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Abstract

Eigenvectors and eigenvalues of discrete Laplacians are often used for manifold learn-

ing and nonlinear dimensionality reduction. Graph Laplacian is one widely used discrete

laplacian on point cloud. It was previously proved by Belkin and Niyogithat the eigenvec-

tors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenval-

ues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many data

points sampled independently from the uniform distribution over the manifold. Recently,

we introduced Point Integral method (PIM) to solve elliptic equations and corresponding

eigenvalue problem on point clouds. In this paper, we prove that the eigenvectors and

eigenvalues obtained by PIM converge in the limit of infinitely many random samples.

Moreover, estimation of the convergence rate is also given.

Mathematics subject classification: 62G20, 65N25, 60D05.

Key words: Graph Laplacian, Laplacian spectra, Random samples, Spectral convergence.

1. Introduction

In the past decade, data science plays more and more important role in sciences, engi-

neering and our daily lives. Among varieties of data analysis methods and models, manifold

model attracts more and more attentions. In the manifold model, data is represented as a

point cloud, which is defined as a collection of points that are embedded in a high dimensional

Euclidean space. It is assumed that the point cloud samples a smooth manifold. Thus, the

structure of the manifold are very useful to understand the data. On the other hand, research

in mathematics shows that the Laplace-Beltrami operator is one of the most important object

associated to Riemannian manifolds. Its eigenvalue and eigenfunctions encode all intrinsic ge-

ometry of the manifolds. To reveal the structure of the underlying manifold sampled by the

data, many discrete counterparts of LBO are developed. The eigenvalues and eigenvectors

of the discrete Laplace-Beltrami operators are widely used in many fields, including machine

learning, data analysis, computer graphics and computer vision, and geometric modeling and

processing [2, 6, 16, 18]. Then, one question is that if the eigenvalues and eigenvectors of these

discrete operators converge to the eigenvalues and eigenfunctions of their continuous counter-

part, Laplace-Beltrami operator as the point cloud converges to the manifold. This is essential

to understand these discrete operators and algorithms associated to them.

The convergence between the graph Laplacian and the Laplace-Beltrami operator has been

studied extensively in the literature [3, 4, 7–9, 13, 21, 23]. In the presence of no boundary and
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the sample points are uniformly distributed, Belkin and Niyogi [4] showed that the spectra of

the normalized graph Laplacian converges to the spectra of Laplace-Beltrami operator. When

there is a boundary, it was observed in [5] and [13] that the integral Laplace operator Lt is

dominated by the first order derivative and thus fails to be true Laplacian near the boundary.

Recently, Singer and Wu [22] showed the spectral convergence in the presence of the Neumann

boundary. In this paper, we study this problem from another point of view. We study the

solution operators of graph Laplacian and Laplace-Beltrami operator. Based on the convergence

between the solutions operators, we get more delicate estimate of the convergence, include the

convergence rate.

In this paper, we assume that the data points, Xn = {x1, · · · ,xn}, are sampled indepen-

dently over the manifold M from a probability distribution p(x). On the sample points, we

consider following discrete eigenvalue problem.

1

t

n∑
j=1

R

(
‖xi − xj‖2

4t

)
(ui − uj) = λ

n∑
j=1

R̄

(
‖xi − xj‖2

4t

)
uj , (1.1)

where R : R+ → R+ is a kernel function satisfies some conditions (see Assumption 3.1),

R̄(r) =
∫ +∞
r

R(s)ds.

The purpose of this paper is to study the behavior of discrete eigenvalue problem (1.1) as

n → ∞ and t → 0. We show that when n → ∞ and t → 0, the spectral of (1.1) converge to

the spectra of the following Laplace-Beltrami operator,{
− 1
p2(x) div

(
p2(x)∇u(x)

)
= λu(x), x ∈M,

∂u
∂n (x) = 0, x ∈ ∂M.

(1.2)

where n is the out normal vector of M.

Remark 1.1. The eigenvalue problem we consider here is a little different as the traditional

graph Laplacian. Graph Laplacian L is given by L = I − D−1W . Here weight matrix W

has expression Wi,j = R(‖xi − xj‖2/4t), D is a diagonal matrix whose elements are the row

sums of W and I is the identity matrix. In traditional graph Laplacian framwork, the discrete

eigenvalue problem is

1

t

n∑
j=1

R

(
‖xi − xj‖2

4t

)
(ui − uj) = λui

n∑
j=1

R

(
‖xi − xj‖2

4t

)
,

which is different from (1.1) in the right hand side.

Tha analysis in this paper is based on the point integral method [15] The main idea of the

point integral method is to approximate the Poisson equation via an integral equation:

−
∫
M

∆Mu(y)R̄t(x,y)dµy

≈1

t

∫
M
Rt(x,y)(u(x)− u(y))dµy − 2

∫
∂M

R̄t(x,y)
∂u

∂n
(y)dτy, (1.3)

where n is the out normal of ∂M, M is a smooth k-dimensional manifold embedded in Rd,
∂M is the boundary of M. Rt(x,y) and R̄t(x,y) are kernel functions same as those in (1.1).

∆M = div(∇) is the Laplace-Beltrami operator (LBO) on M.
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However in this paper, the original point integral method does not apply directly since the

points is not uniformly distributed in the manifold. In this case, we have to consider the effect

of the distribution such that the integral approximation becomes [14]

−
∫
M

(
1

p2(y)
div(p2(y)∇u(y))

)
R̄t(x,y)p(y)dµy

≈1

t

∫
M
Rt(x,y)(u(x)− u(y))p(y)dµy

− 2

∫
∂M

∂u

∂n
(y)R̄t(x,y)p(y)dτy, (1.4)

Using this integral approximation, we can transfer eigenvalue problem (1.2) to an integral

eigenvalue problem:

1

t

∫
M
R

(
‖x− y‖2

4t

)
(u(x)− u(y))p(y)dy

= λ

∫
M
R̄

(
‖x− y‖2

4t

)
u(y)p(y)dy, x ∈M. (1.5)

The convergence between the integral operator, (1.5), and graph Laplacian (1.1) has been well

studied in different settings [10–12,19,24,25]. Under the assumption of smoothness of the kernel

function R, the integral operator becomes a compact operator in some suitable space. Then,

with the help of the perturbation theory of compact operator, the spectral convergence can be

proved. In this paper, we also use this approach. First, the convergence between the integral

operator and graph Laplacian is obtained by using standard estimate in the empirical process

theory. Then, perturbation theory of compact operator is invoked to prove the convergence

of spectra. The second convergence, from integral operator to Laplace-Beltrami operator, is

more involved. Laplace-Beltrami operator is not compact, so we consider the solution operator

(inverse operator of Laplace-Beltrami in some sense) which is known to be compact. The

convergence between the solutions operators is more difficult. Fortunately, the convergence

between the solution operators in H1 has been proved in our previous paper. With the help of

this strong convergence, we can even get the rate of the spectral convergence.

The contribution of this paper is of two fold. First, we prove the convergence for general

compact manifolds, with or without boundary. Previous studies mainly focus on the manifolds

without boundary. Our analysis works for general compact manifolds. Secondly, we get the rate

of spectral convergence, although may not be optimal. The rate comes from the convergence

of the solution operators in H1, which allows us to do more delicate estimate.

The rest of the paper is organized as follows. We define some necessary notations and

operators in Section 2. In Sections 3 and 4, the main theorem is stated and proved respectively.

Some technical results are proved in Section 5. Finally, conclusions and remarks are given in

Section 6.

2. Notations and Preliminaries

We start with defining three solution operators, T, Tt, Tt,n under the assumption that M∈
C∞ is a compact k-dimensional manifold isometrically embedded in Rd with the standard

Euclidean metric and k ≤ d. And we also assume M has boundary, the boundary, ∂M is also

C∞ smooth manifold.



Convergence of Laplacian Spectra from Random Samples 955

• T : L2(M) → H2(M) is the solution operator of the problem (2.1), i.e., u = T (f) with∫
M u(x)p(x)dx = 0 is the solution of the following problem:{

− 1
p2(x) div

(
p2(x)∇u(x)

)
= f(x)− f̄ , x ∈M,

∂u
∂n (x) = 0, x ∈ ∂M.

(2.1)

where n is the out normal vector ofM, f̄ is a constant such that
∫
M(f(x)−f̄)p2(x)dx = 0.

Here, we further assume that p(x) ∈ C1(M) and minx∈M p(x) > 0, maxx∈M p(x) <∞.

• Tt : L2(M) → L2(M) is the solution operator of following integral equation (2.2), i.e.

u = Tt(f) with
∫
M u(x)p(x)dx = 0 solves the following integral equation

1

t

∫
M
Rt(x,y)(u(x)− u(y))p(y)dy =

∫
M
R̄t(x,y)(f(y)− f̄t)p(y)dy, (2.2)

where

Rt(x,y) =
1

(4πt)k/2
R

(
‖x− y‖2

4t

)
, R̄t(x,y) =

1

(4πt)k/2
R̄

(
‖x− y‖2

4t

)
.

R ∈ C2 and f̄t is a constant such that∫
M

∫
M
R̄t(x,y)(f(y)− f̄t)p(x)p(y)dydx = 0.

• Tt,n : C(M)→ C(M) is defined as follows.

Tt,n(f)(x) =
1

nwt,n(x)

n∑
j=1

Rt(x,xj)uj +
t

nwt,n(x)

n∑
j=1

R̄t(x,xj)(f(xj)− f̄t,n), (2.3)

where wt,n(x) = 1
n

∑n
j=1Rt(x,xj) and u = (u1, · · · , un)t with

∑n
i=1 ui = 0 solves follow-

ing linear system,

1

nt

n∑
j=1

Rt(xi,xj)(ui − uj) =
1

n

n∑
j=1

R̄t(xi,xj)(f(xj)− f̄t,n), (2.4)

f̄t,n is the constant that satisfies

n∑
i,j=1

R̄t(xi,xj)(f(xj)− f̄t,n) = 0.

Using the definition of T, Tt and Tt,n, it is easy to show that the eigen problems Tu = λu,

Tt,n(u) = λu is equivalent to the eigen problems (1.2) and (1.1) respectively. Namely their

eigenvalues are reciprocal to each other and they share the same eigenspaces.

Proposition 2.1. Let θ(u) denote the restriction of u to the sample points P , i.e., θ(u) =

(u(x1), · · · , u(xn))t.

1. If a function u is an eigenfunction of Tt,n with the eigenvalue λ, then the vector θ(u) is

an eigenvector of the eigenproblem (1.1) with eigenvalue 1/λ.
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2. If a vector u is an eigenvector of the eigenproblem (1.1) with the eigenvalue λ 6= 0, then

Iλ(u) is an eigenfunction of Tt,n with eigenvalue 1/λ, where

Iλ(u)(x) =

∑
pj∈P

Rt(x,xj)uj + λt
∑
pj∈P

R̄t(x,xj)uj∑
pj∈P

Rt(x,xj)
.

3. A function u is the eigenfunction of the eigenproblem (1.2) with the eigenvalue λ 6= 0 if

and only if the function u is an eigenfunction of T with the eigenvalue 1/λ.

This proposition is easy to check and similar result can be also found in [24].

Using the above proposition, we only need to prove the eigenvalues and the eigenfunctions

of Tt,n converge to the eigenvalues and the eigenfunctions of T . The advantage of using the

solution operators is that they are all compact operators.

Proposition 2.2.

1. For any t > 0, n > 0, T, Tt are compact operators on H1(M) into H1(M); Tt, Tt,n are

compact operators on C1(M) into C1(M).

2. All eigenvalues of T, Tt, Tt,n are real numbers. All generalized eigenvectors of T, Tt, Tt,n
are eigenvectors.

Proof. First, it is well known that T is compact operator. Tt,n is actually finite dimensional

operator, so it is also compact. To show the compactness of Tt, we need the following formula,

Ttu =
1

wt(x)

∫
M
Rt(x,y)Ttu(y)dy +

t

wt(x)

∫
M
R̄t(x,y)u(y)dy, ∀u ∈ H1(M).

In this paper, we assume that the kernel function R ∈ C2. Then, direct calculation gives that

that Ttu ∈ C2. This implies the compactness of Tt both in H1 and C1.

For the operator T , the conclusion (2) is well known. The proof of Tt and Tt,n are very

similar, so here we only present the proof for Tt.

Let λ be an eigenvalue of Tt and u is corresponding eigenfunction, then

LtTtu = λLtu,

where

Ltf(x) =
1

t

∫
M
Rt(x,y)(f(x)− f(y))p(y)dy. (2.5)

It is easy to see that

Lt(Ttu)(x) =

∫
M
R̄t(x,y)u(y)p(y)dy. (2.6)

Then, we get

λ =

∫
M
∫
M R̄t(x,y)u∗(x)u(y)dxdy∫
M u∗(x)(Ltu)(x)dx

,
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where u∗ is the complex conjugate of u. From the symmetry of Lt and R̄(x,y), it is easy to

show that λ ∈ R.

Now, we turn to study the eigenfunctions. Let u be a generalized eigenfunction of Tt with

multiplicity m > 1 associate with eigenvalue λ. Let v = (Tt− λ)m−1u, w = (Tt− λ)m−2u, then

v is an eigenfunction of Tt and

Ttv = λv, (Tt − λ)w = v.

By applying Lt on both sides of above two equations, we have

λLtv = Lt(Ttv) =

∫
M
R̄t(x,y)v(y)dy,

Ltv = Lt(Ttw)− λLtw =

∫
M
R̄t(x,y)w(y)dy − λLtw.

Using above two equations and the fact that Lt is symmetric, we get

0 =

〈
w, λLtv −

∫
M
R̄t(x,y)v(y)dy

〉
M

=

〈
λLtw −

∫
M
R̄t(x,y)w(y)dy, v

〉
M

= 〈Ltv, v〉M ≥ C ‖v‖
2
2 ,

which implies that (Tt−λ)m−1u = v = 0. This proves that u is a generalized eigenfunction of Tt
with multiplicity m−1. Repeating this process, we can show that u is actually an eigenfunction

of Tt. �

3. The Main Result

Before stating the main theorem, we summarize the assumptions in this paper as follows:

Assumption 3.1.

• Assumptions on the manifold: M is k-dimensional compact and C∞ smooth manifold

isometrically embedded in a Euclidean space Rd.

• Assumptions on the sample points: X = {x1, · · · ,xn} are sampled independently over the

manifold M distribution p(x) ∈ C1(M) and minx∈M p(x) > 0, maxx∈M p(x) <∞.

• Assumptions on the kernel function R(r):

(a) R ∈ C2(R+);

(b) R(r) ≥ 0 and R(r) = 0 for ∀r > 1;

(c) ∃δ0 > 0 so that R(r) ≥ δ0 for 0 ≤ r ≤ 1
2 .

The main result in this paper is stated with the help of the Riesz spectral projection. Let

X be a complex Banach space and L : X → X be a compact linear operator. The resolvent set

ρ(L) is given by the complex numbers z ∈ C such that z −L is bijective. The spectrum of L is

σ(L) = C\ρ(L). It is well known that σ(L) is a countable set with no limit points other than
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zero. All non-zero value s in σ(L) are eigenvalues. If λ is a nonzero eigenvalue of L, the ascent

multiplicity α of λ− L is the smallest integer such that ker(λ− L)α = ker(λ− L)α+1.

Given a closed smooth curve Γ ⊂ ρ(L) which encloses the eigenvalue λ and no other elements

of σ(L), the Riesz spectral projection associated with λ is defined by

E(λ, L) =
1

2πi

∫
Γ

(z − L)−1dz, (3.1)

where i =
√
−1 is the unit imaginary.

Theorem 3.1. Under the assumptions in Assumption 3.1, let λi be the ith largest eigenvalue

of T (same eigenvalue is repeated according to its multiplicity) with multiplicity αi and φki , k =

1, · · · , αi be the linear independent eigenfunctions corresponding to λi. Let λt,ni be the ith largest

eigenvalue of Tt,n. With probability at least 1 − 1/n, there exists a constant C1 > 0, C2 > 0

depend on M, kernel function R, distribution p and spectra of T , such that

|λt,ni − λi| ≤ C1

(
t1/2 +

log n+ | log t|+ 1

tk+3
√
n

)
,

and

‖φki − E(σt,ni , Tt,n)φki ‖H1(M) ≤ C2

(
t1/2 +

log n+ | log t|+ 1

tk+2
√
n

)
,

as long as n large enough. Here σt,ni = {λt,nj ∈ σ(Tt,n) : j ∈ Ii} and Ii = {j ∈ N : λj = λi}.

Remark 3.1. Noting that

E(σt,nk , Tt,n) =
1

2πi

∫
Γ

(z − Tt,n)−1dz

is a projection operator to the eigenspace of Tt,n associate to eigenvalue σt,nk . Denote the

eigenspace of T corresponding to λi ,eigenspace of Tt,n corresponding to λt,ni as V (λ, T ) and

V (λt,ni , Tt,n) respectively. Using the fact that dimension of V (λ, T ) and V (λt,ni , Tt,n) are same

and for any bounded eigenfunction φki ∈ V (λ, T ),

E(σt,ni , Tt,n)φki ∈ V (λt,ni , Tt,n),

the results in Theorem 3.1 implies the convergence of the eigenvectors in the sense of the

eigenspace converge to each other.

Remark 3.2. In above theorem,
√
t and

√
n seem to be optimal. However, the factor multiply√

n, tk+2 and tk+3, are not optimal. We believe that it can be improved by obtaining better

a prior estimate of the integral equation (1.5). Now, we only get L2 estimate. In the spectra

convergence analysis, we need C1 estimate. In this paper, the regularity is lifted by using the

regularity of the kernel function. The trade off is that a factor t−k/4 emerges which reduces the

rate of convergence. If we can get a prior estimate of the integral equation in C1, t−k/4 can be

removed.

Remark 3.3. The theorem is proved with homogeneous Neumann boundary condition. The

result applies directly to the closed manifold without boundary, since the homogeneous Neu-

mann boundary condition vanishes automatically in the integral approximation.
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4. Proof of the Main Theorem (Theorem 3.1)

The proof of Theorem 3.1 consists of three parts, which are given in Sections 4.1, 4,2

and 4.3 respectively. The first part is to establish the connection between the difference of

the eigenvalues and eigenfunctions and the difference of solution operators ‖T − Tt‖H1 and

‖Tt − Tt,n‖C1 (Theorem 4.3). This is achieved by using the results in the perturbation theory

of compact operators.

In the second part, we estimate the difference of operators T − Tt and Tt − Tt,n in H1 and

C1 norm respectively, Theorems 4.4 and 4.5. This is the most difficult part. Comparing with

the pointwise convergence which was proved in previous works, convergence in H1 or C1 is

stronger, hence more difficult to prove.

Finally, we use the theory of the Glivenko-Cantelli class in statistical learning to estimate

the error in the Monte-Carlo integration. The key ingredient in this part is to estimate the

covering number of some function classes.

Here, we list some notations which will be used in the proof. Some of them have been

defined in previous sections. We also list them here for the convenience of readers.

• k: dimension of the underlying manifold; d: dimension of the ambient Euclidean space;

n: number of sample points.

• C: positive constant independent on t and sample points Xn. We abuse the notation to

denote all the constants independent on t and sample points Xn by C. It may be different

in different places.

• Ct = 1
(4πt)k/2 is the normalize constant of kernel function R.

• p(x): probability distribution function.

• R: kernel function. R̄(r) =
∫∞
r
R(s)ds.

• Rt(x,y) = 1
(4πt)k/2R

(
‖x−y‖2

4t

)
, R̄t(x,y) = 1

(4πt)k/2 R̄
(
‖x−y‖2

4t

)
.

• Ltf(x) = 1
t

∫
MRt(x,y)(f(x)− f(y))p(y)dy.

• Lt,nf(x) = 1
nt

∑n
j=1Rt(x,xj)(f(x)− f(xj)).

• wt(x) =
∫
MRt(x,y)p(y)dy, wt,n(x) = 1

n(4πt)k/2

∑n
j=1R

(
|x−xj |2

4t

)
.

• wmin, wmax: wmin = inf
t>0

min
x∈M

wt(x), wmax = sup
t>0

max
x∈M

wt(x). Under the assumption in

Assumption 3.1, we can show that 0 < wmin, wmax <∞.

• p(f) =
∫
M f(x)p(x)dx, pn(f) = 1

n

∑n
i=1 f(xi).

• Rt =
{
R
(
|x−y|2

4t

)
: x ∈M

}
, Rt =

{
R̄
(
|x−y|2

4t

)
: x ∈M

}
.

• Dt =
{
∇xR

(
|x−y|2

4t

)
: x ∈M

}
.

• Rt · Kt,n =
{

1
wt,n(y)R

(
|x−y|2

4t

)
R
(
|z−y|2

4t

)
: x ∈M, z ∈M

}
.

• Rt · Kt,n =
{

1
wt,n(y)R

(
|x−y|2

4t

)
R̄
(
|z−y|2

4t

)
: x ∈M, z ∈M

}
.
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• Rt · Kt,n =
{

1
wt,n(y) R̄

(
|x−y|2

4t

)
R̄
(
|z−y|2

4t

)
: x ∈M, z ∈M

}
.

• Dt · Kt,n =
{ √

t
wt,n(y)R

(
|x−y|2

4t

)
∇zR

(
|z−y|2

4t

)
: x ∈M, z ∈M

}
.

• Dt · Kt,n =
{ √

t
wt,n(y)R

(
|x−y|2

4t

)
∇zR̄

(
|z−y|2

4t

)
: x ∈M, z ∈M

}
.

• Dt · Kt,n =
{ √

t
wt,n(y) R̄

(
|x−y|2

4t

)
∇zR̄

(
|z−y|2

4t

)
: x ∈M, z ∈M

}
.

4.1. Perturbation results of Solution Operators

First, we need two theorems in [1] regarding the perturbation of the compact operators.

Theorem 4.1 ([1]). Let (X, ‖ · ‖X) be an arbitrary Banach space. Let S and T be compact

linear operators on X into X. Let z ∈ ρ(T ). Assume

‖(T − S)S‖X ≤
|z|

‖(z − T )−1‖X
. (4.1)

Then z ∈ ρ(S) and (z − S)−1 has the bound

‖(z − S)−1‖X ≤
1 + ‖S‖X‖(z − T )−1‖X

|z| − ‖(z − T )−1‖X‖(T − S)S‖X
. (4.2)

Theorem 4.2 ([1]). Let (X, ‖ · ‖X) be an arbitrary Banach space. Let S and T be compact

linear operators on X into X. Let z0 ∈ C, z0 6= 0 and let ε > 0 be less than |z0|, denote the

circumference |z − z0| = ε by Γ and assume Γ ⊂ ρ(T ). Denote the interior of Γ by U . Let

σT = U ∩ σ(T ) 6= ∅. σS = U ∩ σ(S). Let E(σS , S) and E(σT , T ) be the corresponding spectral

projections of S for σS and T for σT , i.e.

E(σS , S) =
1

2πi

∫
Γ

(z − S)−1dz, E(σT , T ) =
1

2πi

∫
Γ

(z − T )−1dz. (4.3)

Assume

‖(T − S)S‖X ≤ min
z∈Γ

|z|
‖(z − T )−1‖X

. (4.4)

Then, we have

(1) Dimension E(σS , S)X = E(σT , T )X, thereby σS is nonempty and of the same multiplicity

as σT .

(2) For every x ∈ X,

‖E(σT , T )x− E(σS , S)x‖X ≤
Mε

c0

(
‖(T − S)x‖X + ‖x‖X‖(T − S)S‖X

)
,

where M = maxz∈Γ ‖(z − T )−1‖X , c0 = minz∈Γ |z|.

To apply above two theorems, we need some estimates of T and Tt which are summarized

in three lemmas below.
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Lemma 4.1. Let T be the solution operator of the Neumann problem (2.1) and z ∈ ρ(T ), then

‖(z − T )−1‖H1(M) ≤ max
n∈N

1

|z − λn|
,

where {λn}n∈N is the set of eigenvalues of T .

Proof. Suppose φj , j ∈ N be the normalized eigenfunction of T corresponding to λj , j ∈ N.

Then it is well known that {φj}j∈N is a orthonormal basis of H1(M). For any x ∈ H1(M),

z ∈ ρ(T ), first we can expand x over {φj}j∈N to obtain

x =

∞∑
j=1

cjφj . (4.5)

Then, we have

‖(z − T )x‖H1 =

∥∥∥∥∥∥
∞∑
j=1

cj(z − T )φj

∥∥∥∥∥∥
H1

=

∥∥∥∥∥∥
∞∑
j=1

cj(z − λj)φj

∥∥∥∥∥∥
H1

=

 ∞∑
j=1

c2j |z − λj |2
1/2

≥ min
n∈N
|z − λn|

 ∞∑
j=1

c2j

1/2

= min
n∈N
|z − λn|‖x‖H1 . (4.6)

This completes the proof of Lemma 4.1. �

Lemma 4.2. Let Tt be the solution operator of the integral equation (2.2). For any z ∈
C\
⋃
n∈NB(λn, r0) with r0 > ‖T − Tt‖H1 , then

‖(z − Tt)−1‖C1 ≤ max

{
2|M|

|z|t(k+2)/4

(
min
n∈N
|z − λn| − ‖T − Tt‖H1

)−1

,
2

|z|

}
.

Proof. For any x ∈ H1(M),

‖(z − Tt)x‖H1 ≥ ‖(z − T )x‖H1 − ‖(T − Tt)x‖H1

≥
(

min
n∈N
|z − λn| − ‖T − Tt‖H1

)
‖x‖H1 . (4.7)

Then (z − Tt)−1 exists and

‖(z − Tt)−1‖H1 ≤
(

min
n∈N
|z − λn| − ‖T − Tt‖H1

)−1

. (4.8)

For any u ∈ C1(M),

‖(z − Tt)−1u‖H1 ≤
(

min
n∈N
|z − λn| − ‖T − Tt‖H1

)−1

|M|‖u‖C1 , (4.9)

where |M| is the volume of the manifold M.
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On the other hand, let v = (z − Tt)−1u which means v = (u+ Ttv)/z

‖v‖C1 ≤ 1

|z|
(‖u‖C1 + ‖Ttv‖C1)

≤ 1

|z|

(
‖u‖C1 + t−(k+2)/4‖v‖L2

)
≤ 1

|z|

(
|M|

t(k+2)/4

(
min
n∈N
|z − λn| − ‖T − Tt‖H1

)−1

+ 1

)
‖u‖C1 ,

which proves that

‖(z − Tt)−1‖C1 ≤ max

(
2|M|

|z|t(k+2)/4

(
min
n∈N
|z − λn| − ‖T − Tt‖H1

)−1

,
2

|z|

)
. (4.10)

This completes the proof of the lemma. �

Lemma 4.3. Let Tt be the solution operator of the integral equation (2.2) and λn be eigenvalues

of T , then

σ(Tt) ⊂
⋃
n∈N

B
(
λn, 2‖T − Tt‖H1(M)

)
.

Proof. Let r0 = ‖T − Tt‖H1(M), A = C\
⋃
n∈NB(λn, 2r0). For any z ∈ A, using Lemma

4.1, we have

‖(z − T )−1‖H1(M) ≤ max
n∈N

1

|z − λn|
≤ 1

2r0
,

which implies that

‖T − Tt‖H1(M) = r0 ≤
1

2‖(z − T )−1‖H1(M)
.

Then using Theorem 4.1, we have z ∈ ρ(Tt).

Since z is arbitrary in A, we get A ⊂ ρ(Tt). This means that

σ(Tt) = C\ρ(Tt) ⊂ C\A =
⋃
n∈N

B(λn, 2‖T − Tt‖H1(M)).
�

Now, we get the main theorem in this subsection.

Theorem 4.3. Let λm be the mth largest eigenvalue of T with multiplicity αm and φkm, k =

1, · · · , αm be the eigenfunctions corresponding to λm. Let λt,nm be the mth largest eigenvalue of

Tt,n. Let γm = min
j≤m,λj 6=λj+1

|λj − λj+1| and assume

‖(Tt,n − Tt)Tt,n‖C1 ≤ min

{
t

2
,
γmt

k/4+3/2

24
,

(|λm| − γm/3)2t(k+2)/4γm
12

,
(|λm| − γm/3)2

2

}
,

‖T − Tt‖H1(M) ≤
γm
12
,

‖(T − Tt)Tt‖H1(M) ≤
1

3

(
|λm| −

γm
3

)
.
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Then there exists a constant C1, C2 depend onM, the kernel function R, γm and λm, such that

|λt,nm − λm| ≤
2

tk/4+3/2
‖(Tt,n − Tt)Tt,n‖C1 + ‖T − Tt‖H1(M)

and

‖φkm − E(σt,nm , Tt,n)φkm‖H1(M)

≤C
(
‖(T − Tt)φkm‖H1 + ‖(T − Tt)Tt‖H1

)
+

C

t(k+2)/4

(
‖(Tt − Tt,n)φkm‖C1 + ‖(Tt − Tt,n)Tt,n‖C1

)
.

Here σt,nm = {λt,nj ∈ σ(Tt,n) : j ∈ Im} and Im = {j ∈ N : λj = λm}.

Proof. Let r1 = 2
tk/4+3/2 ‖(Tt,n − Tt)Tt,n‖C1 + ‖T − Tt‖H1(M), A = C\[

⋃
n∈NB(λn, r1)

⋃
B

(0, t1/2)]. For any z ∈ A, using Lemma 4.2, we have

‖(z − Tt)−1‖C1 ≤ 2|M|
|z|t(k+2)/4

(
min
n∈N
|z − λn| − ‖T − Tt‖H1

)−1

≤ 2|M|
tk/4+1

(r1 − ‖T − Tt‖H1)
−1

=
t1/2|M|

‖(Tt,n − Tt)Tt,n‖C1

.

Due to z/|M| ∈ ρ(Tt/|M|) and the inequalities above, we have

‖((z − Tt)/|M|)−1‖C1 = |M|‖(z − Tt)−1‖C1

≤ t1/2|M|2

‖(Tt,n − Tt)Tt,n‖C1

=
t1/2

‖((Tt,n − Tt)/|M|)Tt,n/|M|‖C1

,

so z/|M| ∈ ρ(Tt,n/|M|) or

‖(z − Tt)−1‖C1 ≤ 2

|z|
≤ 2

t1/2
≤

√
t

‖(Tt,n − Tt)Tt,n‖C1

≤ |z|
‖(Tt,n − Tt)Tt,n‖C1

.

Here, we use the assumption that ‖(Tt,n − Tt)Tt,n‖C1 ≤ t/2.

Combining the above two inequalies gives that

‖(Tt,n − Tt)Tt,n‖C1 ≤
|z|

‖(z − Tt)−1‖C1

.

Then using Theorem 4.2, we have z ∈ ρ(Tt,n).

Since z is arbitrary in A, A ⊂ ρ(Tt,n). This means that

σ(Tt,n) = C\ρ(Tt,n) ⊂ C\A =
⋃
n∈N

B(λn, r1)
⋃
B(0, t1/2). (4.11)

Moreover, using Lemma 4.3 and the definition of r1, we have

σ(Tt) ⊂
⋃
n∈N

B(λn, 2r1). (4.12)
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For any fixed eigenvalue λm ∈ σ(T ), let γm = min
j≤m
|λj − λj+1|. Using the structure of σ(T ), we

know that γm > 0. Notice that

2

tk/4+3/2
‖(Tt,n − Tt)Tt,n‖C1 ≤

γm
12
, ‖T − Tt‖H1(M) ≤

γm
12
,

which gives r1 < γm/6.

Let Γj = {z ∈ C : |z − λj | = γj/3}, Uj be the area enclosed by Γj . Let

σt,j = σ(Tt)
⋂
Uj , σt,n,j = σ(Tt,n)

⋂
Uj .

Using the definition of Γj , we know that for any j ≤ m, Γj ⊂ ρ(T ), ρ(Tt) and ρ(Tt,n).

In order to apply Theorem 4.2, we need to verify the conditioning

‖(T − Tt)Tt‖H1 ≤ min
z∈Γj

|z|
‖(z − T )−1‖H1

, (4.13)

‖(Tt − Tt,n)Tt,n‖C1 ≤ min
z∈Γj

|z|
‖(z − Tt)−1‖C1

. (4.14)

Using Lemma 4.1 and the choice of Γj , we have

min
z∈Γm

|z|
‖(z − T )−1‖H1

≥ minz∈Γm |z|
maxz∈Γm

‖(z − T )−1‖H1

≥
(
|λm| −

γm
3

)
min

z∈Γm,n∈N
|z − λm|

=
γm
3

(
|λm| −

γm
3

)
.

Then, using the assumption that ‖(T − Tt)Tt‖H1(M) ≤ (|λm| − γm/3)γm/3, condition (4.13) is

true.

Using Lemma 4.2, we have

min
z∈Γm

|z|
‖(z − Tt)−1‖C1

≥ minz∈Γm
|z|

maxz∈Γm ‖(z − Tt)−1‖C1

≥ (|λm| − γm/3)2t(k+2)/4

2

(
min

z∈Γm,n∈N
|z − λm| − ‖T − Tt‖H1

)
≥ (|λm| − γm/3)2t(k+2)/4γm

12
, (4.15)

or

min
z∈Γm

|z|
‖(z − Tt)−1‖C1

≥ minz∈Γm
|z|

maxz∈Γm
‖(z − Tt)−1‖C1

≥ (|λm| − γm/3)2

2
. (4.16)

To get the last inequality of (4.15), we use the assumption that

‖T − Tt‖H1 ≤ γ

6
, min

z∈Γm,n∈N
|z − λm| =

γm
3
.

Using the assumption that ‖(T−Tt,n)Tt,n‖C1(M) ≤ min{ (|λm|−γm/3)2t(k+2)/4γm
12 , (|λm|−γm/3)2

2 },
condition (4.14) is satisfied.
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Then using Theorem 4.2, we have

dim(E(λm, T )X) = dim(E(σt,m, Tt)X) = dim(E(σt,n,m, Tt,n)X). (4.17)

It follows from (4.11) that

|λt,nm − λm| ≤ r1 =
2

tk/4+3/2
‖(Tt,n − Tt)Tt,n‖C1 + ‖T − Tt‖H1(M). (4.18)

The convergence of eigenspace is also given by Theorem 4.2. For any x ∈ E(λm, T ), with

‖x‖C1 = 1,

‖x− E(σt,m, Tt)x‖H1

≤maxz∈Γm ‖(z − T )−1‖H1γm/3

minz∈Γm
|z|

(
‖(T − Tt)x‖H1 + ‖(T − Tt)Tt‖H1‖x‖H1

)
.

Using Lemma 4.1, we know that

max
z∈Γm

‖(z − T )−1‖H1 ≤ max
j∈N

1

|z − λj |
≤ 3

2γm
,

and minz∈Γm
|z| = |λm| − γm/3. This implies that from Theorems 4.2,

‖x− E(σt,m, Tt)x‖H1 ≤ C
(
‖(T − Tt)x‖H1 + ‖(T − Tt)Tt‖H1‖x‖H1

)
. (4.19)

Regarding the convergence from Tt,n to Tt, using Theorem 4.2 again, we have

‖E(σt,m, Tt)x− E(σt,n,m, Tt,n)x‖C1

≤
γm max

z∈Γm

‖(z − Tt)−1‖C1

3 minz∈Γm
|z|

(
‖(Tt − Tt,n)x‖C1 + ‖(Tt − Tt,n)Tt,n‖C1

)
. (4.20)

Using Lemma 4.2, we know that

max
z∈Γm

‖(z − Tt)−1‖C1 ≤ max
z∈Γm

{
2

|z|t(k+2)/4

(
min
j∈N
|z − λj | − ‖T − Tt‖H1

)−1

,
2

|z|

}

≤max

{
12

γm(|λm| − γm/3)t(k+2)/4
,

2

|λm| − γm/3

}
. (4.21)

To get the last inequality, we use that ‖T−Tt‖H1 ≤ γm/6 and |z−λm| = γm/3, |z| ≥ |λm−γm/3|
for z ∈ Γm.

Then the proof is completed by using (4.18)–(4.21). �

4.2. Convergence of Solution Operators

Now, we estimate ‖T − Tt‖H1 and ‖Tt − Tt,n‖C1 respectively. The uniform bound of ‖T −
Tt‖H1 has been obtained in [14].

Theorem 4.4 ([14]). Under the assumptions in Assumption 3.1, there exists a constant C > 0

only depends on M and the kernel function R, such that

‖T − Tt‖H1 ≤ Ct1/2, ‖Tt‖H1 ≤ C.
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Regarding ‖Tt − Tt,n‖C1 , we have following upper bound.

Theorem 4.5. Under the assumptions in Assumption 3.1 and

Ct sup
f∈Rt′∪Rt∪R8t

|p(f)− pn(f)| ≤ w 1
2

min, (4.22)

Ct sup
f∈Kt′,n∪Kt′,n·Kt′,n

|p(f)− pn(f)| ≤ δ2

2 max{wmax + wmin/2, 2/wmin}
, (4.23)

where δ = wmin

4wmax+3wmin
, t′ = t/18. There exists a constant C only depends on M and kernel

function R, such that

‖(Tt,n − Tt)Tt,n‖C1 ≤ Ch0

t3k/4+3/2
, ‖(Tt,n − Tt)f‖C1 ≤ Ch(f)

t3k/4+3/2
,

where

h0 = sup
g∈Rt·Kt,n∪Rt

|pn(g)− p(g)|+ t sup
g∈Dt∪Kt,n·Rt∪Kt,n·Rt∪Kt,n·Dt

|pn(g)− p(g)|

+t2 sup
g∈Kt,n·Dt

|pn(g)− p(g)|+ t3 sup
g∈Kt,n·Dt

|pn(g)− p(g)|, (4.24)

h(f) = sup
g∈Rt·Kt,n∪Rt

|pn(g)− p(g)|+ t sup
g∈Dt∪f ·Rt∪Kt,n·Rt∪Kt,n·Dt

|pn(g)− p(g)|

+t2 sup
g∈Kt,n·Dt

|pn(g)− p(g)|+ t3 sup
g∈Kt,n·Dt

|pn(g)− p(g)|. (4.25)

The proof of this theorem can be found in Section 5.

4.3. Entropy bound

In this subsection, we will verify the assumptions (4.22), (4.23) in Theorem 4.5 and give

upper bounds of h0 and h(f) defined in (4.24) and (4.25). To achieve these goals, we invoke a

powerful theorem in empirical process theory.

Theorem 4.6 (Theorem 2.3 in [17]). Let F be a class of functions from M to [−1, 1] and

set µ to be a probability measure onM. Let (xi)
∞
i=1 be independent random variables distributed

according to µ. For every ε > 0 and any n ≥ 8/ε2,

P

(
sup
f∈F
| 1
n

n∑
i=1

f(xi)−
∫
M
f(x)µ(x)dx| > ε

)
≤ 8Eµ[N(ε/8, F, L1(µn))] exp(−nε2/128) (4.26)

In above theorem, N(ε, F, Lp(µn) denotes the covering numbers of F at scale ε with respect to

the Lp(µn) norm. µn is the empirical measure supported on one sample of (xi)
∞
i=1. Let (Y, d) be

a metric space and set F ⊂ Y . For every ε > 0, denote by N(ε, F, d) the minimal number of open

balls (with respect to the metric d) needed to cover F . That is, the minimal cardinality of the

set {y1, · · · , ym} ⊂ Y with the property that every f ∈ F has some yi such that d(f, yi) < ε.

The set {y1, · · · , ym} is called an ε-cover of F . The logarithm of the covering numbers is

called the entropy of the set. For every sample {x1, · · · , xn} let µn be the empirical measure

supported on that sample. For 1 ≤ p <∞ and a function f , ‖f‖Lp(µn) =
(

1
n

∑n
i=1 |f(xi)|p

)1/p
and ‖f‖∞ = max1≤i≤n |f(xi)|.



Convergence of Laplacian Spectra from Random Samples 967

Notice that

L1(µn) ≤ L∞(µn) ≤ L∞,

where ‖f‖L∞ = maxx∈M |f(x)|. We get one immediate corollary of Theorem 4.6.

Corollary 4.1. Let F be a class of functions from M to [−1, 1] and set µ to be a probability

measure on M. Let (xi)
∞
i=1 be independent random variables distributed according to µ. For

every ε > 0 and any n ≥ 8/ε2,

P

(
sup
f∈F
| 1
n

n∑
i=1

f(xi)−
∫
M
f(x)µ(x)dx| > ε

)
≤ 8N(ε/8, F, L∞) exp(−nε2/128), (4.27)

where N(ε, F, L∞) be the covering numbers of F at scale ε with respect to the L∞ norm

Then, we get an upper bound of supf∈F | 1n
∑n
i=1 f(xi)−

∫
M f(x)µ(x)dx|.

Corollary 4.2. Let F be a class of functions from M to [−1, 1]. Let (xi)
∞
i=1 be independent

random variables distributed according to p, where p is the probability distribution in Assumption

3.1. Then with probability at least 1− δ,

sup
f∈F
|p(f)− pn(f)| ≤

√√√√128

n

(
lnN(

√
2

n
, F, L∞) + ln

8

δ

)
,

where

p(f) =

∫
M
f(x)p(x)dx, pn(f) =

1

n

n∑
i=1

f(xi). (4.28)

Proof. Using Corollary 4.1, with probability at least 1− δ,

sup
f∈F
|p(f)− pn(f)| ≤ εδ,

where εδ is determined by

εδ =

√
128

n

(
lnN(εδ/8, F, L∞) + ln

8

δ

)
.

Obviously,

εδ ≥
√

128

n
= 8

√
2

n
,

which gives that

N(εδ/8, F, L∞) ≤ N
(√

2/n, F, L∞

)
.

Then, we have

εδ ≤

√
128

n

(
lnN(

√
2/n, F, L∞) + ln

8

δ

)
,
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which proves the corollary. �

If the entropy bound of F is known, the upper bound of supf∈F |p(f)− pn(f)| follows from

Corollary 4.2. Now, the key point left becomes bounding the entropy of some given function

class F .

Let us start from the function class Rt. The functions in Rt are bounded uniformly, and the

bound only depends on the kernel function R. To apply above corollary, we need to normalize

Rt to make it lie in [−1, 1]. Here we also use Rt to denote the normalized function class and

absorb the bound of Rt into the generic constant C. We do same normalize procedure for all

function classes defined in Section 4.

Since the kernel R ∈ C2(M) and M∈ C∞, we have for any x,y ∈M∣∣∣∣R(‖x− y‖2

4t

)
−R

(
‖z− y‖2

4t

) ∣∣∣∣ ≤ C√
t
‖x− z‖.

This gives an easy bound of N(ε,Rt, L∞),

N(ε,Rt, L∞) ≤
(
C

ε
√
t

)k
. (4.29)

Using Corollary 4.2, with probability at least 1− 1/(2n),

sup
f∈Rt∪Rt′∪R8t

|p(f)− pn(f)| ≤ C√
n

(lnn− ln t+ 1)
1/2

. (4.30)

This gives that

Corollary 4.3. With probability at least 1− 1/(2n),

sup
f∈Rt∪Rt′∪R8t

|p(f)− pn(f)| ≤ 1

2
wmin,

as long as n is large enough such that the right hand side of (4.30) is less than wmin/2.

To get the covering number of Kt,n, we need the assumption that supf∈Rt
|p(f)− pn(f)| ≤

1
2wmin. Notice that ∣∣∣∣ 1

wt,n(y)

[
R

(
‖x− y‖2

4t

)
−R

(
‖z− y‖2

4t

)]∣∣∣∣
≤ 2

wmin
|R
(
‖x− y‖2

4t

)
−R

(
‖z− y‖2

4t

)
| ≤ C√

t
|x− y|.

The first inequality comes from the fact that minz∈M wt,n(z) ≥ wmin/2 which is guaranteed by

the assumption that supf∈Rt
|p(f)− pn(f)| ≤ wmin

2 . This gives a bound

N(ε,Kt,n, L∞) ≤
(
C

ε
√
t

)k
. (4.31)

Similarly, we can get

N(ε,Kt,n · Kt,n, L∞) ≤
(
C

ε
√
t

)2k

. (4.32)
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Using Corollary 4.2, if supf∈Rt
|p(f)− pn(f)| ≤ wmin

2 , then

sup
f∈Kt,n∪Kt,n·Kt,n

|p(f)− pn(f)| ≤ C√
n

(lnn− ln t+ 1)
1/2

(4.33)

with probability at least 1−1/(2n). Moreover, from Corollary 4.3, the assumption supf∈Rt
|p(f)

−pn(f)| ≤ wmin

2 holds with probability at least 1−1/(2n). By integrating these results together,

we obtain

Corollary 4.4. With probability at least 1− 1/n,

sup
f∈Kt,n∪Kt,n·Kt,n

|p(f)− pn(f)| ≤ δ2

2 max{wmax + wmin/2, 2/wmin}

as long as n is large enough. Here δ = wmin

4wmax+3wmin
.

Using similar techniques, we can get the estimate of h0 and h(f) in (4.24) and (4.25).

Putting all bounds in Theorem 4.4, we get

Theorem 4.7. Let φ be an eigenfunction of T . With probability at least 1− 1/n,

‖(Tt − Tt,n)Tt,n‖C1 ≤ C

t3k/4+3/2
√
n

(lnn− ln t+ 1)
1/2

,

‖(Tt − Tt,n)φ‖C1 ≤ Cφ
t3k/4+3/2

√
n

(lnn− ln t+ 1)
1/2

,

as long as n is large enough. Here Cφ is a constant depends on M, kernel function R, distri-

bution p and eigenfunction φ.

The main theorem, Theorem 3.1, is an easy corollary of Theorems 4.3 and 4.7.

5. Proof of Theorem 4.5

To prove Theorem 4.5, first we prove the convergence in L2 and then lift the convergence

from L2 to C1 by using the regularity of the kernel function. The calculus is a little tedious.

However, the method is rather standard.

In L2(M) space, we have

Theorem 5.1. Under the assumptions in Assumption 3.1. Let f ∈ C(M) in both problems,

then there exists constants C > 0, so that

‖(Tt,n − Tt)Tt,nf‖L2(M)

≤ C

tk/2+1
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)|+ t sup
g∈Kt,n·Rt∪Kt,n·Rt

|pn(g)− p(g)|

)
,

‖(Tt,n − Tt)f‖L2(M)

≤ C

tk/2+1
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)|+ t sup
g∈Kt,n·Rt∪f ·Rt

|pn(g)− p(g)|

)
,

as long as t small enough and (4.22), (4.23) are satisfied.
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To prove Theorem 5.1, we need two theorems regarding the a prior estimate of the discrete

solution and the stability of the integral operator Lt.

Theorem 5.2. Suppose u = (u1, · · · , un)t with
∑n
i=1 ui = 0 solves the problem (2.4) and

f ∈ C(M). Then there exists a constant C > 0 only depends on M and kernel function R,

such that (
1

n

n∑
i=1

u2
i

)1/2

≤ C

(
1

n

n∑
i=1

f(xi)
2

)1/2

≤ C‖f‖∞,

as long as (4.22), (4.23) are satisfied.

Theorem 5.3 ([14]). Under the assumptions in Assumption 3.1, assume u(x) solves the fol-

lowing equation

−Ltu = r, (5.1)

where

Ltu =
Ct
t

∫
M
R

(
|x− y|2

4t

)
(u(x)− u(y))p(y)dy. (5.2)

Then, there exist constants C > 0, T0 > 0 independent on t, such that

‖u‖L2(M) ≤ C‖r‖L2(M), (5.3)

as long as t ≤ T0.

Theorem 5.3 has been proved in [14]. Theorem 5.2 is an easy corollary of following theorem

which is proved in the appendix.

Theorem 5.4. Under the assumption in Assumption 3.1 and assume (4.22), (4.23) hold. There

exist a constant C > 0 only depends on M and kernel function R, so that for any u =

(u1, · · · , un)t ∈ Rd with
∑n
i=1 ui = 0,

1

n2t

n∑
i,j=1

Rt(xi,xj)(ui − uj)2 ≥ C

n

n∑
i=1

u2
i . (5.4)

Now we can give the proof of Theorem 5.1.

5.1. Proof of Theorem 5.1

First, denote

ut,n(x) = Tt,nf =
1

nwt,n(x)

 n∑
j=1

Rt(x,xj)uj − t
n∑
j=1

R̄t(x,xj)fj

 , (5.5)

where u = (u1, · · · , un)t with
∑n
i=1 ui = 0 solves the problem (2.4), fj = f(xj) and wt,n(x) =

1
n

∑n
j=1Rt(x,xj). And denote

vt,n(x) = Tt,nut,n =
1

nwt,n(x)

 n∑
j=1

Rt(x,xj)vj − t
n∑
j=1

R̄t(x,xj)uj

 , (5.6)
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where v = (v1, · · · , vn)t with
∑n
i=1 vi = 0 solves

− 1

nt

n∑
j=1

Rt(xi,xj)(vi − vj) =
1

n

n∑
j=1

R̄t(xi,xj)uj . (5.7)

It follows from Theorem 5.2 that there exists a constant C > 0 independent on t and n such

that (
1

n

n∑
i=1

u2
i

)1/2

≤ C‖f‖∞, (5.8a)

(
1

n

n∑
i=1

v2
i

)1/2

≤ C

(
1

n

n∑
i=1

u2
i

)1/2

≤ C‖f‖∞. (5.8b)

The idea to prove the theorem is using Theorem 5.3. Then we need to estimate ‖Lt(Tt,n −
Tt)Tt,nf‖2 and ‖Lt(Tt,n − Tt)f‖2 for any f ∈ C(M).

For any f ∈ C(M),

Lt(Tt,n − Tt)Tt,nf
= (LtTt,nTt,nf − Lt,nTt,nTt,nf) + (Lt,nTt,nTt,nf − LtTtTt,nf)

= (Ltvt,n − Lt,nvt,n) + (Lt,nTt,nut,n − LtTtut,n) . (5.9)

Next, we estimate two terms of right hand side of (5.9) separately. For convenience, we split

vt,n = at,n + bt,n and

at,n(x) =
1

nwt,n(x)

n∑
j=1

Rt(x,xj)vj , (5.10)

bt,n(x) = − t

nwt,n(x)

n∑
j=1

R̄t(x,xj)uj . (5.11)

For ‖Ltbt,n − Lt,nbt,n‖2, we have∣∣(Ltbt,n − Lt,nbt,n)(x)
∣∣

=
1

t

∣∣∣∣ ∫
M
Rt(x,y)(bt,n

(
x)− bt,n(y)

)
p(y)dy − 1

n

n∑
j=1

Rt(x,xj)
(
bt,n(x)− bt,n(xj)

)∣∣∣∣
≤ 1

t
|bt,n(x)|

∣∣∣∣ ∫
M
Rt(x,y)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)

∣∣∣∣
+

1

t

∣∣∣∣ ∫
M
Rt(x,y)bt,n(y)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)bt,n(xj)

∣∣∣∣. (5.12)

The first term of (5.12) can be bounded as following:∥∥∥∥∥∥bt,n(x)

∫
M
Rt(x,y)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)

∥∥∥∥∥∥
L2

≤ Ct‖bt,n‖L2 sup
g∈Rt

|pn(g)− p(g)| (5.13)
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and

‖bt,n‖2L2 =
t2

n2

∫
M

 1

wt,n(x)

n∑
j=1

R̄t(x,xj)uj

2

p(x)dx

≤ Ct2

n

∫
M

 1

n

n∑
j=1

R̄t(x,xj)

 n∑
j=1

R̄t(x,xj)u
2
j

 p(x)dx

≤ Ct2

n

n∑
j=1

(
u2
j

∫
M
R̄t(x,xj)p(x)dx

)

≤ Ct2

n

n∑
j=1

u2
j ≤ Ct2‖f‖∞, (5.14)

where last inequality comes from (3.8).

For the second term of (5.12),∣∣∣∣ ∫
M
Rt(x,y)bt,n(y)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)bt,n(xj)

∣∣∣∣
=

t

n

∣∣∣∣ ∫
M

Rt(x,y)

wt,n(y)

(∑
xk∈P

R̄t(y,xk)uk

)
p(y)dy − 1

n

n∑
j=1

Rt(x,xj)

wt,n(xj)

∑
xk∈P

R̄t(xj ,xk)uk

∣∣∣∣
≤ t

n

n∑
k=1

|uk|
∣∣∣∣ ∫
M

Rt(x,y)

wt,n(y)
R̄t(y,xk)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)

wt,n(xj)
R̄t(xj ,xk)

∣∣∣∣. (5.15)

Let

A = Ct

∫
M

1

wt,n(y)
R

(
|x− y|2

4t

)
R̄

(
|xi − y|2

4t

)
p(y)dy

−Ct
n

n∑
j=1

1

wt,n(xj)
R

(
|x− xj |2

4t

)
R̄

(
|xi − xj |2

4t

)
. (5.16)

We have

|A| < Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|. (5.17)

In addition, notice that only when |x− xi|2 ≤ 16t is A 6= 0, which implies

|A| ≤ 1

δ0
|A|R

(
|x− xi|2

32t

)
. (5.18)

Using these properties of A, we obtain∣∣∣∣ ∫
M
Rt(x,y)bt,n(y)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)bt,n(xj)

∣∣∣∣
≤ Ct

n
|A|∞

n∑
k=1

|uk|R
(
|x− xk|2

32t

)

≤ Ct

n

n∑
k=1

Ct|uk|R
(
|x− xk|2

32t

)
Ct sup

g∈Kt,n·Rt

|pn(g)− p(g)|. (5.19)
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It follows that∥∥∥∥∥∥
∫
M
Rt(x,y)bt,n(y)p(y)dy − 1

n

n∑
j=1

Rt(x,xj)bt,n(xj)

∥∥∥∥∥∥
2

≤ Ct

∫
M

(
1

n

n∑
k=1

Ct|uk|R
(
|x− xk|2

32t

))2

p(x)dx

1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

≤ Ct

(
1

n

n∑
k=1

u2
k

)1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

≤ Ct‖f‖∞Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|. (5.20)

To get the second inequality, we use the condition that Ct supg∈R8t
≤ wmin/2.

Now we have complete upper bound of ‖Ltbt,n −Lt,nbt,n‖L2
using (5.12), (5.13) and (5.20)

and Ct = 1
(4πt)k/2 ,

‖Ltbt,n − Lt,nbt,n‖L2(M) ≤
C

tk/2
‖f‖∞

(
sup

g∈Rt∪Kt,n·Rt

|pn(g)− p(g)|

)
. (5.21)

Mimicking the derivation of (5.21), we have

‖Ltat,n − Lt,nat,n‖L2(M) ≤
C

tk/2+1
‖f‖∞

(
sup

g∈Rt∪Kt,n·Rt

|pn(g)− p(g)|

)
. (5.22)

And consequently,

‖Ltvt,n − Lt,nvt,n‖L2(M)

≤ ‖Ltat,n − Lt,nat,n‖L2(M) + ‖Ltbt,n − Lt,nbt,n‖L2(M)

≤ C

tk/2+1
‖f‖∞

(
sup

g∈Rt∪Kt,n·Rt

|pn(g)− p(g)|+ t sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
. (5.23)

The second term of (5.9) can be bounded as following,

Lt(Ttut,n)− Lt,n(Tt,nut,n)

≤
∫
M
R̄t(x,y)ut,n(y)p(y)dy − 1

n

n∑
j=1

R̄t(x,xj)uj

≤ 1

n2

n∑
j=1

Rt(x,xj)

wt,n(xj)

(
n∑
k=1

Rt(xj ,xk)uk − t
n∑
k=1

Rt(xj ,xk)fk

)

− 1

n

∫
M

Rt(x,y)

wt,n(y)

(
n∑
k=1

Rt(y,xk)uk − t
n∑
k=1

Rt(y,xk)fk

)
p(y)dy

=
1

n

n∑
k=1

uk

 1

n

n∑
j=1

Rt(x,xj)

wt,n(xj)
Rt(xj ,xk)−

∫
M

Rt(x,y)

wt,n(y)
Rt(y,xk)p(y)dy


− t
n

n∑
k=1

fk

 1

n

n∑
j=1

Rt(x,xj)

wt,n(xj)
Rt(xj ,xk)−

∫
M

Rt(x,y)

wt,n(y)
Rt(y,xk)p(y)dy

 . (5.24)
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Using the similar derivation from (5.15) to (5.21), we get

‖Lt(Ttut,n)− Lt,n(Tt,nut,n)‖L2

≤ C

 1

n

n∑
j=1

u2
j

1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ Ct‖f‖∞Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

≤ C

tk/2
‖f‖∞

(
sup

g∈Kt,n·Rt

|pn(g)− p(g)|+ t sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
. (5.25)

The complete estimate follows from Equation (5.23) and (5.24).

‖Lt(Tt,n − Tt)Tt,nf‖L2(M)

≤ C

tk/2+1
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)|

+t sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ t2 sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
. (5.26)

Similarly, we can also get

‖Lt(Tt,n − Tt)f)‖L2(M)

≤ C

tk/2+1
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)|

+t sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ t2 sup
g∈f ·Rt

|pn(g)− p(g)|

)
. (5.27)

The theorem is proved by using Theorem 5.3 and above two estimates (5.26), (5.27). �
Now, we can prove Theorem 4.5 after one techinical lemma.

Lemma 5.1. Under the assumption in Assumption 3.1 and assume (4.22), (4.23) hold. Then,

there exist constants C > 0 only depends on M and kernel function R, such that for any

f ∈ C(M),

‖Tt,nf‖∞ ≤ Ct−k/4‖f‖∞, ‖Tt,nf‖L2 ≤ C‖f‖∞.

Proof. From the definition of Tt,n, we have for any f ∈ C(M)

Tt,nf =
Ct

nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

)
ui +

tCt
nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

)
f(xi),

where (u1, · · · , un) satisfies the equation

Ct
nt

n∑
j=1

R

(
|xi − xj |2

4t

)
(ui − uj) =

Ct
n

n∑
j=1

R

(
|xi − xj |2

4t

)
f(xj).

Using Theorem 5.4, it is easy to get that(
1

n

n∑
i=1

u2
i

)1/2

≤ C‖f‖∞,
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where C > 0 is a constant only depends on M and kernel function R. Then

|Tt,nf | ≤

(
Ct

nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

))1/2(
Ct

nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

)
u2
i

)1/2

+
tCt

nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

)
‖f‖∞

≤

(
Ct

nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

)
u2
i

)1/2

+ t‖f‖∞

≤
(

2Ct
wmin

)1/2
(

1

n

n∑
i=1

u2
i

)1/2

+ t‖f‖∞ ≤ C‖f‖∞,

and

‖Tt,nf‖2L2 ≤2

∫
M

Ct
nwt,n(x)

n∑
i=1

R

(
|x− xi|2

4t

)
u2
i p(x)dx + 2t2‖f‖2∞

≤C

(
1

n

n∑
i=1

u2
i + t2‖f‖2∞

)
≤ C‖f‖2∞.

Finally, we get fully prepared to prove Theorem 4.5. �

5.2. Proof of Theorem 4.5

For any f ∈ C1(M), let ut,n = Tt,nf and vi = Tt,nut,n(xi), i = 1, · · · , n. Using the

definition of Tt and Tt,n, Ttut,n and Tt,nut,n have following representations

Ttut,n =
1

wt(x)

∫
M
Rt(x,y)Ttut,n(y)p(y)dy +

t

wt(x)

∫
M
R̄(x,y)ut,n(y)p(y)dy,

Tt,nut,n =
1

nwt,n(x)

n∑
i=1

Rt(x,xi)vi +
t

nwt,n(x)

n∑
i=1

R̄(x,xi)ui. (5.28)

where ui = ut,n(xi), i = 1, · · · , n. We know that (u1, · · · , un) and (v1, · · · , vn) satisfy following

equations respectively

1

nt

n∑
j=1

Rt(xi,xj)(ui − uj) =
1

n

n∑
i=1

Rt(xi,xj)f(xj),

1

nt

n∑
j=1

Rt(xi,xj)(vi − vj) =
1

n

n∑
i=1

Rt(xi,xj)uj .

Using Theorem 5.2, we have(
1

n

n∑
i=1

u2
i

)1/2

≤ C‖f‖∞, (5.29a)

(
1

n

n∑
i=1

v2
i

)1/2

≤ C

(
1

n

n∑
i=1

u2
i

)1/2

≤ C‖f‖∞. (5.29b)
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Denote

T 1
t ut,n =

1

wt,n(x)

∫
M
Rt(x,y)Ttut,n(y)p(y)dy +

t

wt,n(x)

∫
M
R̄(x,y)ut,n(y)p(y)dy,

T 2
t ut,n =

1

wt,n(x)

∫
M
Rt(x,y)Tt,nut,n(y)p(y)dy +

t

wt,n(x)

∫
M
R̄(x,y)ut,n(y)p(y)dy.

We will prove the theorem by upper bound Ttut,n−T 1
t ut,n, T 1

t ut,n−T 2
t ut,n and T 2

t ut,n−Tt,nut,n
separately.

First, let us see Ttut,n − T 1
t ut,n.∣∣Ttut,n − T 1

t ut,n
∣∣

≤
∣∣∣∣ 1

wt,n(x)
− 1

wt(x)

∣∣∣∣ (∣∣∣∣∫
M
Rt(x,y)Ttut,n(y)p(y)dy

∣∣∣∣+ t

∣∣∣∣∫
M
R̄(x,y)ut,n(y)p(y)dy

∣∣∣∣)

≤ 2Ct
w2

min

sup
g∈Rt

(|pn(g)− p(g)|)
(∣∣∣∣ ∫

M
Rt(x,y)Ttut,n(y)p(y)dy

∣∣∣∣
+ t

∣∣∣∣ ∫
M
R̄(x,y)ut,n(y)p(y)dy

∣∣∣∣)

≤ C

t3k/4

(
‖Ttut,n‖L2 + t‖ut,n‖L2

)
sup
g∈Rt

(|pn(g)− p(g)|)

≤ C

t3k/4
‖ut,n‖L2 sup

g∈Rt

(|pn(g)− p(g)|)

≤ C

t3k/4
‖f‖∞ sup

g∈Rt

(|pn(g)− p(g)|).

Similarly, we have∣∣∇(Ttut,n − T 1
t ut,n)

∣∣ ≤ C

t(3k+2)/4
‖f‖∞ sup

g∈Rt∪Dt

(|pn(g)− p(g)|),

which proves that∥∥Ttut,n − T 1
t ut,n

∥∥
C1 ≤

C

t(3k+2)/4
‖f‖∞ sup

g∈Rt∪Dt

(|pn(g)− p(g)|). (5.30)

Secondly, using Theorem 5.1 we have∣∣T 1
t ut,n − T 2

t ut,n
∣∣

=

∣∣∣∣ 1

wt,n(x)

∫
M
Rt(x,y) (Ttut,n(y)− Tt,nut,n(y)) p(y)dy

∣∣∣∣
≤ Ct−k/4 ‖Ttut,n − Tt,nut,n‖L2

= Ct−k/4 ‖(Tt − Tt,n)Tt,nf‖L2 ≤
C

t3k/4+1
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)|

+t sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ t2 sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
,
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and

∣∣∇ (T 1
t ut,n − T 2

t ut,n
)∣∣

=

∣∣∣∣∇x

(
1

wt,n(x)

∫
M
Rt(x,y) (Ttut,n(y)− Tt,nut,n(y)) p(y)dy

)∣∣∣∣
≤ Ct−k/4+1/2 ‖Ttut,n − Tt,nut,n‖L2

= Ct−k/4+1/2 ‖(Tt − Tt,n)Tt,nf‖L2 ≤
C

tk/4+3/2
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)|

+t sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ t2 sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
.

This implies that

∥∥T 1
t ut,n − T 2

t ut,n
∥∥
C1 ≤

C

tk/4+3/2
‖f‖∞

(
sup

g∈Rt∪Rt·Kt,n

|pn(g)− p(g)| (5.31)

+t sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ t2 sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
.

Now, we turn to estimate Tt,nut,n − T 2
t ut,n. Using (5.28), we have

Tt,nut,n − T 2
t ut,n

=
1

wt,n(x)

(
1

n

n∑
i=1

Rt(x,xi)vi −
∫
M
Rt(x,y)Tt,nut,n(y)p(y)dy

)

+
t

wt,n(x)

(
1

n

n∑
i=1

R̄(x,xi)ui −
∫
M
R̄(x,y)ut,n(y)p(y)dy

)
.

Using (5.28) again, the first term becomes∣∣∣∣∣ 1n
n∑
i=1

Rt(x,xi)vi −
∫
M
Rt(x,y)Tt,nut,n(y)p(y)dy

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
i=1

Rt(x,xi)

 1

nwt,n(xi)

n∑
j=1

Rt (xi,xj) vj +
t

nwt,n(xi)

n∑
j=1

R̄t (xi − xj)uj


−
∫
M
Rt(x,y)

 1

nwt,n(y)

n∑
j=1

Rt (y,xj) vj +
t

nwt,n(y)

n∑
j=1

R̄t (y − xj)uj

 p(y)dy

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑
j=1

vj

(
1

n

n∑
i=1

Rt(x,xi)

wt,n(xi)
Rt (xi,xj)−

∫
M

Rt(x,y)

wt,n(y)
Rt (y,xj) p(y)dy

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ tn
n∑
j=1

uj

(
1

n

n∑
i=1

Rt(x,xi)

wt,n(xi)
R̄t (xi,xj)−

∫
M

Rt(x,y)

wt,n(y)
R̄t (y,xj) p(y)dy

)∣∣∣∣∣∣ .
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Using the similar techniques from (5.15) to (5.21), we get∣∣∣∣∣ 1n
n∑
i=1

Rt(x,xi)vi −
∫
M
Rt(x,y)Tt,nut,n(y)p(y)dy

∣∣∣∣∣
≤ C

tk/4

 1

n

n∑
j=1

v2
j

1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

+
C

tk/4−1

 1

n

n∑
j=1

u2
j

1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

≤ C

t3k/4
‖f‖∞

(
sup

g∈Kt,n·Rt

|pn(g)− p(g)|+ t sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
.

The second term can be bounded similarly,∣∣∣∣∣ 1n
n∑
i=1

R̄(x,xi)ui −
∫
M
R̄(x,y)ut,n(y)p(y)dy

∣∣∣∣∣
≤ C

tk/4

 1

n

n∑
j=1

u2
j

1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

+
C

tk/4−1

 1

n

n∑
j=1

f2
j

1/2

Ct sup
g∈Kt,n·Rt

|pn(g)− p(g)|

≤ C

t3k/4
‖f‖∞

(
sup

g∈Kt,n·Rt

|pn(g)− p(g)|+ t sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
. (5.32)

Now, we have

|Tt,nut,n − T 2
t ut,n| ≤

C

t3k/4
‖f‖∞

(
sup

g∈Kt,n·Rt

|pn(g)− p(g)|

+t sup
g∈Kt,n·Rt

|pn(g)− p(g)|+ t2 sup
g∈Kt,n·Rt

|pn(g)− p(g)|

)
.

Using the similar method, we can get

|∇(Tt,nut,n − T 2
t ut,n)| ≤ C

t3k/4+1/2
‖f‖∞

(
sup

g∈Kt,n·Dt

|pn(g)− p(g)|

+t sup
g∈Kt,n·Dt

|pn(g)− p(g)|+ t2 sup
g∈Kt,n·Dt

|pn(g)− p(g)|

)
.

The estimate of ‖(Tt − Tt,n)Tt,n‖C1 in Theorem 4.5 is proved.

Similarly, we can obtain the estimate of ‖(Tt−Tt,n)f‖C1 for any f ∈ C(M) which complete

the proof. �
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6. Conclusions

In this paper, we proved that the spectra of the normalized graph Laplacian (1.1) will

converge to the spectral of Isotropic elliptic operators with Neumann boundary condition (1.2)

as t → 0 and the number of sample points goes to infinity. The samples points are assumed

to be drawn on a smooth manifold according to some probability distribution p. Moreover, we

also give an estimate of the convergence rate. However, the estimate of the convergence rate in

this paper is far from optimal. In the analysis, we believe that a prior estimate of the integral

equation (1.5) can be improved. Now, we only get L2 estimate. In the spectra convergence

analysis, we need C1 estimate. In this paper, the regularity is lifted by using the regularity of

the kernel function. The trade off is that a large factor t−k/4 emerges which reduces the rate

of convergence.

Appendix A: Proof of Theorem 5.4

Proposition A.1 ([20]). Assume both M and ∂M are C2 smooth. There are constants

wmin > 0, wmax < +∞ and T0 > 0 depending only on the geometry of M, so that

wmin ≤ wt(x) =

∫
M
Rt(x,y)dy ≤ wmax

as long as t < T0.

We have the following lemma about the function wt,n.

Lemma A.1. Under the assumptions in Assumption 3.1, if Ct sup
f∈Rt

|p(f)− pn(f)| ≤ wmin/2,

wmin/2 ≤ wt,n(x) ≤ wmax +
1

2
wmin.

This lemma is a direct consequence of Proposition A.1 and the fact that∣∣∣∣wt,n(x)− Ct
∫
M
R

(
|x− y|2

4t

)
p(y)dy

∣∣∣∣ ≤ Ct sup
f∈Rt

|p(f)− pn(f)|.

Lemma A.2 ([14,20]). For any function u ∈ L2(M), there exists a constant C > 0 only

depends on M, such that∫
M

∫
M
Rt(x,y)(u(x)− u(y))2p(x)p(y)dxdy ≥ C

∫
M
|u(x)− ū|2p(x)dx, (A.1)

where

ū =

∫
M
u(x)p(x)dx.

Now, we can prove Theorem 5.4.

First, we introduce a smooth function u that approximates u at the samples Xn:

u(x) =
Ct

nwt′,n(x)

n∑
i=1

R

(
|x− xi|2

4t′

)
ui, (A.2)

where wt′,n(x) = Ct

n

∑n
i=1R

(
|x−xi|2

4t′

)
and t′ = t/18.
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Then, we have∫
M

∫
M
Rt′(x,y) (u(x)− u(y))

2
p(x)p(y)dxdy (A.3)

=

∫
M

∫
M
Rt′(x,y)

 1

nwt′,n(x)

n∑
i=1

Rt′(x,xi)ui−
1

nwt′,n(y)

n∑
j=1

Rt′(xj ,y)uj

2

p(x)p(y)dxdy

=

∫
M

∫
M
Rt′(x,y)

 1

n2wt′,n(x)wt′,n(y)

n∑
i,j=1

Rt′(x,xi)Rt′(xj ,y)(ui − uj)

2

p(x)p(y)dxdy

≤
∫
M

∫
M
Rt′(x,y)

1

n2wt′,n(x)wt′,n(y)

n∑
i,j=1

Rt′(x,xi)Rt′(xj ,y)(ui − uj)2p(x)p(y)dxdy

=
1

n2

n∑
i,j=1

(∫
M

∫
M

1

wt′,n(x)wt′,n(y)
Rt′(x,xi)Rt′(xj ,y)Rt′(x,y)p(x)p(y)dxdy

)
(ui − uj)2.

Denote

A =

∫
M

∫
M

1

wt′,n(x)wt′,n(y)
Rt′(x,xi)Rt′(xj ,y)Rt′(x,y)p(x)p(y)dxdy

and then notice only when |xi − xj |2 ≤ 36t′ is A 6= 0. For |xi − xj |2 ≤ 36t′, we have

A ≤
∫
M

∫
M
Rt′(x,xi)Rt′(xj ,y)Rt′(x,y)R

(
|xi−xj |2

72t′

)−1

R

(
|xi−xj |2

72t′

)
p(x)p(y)dxdy

≤ CCt
δ0

∫
M

∫
M
Rt′(x,xi)Rt′(xj ,y)R

(
|xi − xj |2

72t′

)
p(x)p(y)dxdy

≤ CCt

∫
M

∫
M
Rt′(x,xi)Rt′(xj ,y)R

(
|xi − xj |2

72t′

)
p(x)p(y)dxdy

≤ CCtR

(
|xi − xj |2

4t

)
. (A.4)

Combining Equation (A.4), (A.4) and Lemma A.2, we obtain

CCt
n2t

n∑
i,j=1

R

(
|xi − xj |2

4t

)
(ui − uj)2 ≥

∫
M

(u(x)− ū)2p(x)dx. (A.5)

We now lower bound the RHS of the above equation using 1
n

∑n
j=1 u

2
i .

|ū| =
∣∣∣∣∫
M
u(x)p(x)dx

∣∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
j=1

(
uj

∫
M

Ct
wt′,n(x)

R

(
|x− xj |2

4t′

)
p(x)dx

)∣∣∣∣∣∣ . (A.6)

Notice that ∣∣∣∣∣
∫
M

Ct
wt′,n(x)

R

(
|x−xj |2

4t′

)
p(x)dx− 1

n

n∑
i=1

Ct
wt′,n(xi)

R

(
|xi−xj |2

4t′

)∣∣∣∣∣
≤ Ct sup

f∈Kt′,n

|p(f)− pn(f)|.
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Thus we have

|ū| ≤

∣∣∣∣∣∣ 1

n2

n∑
i,j=1

Ct
wt′,n(xi)

R

(
|xi − xj |2

4t′

)
uj

∣∣∣∣∣∣+

 1

n

n∑
j=1

|uj |

 sup
f∈Kt′,n

|p(f)− pn(f)| (A.7)

≤

∣∣∣∣∣ 1n
n∑
i=1

u(xi)

∣∣∣∣∣+

 1

n

n∑
j=1

|uj |

 sup
f∈Kt′,n

|p(f)− pn(f)|

≤

∣∣∣∣∣∣ 1

n2

n∑
i,j=1

Ct
wt′,n(xi)

R

(
|xi − xj |2

4t′

)
(uj − ui)

∣∣∣∣∣∣+

 1

n

n∑
j=1

u2
j

1/2

sup
f∈Kt′,n

|p(f)− pn(f)|

≤ 2

wmin

Ct
n2

n∑
i,j=1

R

(
|xi − xj |2

4t′

)
(ui − uj)2

1/2

+

 1

n

n∑
j=1

u2
j

1/2

sup
f∈Kt′,n

|p(f)− pn(f)|.

Denote

A =

∫
M

Ct
w2
t′,n(x)

R

(
|x− xi|2

4t′

)
R

(
|x− xl|2

4t′

)
p(x)dx

− 1

n

n∑
j=1

Ct
w2
t′,n(xj)

R

(
|xj − xi|2

4t′

)
R

(
|xj − xl|2

4t′

)
.

Then |A| ≤ Ct sup
f∈Kt′,n·Kt′,n

|p(f)− pn(f)|. At the same time, notice that only when |xi−xl|2 <

16t′ is A 6= 0. Thus we have

|A| ≤ 1

δ0
|A|R

(
|xi − xl|2

72t′

)
.

Then

∣∣∣∣∣∣
∫
M
u2(x)dx− 1

n

n∑
j=1

u2(Φj)

∣∣∣∣∣∣ ≤ 1

n2

n∑
i,l=1

|Ctuiul||A|

≤ Ct
n2

sup
f∈Kt′,n·Kt′,n

|p(f)− pn(f)|
n∑

i,l=1

∣∣∣∣CtR( |xi − xl|2

72t′

)
uiul

∣∣∣∣
≤ Ct
n2

sup
f∈Kt′,n·Kt′,n

|p(f)− pn(f)|
n∑

i,l=1

CtR

(
|xi − xl|2

72t′

)
u2
i

≤ (wmax + wmin/2)Ct sup
f∈Kt′,n·Kt′,n

|p(f)− pn(f)|

(
1

n

n∑
i=1

u2
i

)
. (A.8)

In the last inequality, we use the condition that Ct supf∈Rt
|p(f)− pn(f)| ≤ wmin/2.
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Now combining (A.5), (A.7) and (A.8), we have for small t

1

n

n∑
i=1

u2(xi)

=

∫
M
u2(x)p(x)dx + (wmax + wmin/2)Ct sup

f∈Kt′,n·Kt′,n

|p(f)− pn(f)|

(
1

n

n∑
i=1

u2
i

)

≤ 2

∫
M

(u(x)−ū)2p(x)dx + 2ū2 + (wmax + wmin/2)Ct sup
f∈Kt′,n·Kt′,n

|p(f)− pn(f)|

(
1

n

n∑
i=1

u2
i

)

≤ CCt
n2t

n∑
i,j=1

R

(
|xi − xj |2

4t

)
(ui − uj)2

+ max{wmax + wmin/2, 2/wmin}Ct sup
f∈Kt′,n·Kt′,n∪Kt′,n

|p(f)− pn(f)|

(
1

n

n∑
i=1

u2
i

)
.

Let δ = wmin

4wmax+3wmin
. If 1

n

∑n
i=1 u

2(xi) ≥ δ2

n

∑n
i=1 u

2
i , and

max{wmax + wmin/2, 2/wmin}Ct sup
f∈Kt′,n·Kt′,n∪Kt′,n

|p(f)− pn(f)| ≤ δ2

2
.

Then we have completed the proof. Otherwise, we have

1

n

n∑
i=1

(ui − u(xi))
2 =

1

n

n∑
i=1

u2
i +

1

n

n∑
i=1

u(xi)
2 − 2

n

n∑
i=1

uiu(xi) ≥
(1− δ)2

n

n∑
i=1

u2
i . (A.9)

This enables us to prove the theorem in the case of 1
n

∑n
i=1 u

2(xi) <
δ2

n

∑n
i=1 u

2
i as follows.

Ct
n2

n∑
i,j=1

R

(
|xi − xj |2

4t′

)
(ui − uj)2

=
2Ct
n2

n∑
i,j=1

R

(
|xi − xj |2

4t′

)
ui(ui − uj)

=
2

n

n∑
i=1

ui(ui − u(xi))wt′,n(xi)

=
2

n

n∑
i=1

(ui − u(xi))
2wt′,n(xi) +

2

n

n∑
i=1

u(xi)(ui − u(xi))wt′,n(xi)

≥ 2

n

n∑
i=1

(ui − u(xi))
2wt′,n(xi)− 2

(
1

n

n∑
i=1

u2(xi)wt′,n(xi)

)1/2(
1

n

n∑
i=1

(ui − u(xi))
2wt,n(xi)

)1/2

≥ wmin

n

n∑
i=1

(ui − u(xi))
2 − 2(wmax + wmin/2)

(
1

n

n∑
i=1

u2(xi)

)1/2(
1

n

n∑
i=1

(ui − u(xi))
2

)1/2

≥ (wmin(1− δ)− 2(wmax + wmin/2)δ)

(
1

n

n∑
i=1

u2
i

)1/2(
1

n

n∑
i=1

(ui − u(xi))
2

)1/2

≥ wmin(1− δ)2

(
1

n

n∑
i=1

u2
i

)
. (A.10)
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This completes the proof of Theorem 5.4. �
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