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Abstract. The simulation of Rayleigh waves is important in a variety of geophysical
applications. The computational challenge is the fact that very fine mesh is neces-
sary as the waves are concentrated at the free surface and decay exponentially away
from the free surface. To overcome this challenge and to develop a robust high or-
der scheme for the simulation of Rayleigh waves, we develop a mortar discontinuous
Galerkin method with staggered hybridization. The use of the mortar technique al-
lows one to use fine mesh in only a local region near the free surface, and use coarse
mesh in most of the domain. This approach reduces the computational cost signifi-
cantly. The staggered hybridization allows the preservation of the strong symmetry of
the stress tensor without complicated construction of basis functions. In particular, the
basis functions are piecewise polynomial without any continuity requirement, and the
coupling of the basis functions is performed by using carefully chosen hybridized vari-
ables. The resulting scheme is explicit in time, and only local saddle point system are
solved for each time step. We will present several benchmark problems to demonstrate
the performance of the proposed method.

AMS subject classifications: 65M32, 65M60
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1 Introduction

Accurate elastodynamic simulations are of critical importance in a variety of geophysical
applications. The staggered grid finite difference methods [21,23,29] is a class of efficient
numerical schemes for accurate elastic wave computations, and they are widely used in
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a number of applications. For computational domains with irregular geometries, such as
non-flat topography, the accuracy of these methods diminishes. For many realistic appli-
cations, one needs accurate and efficient computational techniques that can be applied
to domains with complex geometries or non-flat interfaces. The discontinuous Galerkin
(DG) methods can be used to tackle these computational challenges. The DG method
approximates the solution by using piecewise polynomial functions defined on unstruc-
tured meshes, which can triangulate complex domain geometries. For example, various
DG methods are proposed in [1, 4, 13–16, 18, 19, 22, 24, 25, 27, 28, 30].

The use of staggered mesh for computational wave propagation has shown its promi-
nence in applications. Motivated by the staggered grid finite difference schemes, the
staggered discontinuous Galerkin (SDG) method is developed with the goal of achieving
high order accuracy on domains with irregular geometries and keeping the advantages
of using staggered meshes. The SDG methods are successfully applied to both the acous-
tic wave equations [7, 8, 20] and the elastic wave equations [6, 9] as well as other appli-
cations [3, 17, 31]. The use of staggered mesh in discontinuous Galerkin method offers
several additional advantages such as energy conservation, optimal rate of convergence
and low dispersion error [2, 9]. Another key feature of the proposed method in this pa-
per is the use of staggered hybridization [6]. This staggered hybridization techniques
allows one to define the polynomial basis functions locally on each cell in the mesh with-
out enforcing any continuity condition. The coupling of the basis functions is defined by
using suitable staggered hybridized variables. One advantage of this technique is that
the symmetry of the stress tensor can be enforced strongly on irregular meshes. We re-
mark that the idea of hybridization has been used successfully in discontinuous Galerkin
methods [5, 10–12, 25, 26]. The technique of staggered hybridization shares many of the
advantages of hybridization, such as superconvergence, and gives additional advantages
for elastic wave simulations as mentioned above. Furthermore, the proposed method
gives explicit time-stepping scheme. In particular, one needs only to solve local saddle
point system for each time step. So, the time-stepping is very efficient.

The focus of this paper is efficient simulations of Rayleigh waves. Accurate and ef-
ficient computations of Rayleigh waves has important applications in geophysics. From
the computational point of view, the simulation of Rayleigh waves is difficult in the sense
that a very fine mesh is necessary as the wave is concentrated only on the free surface
and decays exponentially in the direction away from the free surface. We also remark
that a fine mesh in the whole computational domain is needed even though the wave
is only concentrated near the surface. To overcome this computational challenge, we
propose the use of mortar technique together with our discontinuous Galerkin method
using staggered hybridization. The main idea is to use a fine computational mesh near
the surface of the domain, and use a coarse mesh in the rest of the domain. The region
of fine mesh is a thin layer near the surface. Thus, the overall degrees of freedom in the
whole domain is much reduced. In order to couple the unknown at the interface of the
fine and the coarse meshes, we apply the mortar technique. More precisely, we define an
additional mortar variable and an additional jump condition to enforce the continuity of
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the elastic displacement. Another important point is to ensure that only local problem is
solved in each time step. This can be achieved by a mild assumption on the mesh.

The paper is organized as follows. In Section 2.1, we will present the model equations
and notations. Then, in Sections 2.2 and 2.3, we will give the derivation of our discontin-
uous Galerkin method with mortar formulation. In Section 3, we will present numerical
results to demonstrate the performance of our proposed method. We will consider a test
for rate of convergence, the standard Lamb’s Problem as well as tests with heterogeneous
media and curved surfaces. Finally, the paper ends with a conclusion.

2 Numerical scheme

2.1 Model problem and triangulation

We consider the following first order formulation of elastic wave equations

ρ
∂u

∂t
−divσ= f, (2.1)

A
∂σ

∂t
−ε(u)=0, (2.2)

in a bounded domain Ω ⊂ Rd (d = 2,3) with a Lipschitz boundary and within the time
interval [0,T]. They describe the elastic wave propagation through isotropic media. Here
u := (u1,··· ,ud)

T is the velocity field, σ := (σij) is the d×d symmetric stress tensor, and

f := ( f1,··· , fd)
T is a given source term. We let σ i be the i-th row of σ and define the

divergence as

divσ :=(divσ1,··· ,divσd)
T. (2.3)

Moreover, ε(u)= 1
2(∇u+∇uT) is a symmetric matrix, where ∇u :=

(

∂jui

)

is the row-wise
gradient of u. The compliance tensor A can be defined by

Aσ :=
1

2µ

(

σ−
λ

2µ+dλ
tr(σ) I

)

(2.4)

with the Lamé’s parameters λ and µ. We assume that the initial data of u and σ are given
by

u(x,0)=u0(x), x∈Ω, (2.5)

σ(x,0)=σ0(x), x∈Ω. (2.6)

The boundary condition is assumed as

u(x,t)=ub(x,t), x∈∂ΩD , t∈ (0,T], (2.7)

σ(x,t)ne =σb(x,t), x∈∂ΩN , t∈ (0,T], (2.8)
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Figure 1: An illustration of the staggered mesh in R
2

where ∂ΩD is the Dirichlet boundary, ∂ΩN is the Neumann boundary, and T is the ter-
minal time. Here ne is the outward unit normal vector on the boundary ∂Ω. Also,
∂ΩD

⋃

∂ΩN = ∂Ω. Our DG method is based on the formulation (2.1)-(2.2), and will com-
pute approximations for u, σ.

The computational domain Ω is divided into a set of N non-overlapping subdomains,
Ω=

⋃N
i=1Ωi, so that we can use different meshes on different subdomains in order to save

the total computational cost. We assume, for simplicity, that {Ωi}
N
i=1 is a geometrically

conforming partition of Ω. We define Γij (=∂Ωi
⋂

∂Ωj) as the interface shared by the two
subdomains Ωi and Ωj and denote Γ=

⋃

Γij. The main idea is that we use DG method
with staggered hybridization on each subdomain and use the mortar technique to couple
the unknowns at the interface of different subdomains.

To construct the numerical scheme in each subdomain, every Ωi is equipped with an
initial unstructured triangulation IT i. The triangulations {IT i}

N
i=1 can be non-matching

across the subdomain interface Γ. We let Fu,i be the set of all faces in the initial triangula-
tion IT i and let F0

u,i ⊂Fu,i be the set of all interior faces in Ωi. For each simplex in IT i,
we pick an interior point ν and subdivide the simplex into d+1 sub-simplices by con-
necting ν to the vertices of the simplex. The union of these d+1 sub-simplices is called
S(ν). We introduce Ni to denote the set of all such interior points ν in Ωi. We denote the
set of all the new generated sub-simplices in Ωi as Ti which is a finer triangulation. We
use Fp,i to denote the set of all new faces formed in the subdivision process.

For each element τ ∈Ti, we define nτ as the outward unit normal vector on ∂τ. We
will simply use n instead of nτ if there is no confusion. Next, we define the unit normal
vector on a face e. If e∈∂Ω, we define ne as the unit normal vector pointing outside of Ω.
For a common face e shared by two simplices, we let ne be a fixed unit normal direction
on e common to the two simplices.

Now we are ready to define the function jumps. For a face e shared by two simplices
τ+ and τ−, we use notations v+ and v− to denote the values of a vector-valued v on e
taken from τ+ and τ−, respectively. Then the jump of v over the face e is defined as

[v]|e :=(nτ− ·ne)v
−+(nτ+ ·ne)v

+, (2.9)
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and hence
[σne]=σ

+nτ++σ
−nτ− . (2.10)

For a face e on the Dirichlet boundary ∂ΩD, we denote

[u]|e :=u−−ub, (2.11)

where u− is the value of u on e taken from the inside of Ω. Moreover, for a face e on the
Neumann boundary ∂ΩN , we denote

[σne] :=σ
−ne−σb, (2.12)

where σ− is the value of σ on e taken from the inside of Ω.

2.2 The DG method with staggered hybridization in subdomains

Notice that for each subdomain Ωi, ∂Ωi=(∂Ωi
⋂

∂ΩD)
⋃

(∂Ωi
⋂

∂ΩN)
⋃

(
⋃

(i,j)∈SΓij), where
S={(i, j) : Ωi and Ωj have non-empty intersection}. The initial problem on the entire do-
main is equivalent to the subdomain problems

ρ
∂u

∂t
−divσ= f, in Ωi, (2.13)

A
∂σ

∂t
−ε(u)=0, in Ωi, (2.14)

u=ub, on ∂Ωi

⋂

∂ΩD, (2.15)

σne=σb, on ∂Ωi

⋂

∂ΩN , (2.16)

σne=σs, on Γij, (i, j)∈S, (2.17)

for a given vector-valued function σs defined on Γ, which takes the value of σne on
each Γij. In this subsection, we assume that the value of σs is known and consider the
DG method with staggered hybridization for the above problem in each subdomain Ωi.
The computation of σs and the combination of schemes on different subdomains will be
discussed in the next subsection.

Let us denote Pk(τ) and Pk(e) as the spaces of polynomials of degree at most k de-
fined on the simplex τ and face e, respectively. Now we introduce the following finite
element spaces on Ωi: the space of piecewise polynomials Uh,i :={v : v|τ ∈Pk(τ),∀τ∈Ti}
and the space of d×d symmetric matrices Wh,i :={α : α|τ ∈ [Pk(τ)]d×d, α=αT,∀τ∈Ti}. We
approximate the solutions u and σ on Ωi with uh ∈ [Uh,i]

d and σh ∈Wh,i, respectively. By
the definition, we know that the stress tensor σh is always strongly symmetric. Note that
by the definitions, uh and σh are just piecewise polynomials and thus can be discontin-
uous over the element faces. It is very easy to construct the basis of the finite element
spaces.

Next, we define the spaces for Lagrange multipliers. Let us denote FD
u,i =

F0
u,i

⋃

(∂Ωi
⋂

∂ΩD) and FN
p,i =Fp,i

⋃

(∂Ωi
⋂

∂ΩN). Moreover, we denote Ŵh,i := {α̂ : α̂|e ∈
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Pk(e),∀e∈FD
u,i} and Ûh,i := {v̂ : v̂|e ∈ Pk(e),∀e∈FN

p,i}. We approximate u|FN
p,i

and σne|FD
u,i

with ûh ∈ [Ûh,i]
d and σ̂h ∈ [Ŵh,i]

d, respectively. To balance the degree of freedoms of the
unknowns ûh and σ̂h, we future impose the continuity of uh on FD

u,i and the continuity of

σhne on FN
p,i by the following conditions

∫

e
[uh]·α̂h =0, ∀α̂h∈ [Ŵh,i]

d, ∀e∈FD
u,i, (2.18)

∫

e
[σhne]·v̂h =0, ∀v̂h∈ [Ûh,i]

d, ∀e∈FN
p,i. (2.19)

Notice that by the above conditions together with the notations (2.11) and (2.12), uh|∂ΩD

and σhne|∂ΩN
computed from the inside of Ω are just the L2 projections of the given

boundary conditions.
To derive the DG method with staggered hybridization, we multiply Eq. (2.13) with

a test function vh ∈ [Uh,i]
d and multiply Eq. (2.14) with a test function αh ∈Wh,i, and then

integrate these two equations on each τ∈Ti. By using integration by parts, the numerical
solutions are required to satisfy

∫

τ
ρ

∂uh

∂t
·vh+

∫

τ
σh :∇vh−

∫

∂τ
⋂

FN
p,i

(σhn)·vh−
∫

∂τ
⋂

FD
u,i

(n·ne)σ̂h ·vh

− ∑
(i,j)∈S

∫

∂τ
⋂

Γij

(n·ne)σs ·vh =
∫

τ
f·vh, (2.20)

∫

τ
A

∂σh

∂t
: αh+

∫

τ
uh ·divαh−

∫

∂τ
⋂

FD
u,i

uh ·(αhn)−
∫

∂τ
⋂

FN
p,i

ûh ·(αhn)

− ∑
(i,j)∈S

∫

∂τ
⋂

Γij

uh ·(αhn)=0, (2.21)

for all test functions vh ∈ [Uh,i]
d and αh ∈Wh,i, and for all τ∈Ti. Notice that the value of

uh on ∂τ
⋂

Γij is taken from the inside of the current subdomain Ωi. Besides, due to the
staggered continuity requirements in (2.18) and (2.19), all boundary terms in the above
scheme are well defined.

2.3 Mortar formulation

To connect schemes for subdomain problems together, we need to define a proper mesh
on the subdomain interfaces and the corresponding finite element space on it. Note that
the triangulations among different subdomains can be non-matching. Hence, on each Γij,
there are two different meshes, which are respectively defined as the restrictions of IT i

and IT j on Γij. Among these two meshes, we choose the one with smaller mesh size as
non-mortar mesh and denote it as Fij. The mesh on the other side is the mortar mesh and
we denote it as Fm

ij . Further more, we denote FΓ =
⋃

(i,j)∈SFij and Fm
Γ =

⋃

(i,j)∈SF
m
ij . For
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the non-mortar side, say Ωi, we introduce the space of Lagrange multipliers Mij=Uh,i|Γij
,

which consists of piecewise polynomial of degree up to k defined on Γij with respect

to the mesh Fij. In addition, we let Mh =∏(i,j)∈S[Mij]
d, which is a finite element space

defined on FΓ.
We determine additional unknown σs,h∈Mh on Γ to approximate the boundary value

σs used in the local subdomain problems. Moreover, we need to enforce continuity of the
solutions of the above subdomain problems across subdomain interfaces by

∫

Γij

(uh|Ωi
−uh|Ωj

)·µ=0, ∀(i, j)∈S, (2.22)

for all test function µ∈Mh. By introducing the extra unknown and additional conditions,
we can then combine schemes in different subdomains together. To simplify the notation,
we define FD

u =(
⋃N

i=1F
D
u,i)

⋃

FΓ and FN
p =

⋃N
i=1F

N
p,i. Also, we let Uh =∏

N
i=1[Uh,i]

d, Wh =

∏
N
i=1Wh,i, Ûh=∏

N
i=1[Ûh,i]

d, and W̃h =∏
N
i=1[Ŵh,i]

d⊗Mh. Moreover, we define σ̃h∈W̃h as

σ̃h|e = σ̂h, for e∈FD
u,i, (2.23)

σ̃h|e =σh,s, for e∈FΓ, (2.24)

which is a numerical approximation to σne on FD
u . By using the above notations, we

know that the DG method in the entire domain seeks for numerical solutions uh=uh(t)∈
Uh, σh =σh(t)∈Wh, ûh = ûh(t)∈ Ûh, and σ̃h = σ̃h(t)∈W̃h to approximate u|Ω, σ|Ω, u|FN

p
,

and σne|FD
u

, respectively.

Next, we illustrate that our scheme can be solved locally. For each e∈F0
u,i we define

R(e) to be the union of simplices in Ti sharing the face e. For a face e∈Fu,i
⋂

∂Ω, we let
R(e) be the simplex in Ti having the face e. To simplify the code, we assume that each
face in Fm

ij is a union of several faces in Fij. In this case, for each e∈Fm
ij , we define R(e)

as the union of the simplices on both sides sharing the face e or part of e. We denote
F0

u =(
⋃N

i=1F
0
u,i)

⋃

Fm
Γ , Fp =

⋃N
i=1Fp,i and Fu =

⋃N
i=1(Fu,i\(Fu,i

⋂

Γ))
⋃

Fm
Γ , then we easily

see that {R(e),e∈Fu} is a partition of Ω. Also, {S(ν),ν∈N} is another partition of Ω,
where N =

⋃N
i=1Ni.

In order to compute our scheme locally, we sum (2.20) on each R(e), e∈Fu and (2.21)
on each S(ν),ν∈N . By using the above notations, we summarise the mortar DG method
with staggered hybridization as: find the unique solutions uh ∈Uh, σh ∈Wh, ûh∈ Ûh, and
σ̃h∈W̃h such that, for all test functions vh∈Uh, αh∈Wh, v̂h ∈ Ûh, and α̃h∈W̃h we have

∫

R(e)
ρ

∂uh

∂t
·vh+Be(σh,vh)− ∑

e∩F 0
u

D∗
e (σ̃h,vh)−

∫

e∩∂ΩD

σ̃h ·vh =
∫

R(e)
f·vh, ∀e∈Fu, (2.25)

∫

S(ν)
A

∂σh

∂t
: αh−B∗

ν(uh,αh)+ ∑
e∈S(ν)

⋂

Fp

De(ûh,αh)

−
∫

S(ν)∩∂ΩN

ûh ·(αhne)=0, ∀ν∈N , (2.26)
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D∗
e (α̃h,uh)=0, ∀e∈FD

u , (2.27)

De(v̂h,σh)=0, ∀e∈FN
p , (2.28)

where

Be(α,v) :=
∫

R(e)
α :∇v−

∫

∂R(e)
⋂

FN
p

(αn)·v, (2.29)

B∗
ν(v,α) :=−

∫

S(ν)
v·divα+

∫

∂S(ν)
⋂

FD
u

v·(αn), (2.30)

De(v̂,α) :=−
∫

e
v̂·[αne], (2.31)

D∗
e (α̃,v) :=

∫

e
α̃ ·[v]. (2.32)

The choices of the mesh and solutions spaces lead to the energy conservation property of
our scheme. In particular, we take vh=uh in (2.25) and take αh =σh in (2.26), we have

∫

R(e)
ρ

∂uh

∂t
·uh+Be(σh,uh)−

∫

∂ΩD

σ̃h ·ub =
∫

R(e)
f·uh, ∀e∈Fu, (2.33)

∫

S(ν)
A

∂σh

∂t
: σh−B∗

ν(uh,σh)−
∫

∂ΩN

ûh ·σb=0, ∀ν∈N , (2.34)

where we applied Eqs. (2.27) and (2.28). Summing Eqs. (2.33) and (2.34) over all e∈Fu

and ν∈N , and using the mortar condition (2.22), we have

1

2

d

dt

(

∫

Ω
ρ|uh|

2+
∫

Ω
Aσh : σh

)

=
∫

Ω
f·uh+

∫

∂ΩD

σ̃h ·ub+
∫

∂ΩN

ûh ·σb,

which gives the required energy conservation property.

2.4 Leap-frog in time

We use the standard leap-frog scheme, which is explicit and energy conserving, for the
time discretization. We compute uh and σ̃h at times {tn}, and compute σh and ûh at times
{tn+ 1

2
}.

Given un
h , σ̃

n
h and σ

n+ 1
2

h , we can compute un+1
h and σ̃

n+1
h locally on each R(e), e∈Fu

by solving D∗
e (α̃h,un+1

h )=0 (on e∩FD
u ) and

∫

R(e)
ρ

un+1
h −un

h

∆t
·vh−

1

2 ∑
e∩F 0

u

D∗
e (σ̃

n+1
h ,vh)−

1

2

∫

e∩∂ΩD

σ̃
n+1
h ·vh

=
∫

R(e)
f (x,tn+ 1

2
)·vh−Be(σ

n+ 1
2

h ,vh)+
1

2 ∑
e∩F 0

u

D∗
e (σ̃

n
h ,vh)+

1

2

∫

e∩∂ΩD

σ̃
n
h ·vh, (2.35)
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for all test functions vh∈[Uh]
d and α̃h∈[W̃h]

d. Given σ
n+ 1

2

h , û
n+ 1

2

h and un+1
h , we can compute

σ
n+ 3

2

h and û
n+ 3

2

h locally on each S(ν),ν∈N by solving De(v̂h,σ
n+ 3

2

h )=0 (on e∈S(ν)
⋂

FN
p )

and

∫

S(ν)
A

σ
n+ 3

2

h −σ
n+ 1

2

h

∆t
: αh+

1

2 ∑
e∈S(ν)

⋂

Fp

De(û
n+ 3

2

h ,αh)−
1

2

∫

S(ν)∩∂ΩN

û
n+ 3

2

h ·(αhne)

=B∗
ν(u

n+1
h ,αh)−

1

2 ∑
e∈S(ν)

⋂

Fp

De(û
n+ 1

2

h ,αh)+
1

2

∫

S(ν)∩∂ΩN

û
n+ 1

2

h ·(αhne), (2.36)

for all test functions αh∈Wh and v̂h∈[Ûh]
d. We remark that the above systems are defined

locally on R(e) and S(ν) respectively, and can therefore be solved very efficiently.

3 Numerical results

Example 1. Convergence test

In this example, we will test the convergence rate of our mortar formulation. We take
ρ = 10, µ = 2.704 and λ = 264.992. The corresponding Poisson’s ratio is 0.495, which is
relatively high. The exact solutions are taken as u(x,y,t) = [sin(y+t),cos(x−t)]T , σ11 =
σ22=0 and σ12(x,y,t)=σ21(x,y,t)=µ(sin(y+t)−cos(x−t)), and hence the source term is
f(x,y,t)= [(ρ−µ)cos(y+t),(ρ−µ)sin(x−t)]T . The computational domain is Ω=[0,2π]2.
The upper boundary y = 2π is set to be the Neumann boundary and the other three
boundaries are the Dirichlet boundaries.

We divide the computational domain into two parts with the interface locating at
y= 4π

3 , and use a fine mesh for the upper part and a coarse mesh for the lower part. For
simplicity, we divide the lower part into N×N uniform rectangles and further subdivide
each rectangle into two triangles. We use these triangles as our initial mesh. For the
upper part, we use unstructured triangulation. The edge length of the triangles on the
boundary is set to be 2π

3N . A sample mesh with N=4 is shown in Fig. 2. In our simulations,
we use a fine enough time step size so that the dominant error comes from the spatial
discretization. For k= 1, we take ∆= 0.01h, while for k= 2, we take ∆t= 0.02h1.5, where
h= 2π

3N . We present the convergence history with weighted L2 norms ‖u‖2
ρ=

∫

Ω
ρu2dx and

‖σ‖2
A =

∫

Ω
Aσ : σdx at the time T=0.01 in Table 1. We can observe optimal convergence

rate. We also tried the Poisson’s ratio 0.251 and obtained similar results.

Example 2. Lamb’s problem

We test our method by the Lamb’s problem, which is a classical test case for the imple-
mentation of free surface boundary condition. The problem setting is as follows. The
density, the velocity for the P-wave and S-wave are 1500, 520, 300 respectively and the
corresponding Poissons ratio is 0.251. The computation domain is [0,280]×[−140,0] and
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Figure 2: A sample mesh with N=4 for Example 1.

Table 1: Convergence history of Example 1.

N ‖(uh)1−u1‖ρ Order ‖(uh)2−u2‖ρ Order ‖σh−σ‖A Order

k=1

4 3.66e-02 - 8.61e-02 - 5.04e-02 -

8 9.47e-03 1.95 2.18e-02 1.98 1.31e-02 1.94

16 2.46e-03 1.95 5.56e-03 1.97 3.33e-03 1.98

32 6.60e-04 1.90 1.42e-03 1.97 8.17e-04 2.03

64 1.77e-04 1.90 3.53e-04 2.01 2.08e-04 1.97

k=2

4 3.25e-03 - 9.95e-03 - 5.67e-03 -

8 4.47e-04 2.86 1.27e-03 2.97 7.21e-04 2.98

16 5.90e-05 2.92 1.61e-04 2.98 8.91e-05 3.02

32 7.65e-06 2.95 2.01e-05 3.00 1.13e-05 2.97

64 1.09e-06 2.80 2.61e-06 2.95 1.56e-06 2.87

the free surface is set at depth z=0. A vertical point force is applied to the free surface at
(x,z)=(140,0). The force is given by a Ricker wavelet defined by the first derivative of

w(t)=2π f (t−t0)e
−π2 f 2(t−t0)

2
,

where the frequency f =50 and t0=0.024.
It is well known that the Rayleigh wave travels along the free surface and decays

exponentially in the vertical direction. To capture the detailed structure near the free
surface, a dense mesh would be used. On the other hand, the structure of the solution is
not complicated in the area far away from the free surface and the costly dense mesh is
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Figure 3: Lamb’s Problem. The velocity u2 at time t=0.25s.

unnecessary. Hence, we use the mortar formulation to save the total computational cost.
We divide the computational domain into two parts with the interface locating at the
depth z=−6. For the upper part which is a thin layer near the free surface, we use a fine
unstructured triangulation. The edge length of the triangles on the boundary is set to be
h= 1

3 . For the rest of the domain, we use a coarse mesh. Here we adopt a structured mesh
to further reduce the computational cost. We first divide the lower part into 280×134
uniform squares and further divide them into triangles. Hence, the edge length of the
squares is 3h.

The plot of u2 at time t=0.25s and its zoom-in picture are shown in Fig. 3. From this
figure, we can observe the faster P-wave and the slower S-wave as well as the Rayleigh
wave. Also, we see that the Rayleigh wave is traveling along the free surface, and its
speed is slightly smaller than that of the S-wave. To show the accuracy of the mortar
formulation, we also compute a reference solution by using the SDG method on a glob-
ally fine mesh with the edge length as h. Fig. 4 shows the sample meshes with h= 8

3 . In

the real computation, we take h= 1
3 as mentioned before. In Fig. 5, we present the com-

parison at four different observation points (160,−5), (180,−5), (200,−5), and (220,−5).
From these comparisons, we see clearly that the mortar formulation gives a very accurate
solution.
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(a) mortar mesh
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(b) globally fine mesh

Figure 4: Samples of different meshes.

(a) (x,z)=(160,−5) (b) (x,z)=(180,−5)

(c) (x,z)=(200,−5) (d) (x,z)=(220,−5)

Figure 5: Comparison of our solution (mortar formulation) to a reference solution (fine mesh) at various
observation points.
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Example 3. Heterogeneous material

In this example, we will stimulate Rayleigh waves in a heterogeneous material with ver-
tical variations in velocity structure on scales smaller than a wavelength. The domain of
interest is still [0,280]×[−140,0] and the setting of the vertical point force is the same as
in the last example. The density is 1500 kgm−3. The P- and S-wave velocities vp and vs

are described as follows:

(vp,vs)(x,z)=

{

(520,300), if 06z6−1 or −26z6−3,

(400,155), otherwise.

We use the same mesh as in the last example. The snapshot of the solution u2 at the
simulation time T = 0.341s is shown in Fig. 6. From this figure, we see clearly that the
dispersive behavior of the Rayleigh wave for a vertically varying velocity model is accu-
rately captured.

Figure 6: Heterogeneous material. The velocity u2 at the time t=0.341.

Example 4. Curved surface topography

In the last example, we demonstrate the ability of our method to simulate Rayleigh waves
in a domain with surface topography. The physical parameters are the same as in the
second example. The computational domain is shown in Fig. 7. In the middle of the top
boundary, there is a convex shaped region followed by a concave shaped region. The
point source is vertically excited at (140,8), which is at the top part of the convex region
of the free surface. We divide the computational domain into two parts with the interface
locating at the depth z=−10. As in the previous examples, we take an unstructured mesh
with the cell length h for the upper part and take a coarse structured mesh with the cell
length 3h for the lower part. Fig. 7 shows a sample mesh with h= 2

3 . In real computation,

we take h= 1
3 . Fig. 8 shows the plots of u2 at different times. We can observe the P-wave,

S-wave and the Rayleigh wave as well as the influence of the curved shaped surface.
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Figure 7: Sample mesh on the domain with curved shaped surface.

(a) t=0.0320 (b) t=0.0624

(c) t=0.0984 (d) t=0.1272

(e) t=0.148 (f) t=0.2

Figure 8: Domain with curved boundary. The velocity u2 at different times.
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4 Conclusion

In this paper, we present a mortar discontinuous Galerkin method for the simulation of
elastic waves and Rayleigh waves. The proposed method is motivated by the staggered
grid finite difference schemes. The key features of the proposed methods are the use of
discontinuous Galerkin method coupled with staggered hybridization and mortar for-
mulation. Our scheme uses fine mesh near the surface wave and coarse mesh in most
part of the computational domain. This results in a significant reduction in computa-
tional cost. In addition, our scheme gives high order accuracy, energy conservation and
preservation of symmetry of stress tensor. We present realistic numerical examples to
demonstrate the performance of the proposed method. In our forthcoming paper, we
will present the convergence analysis for our method.
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