transformation. First, mapping (x,y) to the polar coordinates:

r(x,y)=(x2+y2)1/2, (3.17a)

θ(x,y)= tan−1(y/x), (3.17b)

and specifying the maximum and minimum r reached in D:

ro(θ)=sec(π/4−|π/4−θ|), (3.18a)
ri(θ)=sec(π/4−|π/4−θ|)/2. (3.18b)

Then the variables (ξ,η) could be obtained from (r,θ):

ξ(r,θ)=2[r−(ro +ri)/2]/(ro−ri), (3.19a)

η(r,θ)= f−1
s (4θ/π−1), (3.19b)

where fs is a monotone mapping from [−1,1] to [−1,1]. In order to resolve the flow
around the corner at (x,y)=(0.5,0.5) and (x,y)=(1,1), fs should contain proper stretching
there and it is defined as

fs (ζ)=
tanh(a2 (ζ−a1))+tanh(a2(ζ+a1))

tanh(a2(1−a1))+tanh(a2(1+a1))
, (3.20)

with a1=0.8, a2 =3.
The order of basis functions is chosen as (nξ+1)×(nη+1) = 21×49. The resolu-

tion of the Chebyshev polynomials is indicated by Fig. 10. Fig. 10(a) shows conceptual
mesh (x(ξi,ηj),y(ξi,ηj)) defined by the Chebyshev-Gauss-Lobatto points ξi and ηj, and
Fig. 10(b) shows the last (highest-order) basis function φ̂nξ ,nη(ξ(x,y),η(x,y)).

The Reynolds number is chosen as Re=650 and the wavenumber is chosen as β=9.7.
The LNS code is based on the second-order central difference scheme on homogeneous
grid with Nx×Ny =256×256. The inner product in the 2D domain is defined as

〈ψ1,ψ2〉=
∫

D
ψ1 ·ψ2ds, (3.21)

and the integral is computed numerically on the LNS grid.
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Figure 10: Sket
h of the spe
tral expansion in L-shaped 
avity. (a) Con
eptual mesh de�ned by Chebyshev-

Gauss-Lobatto points. (b) Contour of the highest-order basis fun
tion used.

Figure 11: (a) Amplitude of the �rst u eigenmode ũ1 from the present new method; (b) Amplitude of the �rst

v eigenmode ṽ1 from the present new method; (
) Relative deviations between time-stepping results |ũ(0)
1 | and

the result |ũ1| from the new method. (d) Relative deviations between |ṽ(0)| and |ṽ1|.

The reference result of the leading eigenmode is obtained with the time-advancing
method. The first eigenvalue obtained with the new method is 0.0037+1.0654i and the
reference value from the time-advancing method is 0.0041+1.0649i, with a relative de-
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viation of 6.0×10−4. Both values only have a relative deviation of 0.02 from the result
in Ref. [44]. The amplitudes of the computed first eigenmode are shown in Fig. 11(a,b).
Fig. 11(c,d) show the corresponding relative deviations of order 10−2 from the reference
result. Clearly, the present method could obtain a very good estimation on both the
eigenvalues and the eigenmodes in this L-shaped cavity.

4 Conclusion

In order to analyze the global linear instability problem with little mathematics and more
flexibility, the present work introduces a new CFD-aided matrix-forming method which
combines the merits from both the high-order and low-order methods. The new method
adopts the global Galerkin framework while the LNS code is used to obtain the trans-
ferring matrix. No requirement of incompressibility or boundary condition is needed
for basis functions, allowing a wider choice of boundary conditions and other physical
constraints within the frame of the Galerkin method. The new method is validated in
1D, 2D and 3D test cases with regular or complex boundary conditions. The eigenvalues
along with eigenmodes obtained with the new method are compared with those refer-
ence results, and remarkable consistency can be obtained for both the eigenvalues and
eigenmodes.

For a wide range of geometries available for spectral expansion, such as rectangle,
ellipsoid, cylinder and analytical airfoils, global linear instability can be analyzed using
the present CFD-aided Galerkin method. With geometry and spectral expansion fixed,
no extra mathematical derivation is required for complex boundary conditions, given an
LNS code capable of resolving them.
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