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Abstract. In framework of the fictitious domain methods with immersed interfaces for
the elasticity problem, the present contribution is to study and numerically validate
the jump-integrated boundary conditions method with sharp interface for the vector
elasticity system discretized by a proposed finite volume method. The main idea of the
fictitious domain approach consists in embedding the original domain of study into a
geometrically larger and simpler one called the fictitious domain. Here, we present
a cell-centered finite volume method to discretize the fictitious domain problem. The
proposed method is numerically validated for different test cases. This work can be
considered as a first step before more challenging problems such as fluid-structure
interactions or moving interface problems.
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1 Introduction

The conventional grid method approach to simulating transmission problems in hetero-
geneous elastic body with complex boundaries is to discretize the governing equations
on a curvilinear mesh that conforms to the boundaries. The main advantages of this ap-
proach are that imposition of boundary conditions is greatly simplified and the scheme
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can be easily designed so as to maintain sufficient accuracy and conservation property.
However, the geometrical complexity of immersed boundaries can adversely impact the
stability, the convergence and the operation count of the solver. An alternative method
approach which is gaining popularity in recent years is the fictitious domain methods
approach where the governing equations are discretized on a uniform structure Carte-
sian mesh which does not conform to the immersed boundaries. This greatly simplifies
mesh generation and retains the relative simplicity of the governing equations in Carte-
sian coordinates, (see [1–8, 10, 11]). In addition, since the Cartesian mesh scheme does
not depend on the location of the immersed boundary, there is no need for remesching
strategies and, thus, has a significant advantage in simulating problems with moving
boundaries and complicated shapes. However, the difficulty in using the fictitious do-
main method in conjunction with a uniform structured Cartesian mesh scheme is in the
position of the original boundary conditions at the immersed boundaries. Thus, to avoid
this complication, an approximate interface Σh of the original Σ is constructed by a series
of cell-sides that are cut by the boundary on which we apply an algebraic transmission
boundary conditions proposed in our fictitious domain model-problem.

The numerical validation of a new fictitious domain method associated with gen-
eral Jump Embedded Boundary Conditions (J.E.B.C) is proposed in the present paper.
To solve the linear elasticity system governed by the given problem (P̃) in the original
domain Ω̃, a fictitious domain technique is used. The key issue here is to construct an
extended imperfect transmission problem (P) of (P̃) defined in the extended domain Ω
of the original physical domain Ω̃ in which its geometric shape is simpler than that of Ω̃
such that

Ω= Ω̃∪Σ∪Ωe,

where Ωe is the external domain and Σ the common interface between Ω̃ and Ωe, see
Fig. 1. With an appropriate choice of the data and the transmission conditions in the
auxiliary domain Ωe and on the interface Σ respectively, the transmission problem (P)
will be well-posed and the two problems are equivalents in the following sense : If u
is a solution of the fictitious problem (P) defined in the fictitious domain Ω, then the
restriction of the fictitious solution

ũ=u|Ω̃

or, at least, that ũη =u|Ω̃ is a solution of the physical problem (original) (P̃).
Our objective is to use a simple structured mesh in Ω, e.g., a uniform Cartesian grid,

independent of the shape of the immersed interface Σ, instead of using an adaptive mesh
to which it becomes difficult to find fast and efficient solvers. The method is applied to
several test cases for which an analytical and finite volume solution exists. Comparisons
of the numerical and analytical results show a very good performance of the method. Our
quest is to solve, with a fictitious domain method in Ω, the following problem originally
defined in Ω̃⊂Ω with a general boundary condition on Σ : Find the displacement vector
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ũ and the symmetric stress tensor σ=(σi,j)
d
i,j=1 such that

−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,
ũ=uD or −σ(ũ)·n=Aũ+q on Σ,

(1.1)

where f̃ ∈L2(Ω̃)d is the body force, uD∈H1/2(Σ)d is the Dirichlet boundary condition, A
∈L∞(Σ̃)d×d a uniformly positive matrix and q∈H−1/2(Σ)d are given on Σ. Here λ and
µ∈L∞(Ω̃) are the Lamé coefficients, which we assume that

inf
Ω̃

φ(x)=φ−>0, φ+=sup
Ω̃

φ(x),

where φ stands for λ, µ or ρ, and the constitutive equation in an isotropic linear elastic
solid may be written as

σ(ũ)=λ∇·ũI+2µε(ũ),

here

ε(ũ)=
1
2
[∇ũ+(∇ũ)t],

is the linear strain tensor, I is the identity tensor, the Lamé coefficients λ and µ are related
to the its Young’s modulus E and the Poisson’s ratio ν by the following relations:

λ=
Eν

(1−2ν)(1+ν)
, µ=

E
2(1+ν)

.

In the next section the governing equations of the fictitious domain problem together
with the treatment of the embedded original boundary conditions on the common inter-
face Σ are recalled. This is followed by a description of the finite volume discretization
scheme and the solution algorithm. Finally, the method’s capabilities are demonstrated
by applying it to a number of test cases. Moreover, a particular scalar test problem with
singular solution is also simulated.

2 Fictitious model with jump embedded transmission conditions
on Σ

In this section, we present the governing equations of the fictitious model, together with
the weak form and treatment of the embedded original boundary conditions.

Let the domain Ω⊂Rd (d=2 or 3 in practice) be an open bounded polygonal set. Let
a regular enough interface Σ⊂Rd−1 separate Ω into two disjointed sub domain Ω̃ and Ωe
such that Ω= Ω̃∪Σ∪Ωe, the boundary of Ω̃ is defined by ∂Ω̃= Γ̃∪Σ and the boundary of
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Figure 1: Two examples of original domain (physical) Ω̃ embedded in a fictitious domain Ω= Ω̃∪Ωe.

Ω is defined by ∂Ω= Γ̃∪Γe. Let n be, either the outward unit normal vector on Γe, or the
outward unit normal vector on Σ oriented from Ω̃ to Ωe. For a function ψ∈H1(Ω̃∪Ωe),
let ψ− and ψ+ be the traces of ψ|Ω̃ and ψ|Ωe on each side of Σ respectively, ψ|Σ = 1

2 (ψ
− +

ψ+) the arithmetic mean of trace of ψ, and JψKΣ = (ψ+−ψ−) the jump of traces ψ on Σ
oriented by n.

2.1 The strong form

For the data f∈L2(Ω)d, g and h given in H−1/2(Σ)d, we consider the elasticity system
problem for the real-valued vector u=(u1,··· ,ud) defined in Ω and includes immersed
transmission conditions on Σ links the trace of jumps of both the normal stress vector
σ(u)·n =(λ(∇·u)I+2µ ε(u))·n and the traces of solution u through the interface Σ :

−∇·σ(u)= f in Ω= Ω̃∪Ωe,

u=0 on Γ̃∪Γe,
Jσ(u)·nKΣ =Mu|Σ−h on Σ,

σ(u)·n |Σ =SJuKΣ−g on Σ,

(2.1)

where the Lamé coefficients µ, λ and the transfer matrices S and M in the (J.E.B.C.) third
and fourth equations of (2.1) on Σ are measurable and bounded functions verifying ellip-
ticity assumptions

(A1) µ, λ∈L∞(Ω), ∃ µ−, λ−>0, µ>µ−, λ>λ− a.e. in Ω,

(A2) M, S∈L∞(Σ)d×d, ∀ξ∈Rd, ξt ·M(x)·ξ>0, ξt ·S(x)·ξ>0 a.e. on Σ.
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Moreover, in order to recover the original problem (1.1) in Ω̃, we choose µ and λ a L∞-
extension of µ̃ and λ̃ respectively in Ω and f a L2-extension of f̃ in Ω such that

µ=

{
µ̃ in Ω̃,
µe in Ωe,

λ=

{
λ̃ in Ω̃,
λe in Ωe,

f=
{

f̃ in Ω̃,
fe in Ωe,

as well as, the boundary condition the second equation in (2.1) on Γe is chosen to ensure
the solvability of the fictitious domain problem (2.1).

2.2 The weak form

We now introduce the Hilbert space :

W(Ω)=
{

v∈L2(Ω)d, v|Ω̃∈H1(Ω̃)d and v|Ωe ∈H1(Ωe)
d; v=0 on Γ̃∪Γe

}
equipped with the natural inner product and associated norm in H1(Ω)d.

Let u∈W satisfy the first equation in (2.1) and f∈L2(Ω)d, the weak form of the prob-
lem (2.1) can be written as : Find u∈W such that

a(u,v)= l(v), ∀v∈W, (2.2)

with

a(u,v)=
∫

Ω
σ(u):∇vdx+

∫
Σ

Mu|Σv|Σds+
∫

Σ
SJuKΣJvKΣds,

l(v)=
∫

Ω
fvdx+〈h,v|Σ〉− 1

2 , 1
2
+〈g,JvKΣ〉− 1

2 , 1
2
.

Theorem 2.1 (Global solvability of the fictitious domain model with J.E.B.C.). If the
ellipticity assumptions (A1), (A2) hold, the problem (2.1) with f ∈ L2(Ω)d, and g, h ∈
L2(Σ)d has a unique weak solution u ∈W(Ω) satisfying (2.2) for all v ∈W(Ω), such that
∃α0(Ω,Ωe,µ,‖S‖,‖M‖)>0,

‖u‖W≤
1
α0

(‖f‖L2(Ω)+c(Ω,Ωe)(‖g‖− 1
2 ,Σ+‖h‖− 1

2 ,Σ)).

Proof. We begin by deriving the weak form of the problem (2.1). With the first and second
equations in (2.1) and using the Green-Stokes formula, 〈·,·〉− 1

2 ,Σ being the duality pairing

between H−
1
2 (Σ)d and H

1
2 (Σ)d, we get respectively over Ω̃ and Ωe :∫

Ω̃
σ(u) :∇vdx−〈σ(u)− ·n,v−〉− 1

2 ,Σ =
∫

Ω̃
fvdx, ∀v∈W, v|Ωe =0,∫

Ωe

σ(u) :∇vdx+〈σ(u)+.n,v+〉− 1
2 ,Σ =

∫
Ωe

fvdx, ∀v∈W, v|Ω̃ =0.
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Summing now the two previous equations yields :∫
Ω

σ(u) :∇vdx+〈σ(u)+ ·n,v+〉− 1
2 ,Σ−〈σ(u)− ·n,v−〉− 1

2 ,Σ =
∫

Ω
fvdx, ∀v∈W.

Then, noticing that for any bilinear form 〈·,·〉− 1
2 ,Σ defined on Σ, we have the equality

below :

〈u+,v+〉Σ−〈u−,v−〉Σ = 〈JuKΣ,vΣ〉Σ+〈uΣ,JvKΣ〉Σ, ∀u,v,

we obtain the following weak form in Ω :∫
Ω

σ(u) :∇vdx+〈Jσ(u)·nKΣ,vΣ〉− 1
2 ,Σ+〈σ(u)·nΣ,JvKΣ〉− 1

2 ,Σ =
∫

Ω
fvdx, ∀v∈W.

Then, using the jump transmission conditions i.e., the third and fourth equations in (2.1)
on Σ, we get the nice weak formulation below: Find u∈W, sush that ∀v∈W,∫

Ω
σ(u) :∇vdx+

∫
Σ

MuΣvΣ+
∫

Σ
SJuKΣJvKΣ =

∫
Ω

fvdx+〈h,vΣ〉− 1
2 ,Σ+〈g,JvKΣ〉− 1

2 ,Σ.

With the ellipticity assumptions (A1), (A2), it is now easy to verify using the Korn in-
equality, in Ω̃, Ωe and standard trace lemmas that the left-hand side of the above nice
weak formulation is a bilinear continuous and coercive form in W×W, whereas the right-
hand is a linear continuous form in W. Hence, by the Lax-Milgram theorem, we have
existence and uniqueness of the weak solution u in W.

Remark 2.1. Since ∇·σ(u)∈L2(Ω)d, then we can define σ(u)±Σ in H−1/2(Σ)d.

2.3 Treatment of the original boundary condition on Σ

In this section, we will use for each kind of desired original boundary condition imposed
on the immersed boundary Σ, only the particular variant with no exterior or surface con-
trol for both Fourier or Dirichlet boundary conditions respectively. These conditions will
be enforced using a thin approximation of the immersed interface Σ, either the so-called
Exterior interface ΣExt. or Cut interface ΣCut. by surface penalty of the Dirichlet bound-
ary conditions and by choosing the transfer matrices in the first equation of system (2.3)
which satisfies Eq. (2.5) or the third equation in (1.1) in the original problem, see [9,13–20].

2.3.1 Embedded Fourier or Neumann boundary condition on Σ

Let −σ(u)−Σ ·n and −σ(u)+Σ ·n be the traces of the normal stress on each side of Σ. In the
previous fictitious domain model, we use the algebraic transmission conditions the third
and fourth equations in (2.1) on Σ. the two quantities of the traces can be written in the
following way :

−σ(u)−Σ ·n=
(

S+
1
4

M
)

u−Σ−
(

S− 1
4

M
)

u+
Σ +g−h

2
on Σ,

−σ(u)+Σ ·n=−
(

S+
1
4

M
)

u+
Σ +

(
S− 1

4
M
)

u−Σ +g+
h
2

on Σ.
(2.3)
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Table 1: Summary of the data in Ωe and on Σ for the J.E.B.C. Method.

J.E.B.C. method Parameters in Ωe Parameters on Σ
Fourier (F) λ|Ωe =µ|Ωe =1, f|Ωe =0 M=4S=2A, h

2−g=q
Dirichlet (D1) λ|Ωe =µ|Ωe =1, f|Ωe =0 M=4S= 2

η , h
2−g= 1

η uD

Dirichlet (D2) λ|Ωe =µ|Ωe =
1
η , f|Ωe =

1
η ue S= 1

η , M=g=h=0

Then, with the particular choice S= 1
4 M the system of Eq. (2.3) yields the Fourier bound-

ary condition below, in this case the exterior fictitious domain problem and the interior
(physical) one are independent :

−σ(u)−Σ ·n=
1
2

Mu−Σ +g−h
2

on Σ,

−σ(u)+Σ ·n=−1
2

Mu+
Σ +g+

h
2

on Σ.
(2.4)

When the Fourier or Neumann boundary condition in the third equation in (1.1) is de-
sired for the original problem (1.1) in Ω̃, the following immersed boundary condition on
Σ must be satisfied by the solution of the fictitious domain problem in Ω :

−σ(u)−Σ ·n=Au−Σ +q on Σ. (2.5)

This formulation enables us to deduce the transmission coefficients S, M, g and h on Σ
and the data µ, λ and f in Ωe as well as on Σ, which are presented in the Table 1.

Other variants are proposed there require either u+
Σ or −σ(u)+Σ ·n to be controlled by

L2 or H1 volume penalty methods [1–4, 19] performed with the parameters in Ωe for the
convection-diffusion problem.

2.3.2 Embedded Dirichlet boundary condition on Σ

The Dirichlet boundary condition u−Σ =uD of the problem (1.1) is treated as a penalization
of the previous Fourier boundary condition in the system of Eqs. (2.3) or (2.4). Indeed,
the Fourier condition in the system of Eqs. (2.3) or (2.4) can be penalized by a surface
penalty on Σ with

M=
2
η

I−→+∞ and
h
2
−g=

1
η

uD,

when η−→ 0, where η is a real penalty parameter, (see (D1)) in the Table 1. The second
variant consists in using a L2 or H1 volume penalty in the exterior domain Ωe such that

lim
η−→0

u+
ηΣ =uD

for the model with
S=

1
η

I−→+∞, M=0, h=0,
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and thus
JuKΣ−→0, Jφ·nKΣ =0,

as proposed in [7].

Remark 2.2. In the practice, the penalty parameter η is chosen small enough, typically of
the order of 10−7 such that the error due to the fictitious domain modeling in Ω for the
original problem Ω̃ remains smaller than the error due to the numerical approximation.

3 Characterization of the fictitious domain (original and
auxiliary)

For the numerical approximation of the fictitious domain problem (2.1), we use the fi-
nite volume methods because they are robust, relatively cheap, inherently conservative,
and able to handle strong discontinuities in the differential operators. We consider the
two-dimensional case (d = 2) in the Cartesian coordinates (x,y), when the domain Ω
is rectangular for a fictitious domain model. The discretization procedure is separated
in two parts: discretization of the computational domain and equations discretization,
see [5–8, 10–12, 16, 18, 19].

In this part, we use the level set method which is a numerical technique for tracking
moving interface, it is based upon the idea of representing the interface as a level set
curve of higher-dimensional function φ(x,t). In keeping with the applications pursued
in this paper, we only use the level set theory for representing the static interface Σ.

We decompose the computational domain (fictitious domain) Ω into two subdomains
Ω̃ and Ωe which are respectively associated to the part of the physical domain and aux-
iliary one. The principle is to define a distance function in the computational domain. If
the interface of the physical domain is given by Σ, we can define by

ϕ(x,0)=
{
‖x−xΣ‖ in Ω̃,
−‖x−xΣ‖ in Ωe,

the characteristic function of the physical domain is easily obtained by looking at the sign
of ϕ(xi,0) in the nodes xi of the mesh :

χph(xi)=

{
1, if ϕ(xi,0)>0,
0, if ϕ(xi,0)<0,

finally, the characteristic function from the distance function in the control volume K can
be given by

χph |K =
Σ+

K
|Σ|K

,

where Σ+
K is the sum of the nodes of element K which are ϕ(xi,0)>0, and |Σ|K is the sum

of absolute values of ϕ(xi,0). the value of function χs |K is 1 or 0 depending on whether
all nodes of the element K are positive or negative, but for the control volumes that are
crossed by the embedding interface Σ, they, have a value between 0 and 1.
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4 Numerical results

In order to illustrate the accuracy of the fictitious domain method for the elasticity prob-
lems, we have considered some problems with exact solutions. In that follows, we fo-
cus on 2-D problems. We present the results obtained from numerical simulations car-
ried out on homogeneous and heterogeneous isotropic media. For the sake of simplicity,
we carried out the calculations for the model where the Lamé Coefficients are constant,
see [1–4, 9, 16] and [17].

In the computation, the material properties are chosen as : Young’s modulus E=1.542
and poisson’s ratio ν= 0.285. These correspond to the Lamé’s coefficients λ= 8000 and
µ= 6000. The errors between the numerical and analytic solutions to the following test
problems can be appreciated by the calculation of either the L2-norm or the L∞-norm in
Ωh.

4.1 Validation of the Finite Volume Scheme (F.V.S.) for the elasticity problem

We begin by the validation of the finite volume scheme in the areas where the computa-
tional domain coincides with the physical one. For this purpose, the physical domain is
the unit square Ω=[0,1]×[0,1]. The domain Ω is meshed by uniform square cells K with
a grid step varying from h= 1

10 to 1
120 and Σ={(x,y)∈Ω such that x=1}.

The first test used to demonstrate the convergence of the proposed scheme, the non-
homogeneous Dirichlet and Fourier problems are considered and the Fig. 2 illustrates
the relative L2−norm errors versus a discretisation step h which shows the second order
accuracy of this scheme.

4.2 Validation of the fictitious domain method for two-dimensional linear
elasticity system

The conventional way of validating the efficient accuracy of the present scheme is to
compute an elastic body which has both a L-shaped or a curved immersed boundary
Σ for which an analytical solution exists. In the numerical computations, the fictitious
domain is the unit square, a convergence study is carried out using uniform rectangular
meshes, the tests are performed for two different domains : L-shaped domain and a
quarter disk domain. In the figures of errors, the plot of error in the energy norm versus
the mesh spacing is shown on a log-log plot.

4.2.1 First test problem: A L-shaped domain

Dirichlet problem. First, we consider the following homogenous Dirichelet problem :

P̃DH


−∇·σ(ũ)= f̃ in Ω̃,
ũ=0 on Γ̃,
ũ=0 on Σ(uD =0),
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10−110−1.310−1.610−2

10−4

10−3

10−2

log(discretization step h)

lo
g(
‖u
−

u h
‖/
‖u
‖)

Fourier (FP) and homogeneous Dirichlet problems (DP)

Log(erF).
Log(h2)

Log(erD).

Figure 2: The second order accuracy of the schema for a (FP) and (DP) problems.

where Σ=Σx∪Σy, such that

Σx =

{
(x,y)

x
=

1
2

;
1
2
≤y≤1

}
and Σy =

{
(x,y)

y
=

1
2

;
1
2
≤ x≤1

}
,

which has the analytic solution ũ(x,y)= ṽ(x,y)= sin(2πx)sin(2πy) in Ω̃, for the appro-
priate data for f .

Fig. 3 gives an example of the uniform grid and the immersed interface. This geome-
try is used for the test problems presented in this section.

The fictitious domain problem is solved in Ω with the J.E.B.C. method (D1), using the
surface penalty on Σh without exterior control in Ωe. In this case, the equation solved in
Ωe,h has no influence on the solution obtained in the physical domain. So, the equation
parameters in Ωe,h are arbitrary extensions of the original coefficients of physical prob-
lem. The Table 2 synthesizes the results obtained with the J.E.B.C. method (D1) and the
parameter of penalization η = o(10−7). Note that with a Cartesian mesh on Ω, the ap-
proximate interface Σh of Σ is exactly defined. So, the global error is defined as the sum
of a modelling error (due to the penalization in the Dirichlet case) and numerical scheme
error.

Fig. 4 shows the convergence of the numerical error with respect to the discretization
step h by J.E.B.C. method (D1) in the L-shaped domain Ω̃.

In order to validate the J.E.B.C. method (D1) for any Dirichlet boundary condition,
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=

0

Σũ
=
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y

Figure 3: L-shaped physical domain immersed inside a fictitious domain Ω = Ω̃∪Σ∪Ωe = [0,1]×[0,1] in an
uniform grid.

Table 2: Variation of relative L2 error norms according to the number of discretization points for Dirichlet
condition in L-shaped domain.

Mesh step h 1/10 1/20 1/40 1/80 1/140
‖uex−uh‖
‖uex‖ 7.267270e−2 3.516438e−2 1.696973e−2 8.292075e−3 4.728605e−3

we now study a non-homogeneous Dirichlet problem

(P̃DNH)


−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,
ũ=uD on Σ,

where

uD =


3

16
sin(πy),

3
16

sin(πy),
3/4≤y≤1, x=3/4,

uD =

{
x(x−1)sin(3π/4),
x(x−1)sin(3π/4),

3/4≤ x≤1, y=3/4,
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10−110−1.310−1.610−2
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Figure 4: First order accuracy of the J.E.B.C. method (D1) for P̃DH problem.

Table 3: The relative L2 error norms according to the number of discretization points for non homogeneous
Dirichlet problem in L-shaped domain.

Mesh step h 1/16 1/32 1/64 1/128 1/140
‖uex−uh‖
‖uex‖ 1.075866e−2 4.604882e−3 2.164175e−3 1.032435e−3 9.361342e−4

which has the analytic solution ũ(x,y) = ṽ(x,y) = x(x−1)sin(πy) in Ω̃, the table below
gives the relative error norm for non homogeneous Dirichlet problem in the L-Shaped
Domain (see Table 3).

The fictitious problem over Ω is solved using J.E.B.C. method (D1). As Fig. 5 shows,
the first order a accuracy is reached for L2-norm for exterior approximate interface.

Robin problem. We now consider the Robin problem with an appropriate data of f such
that :

P̃N


−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,
σ(ũ)·n= ũ+g on Σ (A=αI= I, q=g),
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Figure 5: Order of the convergence of the J.E.B.C. method (D1) for P̃DNH problem.

Table 4: Variation of relative L2 error norms according to the number of discretization points for Fourier
condition in L-shaped domain.

Mesh step h 1/16 1/32 1/64 1/128 1/140
‖uex−uh‖
‖uex‖

4.914116e−3 1.181075e−3 2.825945e−4 6.513587e−5 5.352028e−5

where

g=


(
− 1

2
(λ+2µ)+

3α

16

)
sin(πy)+

3
16

λπcos(πy),(
− 1

2
µ+

3α

16

)
sin(πy)+

3
16

πµcos(πy),

on the Σx ={x=1, 3/4≤y≤1} and

g=

{
(−µ(2x−1)+αx(x−1))sin(3π/4)−µπx(x−1)cos(3π/4),
(−λ(2x−1)+αx(x−1))sin(3π/4)−π(λ+2µ)x(x−1)cos(3π/4),

on the Σy = {3/4≤ x≤1, y=1} , Σx∪Σy =Σ. The results obtained are illustrated in the
Table 4.

Fig. 6 shows a second-order accuracy of the J.E.B.C. method (F), for the Robin condi-
tion.
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Figure 6: Order of the convergence of the J.E.B.C. method (F) for P̃N problem.

The approximate solution obtained with the Fourier approach and the analytic one at
the diagonal square section is represented in Fig. 7. It can be seen that the behavior of the
approximate solution at the corner (x= 3

4 , y= 3
4 ) of the physical domain Ω̃.

4.2.2 Second test problem. a quarter disk domain

We now consider a quarter disk domain Ω̃ immersed in the unit square Ω=[0,1]×[0,1].
That defines an immersed interface Σ for quarter disk, see Fig. 8. As in the L-shaped case,
the fictitious square domain is meshed with uniform grid step h. The approximate inter-
face Σh, lying on sides of the mesh, is chosen such that it crosses the physical immersed
interface Σ.

Fig. 8 describes of the quarter disk domain, associated fictitious domain mesh and
approximate immersed interface.

Homogeneous Dirichlet case. We consider the below homogeneous Dirichlet Problem
with the adapted right-hand side f̃

P̃DH


−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,
ũ=uD =0 on Σ,
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Figure 7: Approximate solution and analytic one in the Fourier case at a diagonal square section.

x

y

Ω̃

Ωe

Ω

Γ̃

Σ

Γe

ΣCut
h

1

10

(a)

x

y

Ω̃

Ωe

Ω

Γ̃

Σ

Γe

ΣExt
h

1

10

(b)

Figure 8: Approximate interface Σh and approximated domain Ω̃h. (a) Cut approximate interface ΣCut
h , (b)

Exterior approximate interface ΣExt
h .

which has the below analytic solution

ũ(x,y)= ṽ(x,y)=4xy
(

1−exp
(1

4
(r2−1)

))
in Ω̃, which r=

√
x2+y2,
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Table 5: Variation of relative L2 error norms according to parameter h for homogeneous Dirichlet problem in
the quarter disk domain using (D1).

Mesh step h 1
10

1
40

1
80

1
120

1
140

|uex−uh |
|uex | 6.504512e−2 2.863497e−2 9.679815e−3 3.856029e−3 3.238966e−3

Table 6: Variation of relative L2 error norms according to parameter h for homogeneous Dirichlet problem in
the quarter disk domain using (D2).

Mesh step h 1
10

1
40

1
60

1
80

1
120

|uex−uh |
|uex | 6.494105e−2 2.470404e−2 1.024406e−2 8.240813e−3 5.464180e−3

where (r,θ) are the polar coordinates at the origin. Table 5 gives the relative error norms
for homogeneous Dirichlet problem in square domain, with η = h

2(λ+2µ)
, using J.E.B.C.

method (D1) with the cut approximate interface Σcut
h .

Now, we use the following variant g=q=0 and M=S= 1
η , (see D2 in Table 1).

The following computations are performed with η = 1e−10 to get the modeling er-
ror negligible compared to the discretization error using J.E.B.C. method (D2) with cut
approximate interface Σcut (see Table 6).

Fig. 9. Convergence for the L2−norm of the discretization error for the homogeneous

10−2 10−1

10−2

10−1

log(discretization step h )

lo
g(
‖u

ex
−

u h
‖/
‖u

ex
‖)

The J.E.B.C. methods with cut interface Σcut
h

E.B.C. method (D1),
E.B.C. method (D2),

Log(2h1)

Figure 9: The first order accuracy for (D1) and (D2) methods with cut interface in a quarter disk domain.
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Table 7: Variation of relative L2 error norms according to parameter h for non homogeneous Dirichlet problem
in the quarter disk domain using (D1).

Mesh step h 1
20

1
40

1
60

1
80

1
120

|uex−uh |
|uex | 3.026736e−1 1.168293e−1 9.872092e−2 6.252881e−2 3.941031e−2

Dirichlet elasticity problem with Σcut
h and using (D1) and D2 J.E.B.C. methods.

Non homogeneous Dirichlet case. We consider the below non homogeneous Dirichlet
Problem defined in Ω̃

P̃DNH


−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,

ũ=uD =
3
2

sin(2θ) on Σ,

where θ=arctan( y
x ), has the analytic solution

ũ(x,y)= ṽ(x,y)= xy(4−r2) in Ω̃, which r=
√

x2+y2.

The computations are illustrated in Table 7. In Fig. 10 we show a log-log plot of the errors
both displacement components u and v versus the discretization step h. Also shown is a
straight with slope of 1 which corresponds to first order accuracy for the method (D1).

The approximate solution obtained with the J.E.B.C. method (D1) and the analytic
one at the diagonal square section is represented in Fig. 11.
Robin or non homogeneous Neumann case. When the interface Σ is approximated by
the mesh volume edges into Σh, the non-homogeneous Neumann (or Robin) embedded
boundary condition case requires the surface correction in the scalar case, as shows the
test below. But in the vectorial one, the surface correction is not required

P̃N


−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,
σ(ũ)·n=q on Σ.

We have chosen f̃ such that the problem (P̃N) has the analytical solution

ũ(x,y)= ṽ(x,y)=4xy
(

1−exp
(1

4
(x2+x2−1)

))
in Ω̃,

where

q=

{
−2((λ+2µ)y(1−y2)+λy2

√
1−y2)nx−2µ(x(1−x2)+x2

√
1−x2)ny,

−2µ(y(1−y2)+y2
√

1−y2)nx−2((λ+2µ)x(1−x2)+λx2
√

1−x2)ny.
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Figure 10: The first order accuracy for (D1) J.E.B.C. method for non homogeneous Dirichlet problem.

Figure 11: Approximate solution and analytical one in the non homogeneous Dirichlet case at a diagonal square
section.

The fictitious domain is solved in Ω with the J.E.B.C. method (F) without exterior control,
as described in the Table 1, the results for the relative L2-norm error are registered in the
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Figure 12: The first order accuracy of the J.E.B.C. Method (F).

Table 8: Variation of relative L2 error norms according to parameter h for a Fourier problem in the quarter disk
domain using (F).

Mesh step h 1
10

1
20

1
40

1
80

1
140

‖uex−uh‖
‖uex‖ 9.777809e−1 3.026692e−1 1.168142e−1 6.250331e−2 3.349663e−2

Table 8.
Finally, In order to validate the J.E.B.C. method (F) for any Robin boundary condi-

tions, we now study a Fourier problem

P̃F


−∇·σ(ũ)= f̃ in Ω̃,

ũ=0 on Γ̃,
σ(ũ)·n=u+q on Σ,

which has the analytic solution

ũ(x,y)= ṽ(x,y)= xy(4−(x2+y2)) in Ω̃.

The fictitious domain problem is solved in Ω with the J.E.B.C. method (F) without ex-
terior control, as described in Table 1. We investigate in Fig. 13 the effect of the cut ap-
proximate interface Σcut

h and exterior one Σext
h . We observe the first-order accuracy for

the L2-norm for both approximated immersed interfaces Σcut
h and Σext

h , since the method
involving the cut interface is more accurate than the exterior one (see Fig. 13).
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Figure 13: Convergence for the L2-norm of the discretization error with h of the J.E.B.C. method (F) for the
Fourier problem with Σcut

h or Σext
h .

5 Conclusions and perspectives

An approach of the fictitious domain method to solve linear elasticity problems has been
introduced which is based on a sharp interface approach and treats boundary conditions
General immersed (Dirichlet, Neumann and Robin). A numerical finite volume scheme
with jumps of flux and solution through the immersed interface is used to calculate the
solution. The main advantage of this method is its low cost. Indeed, the numerical so-
lution is calculated on a simple Cartesian grid without locally modifying the numerical
scheme or introducing an unknown local. This method is a first-order accuracy.

In the next step of this work, we shall introduce another fictitious domain method
based on a diffuse interface approach and we will use a numerical finite element scheme
to deal with general immersed boundary conditions. These two fictitious domain meth-
ods remain of the first order. Then, each method will be combined with a local multi-level
algorithm refinement mesh to increase the accuracy of the solution.

The other perspective will be to extend these methods in the fictitious domain elastic-
ity problems with moving boundary conditions. These fictitious domain methods allow
to simulate the moving boundaries with a low computational cost and require no remesh-
ing of the domain.

Figure 13: Convergence for the L2-norm of the discretization error with h of the J.E.B.C. method (F) for the
Fourier problem with Σcut

h or Σext
h .

5 Conclusions and perspectives

An approach of the fictitious domain method to solve linear elasticity problems has been
introduced which is based on a sharp interface approach and treats boundary conditions
General immersed (Dirichlet, Neumann and Robin). A numerical finite volume scheme
with jumps of flux and solution through the immersed interface is used to calculate the
solution. The main advantage of this method is its low cost. Indeed, the numerical so-
lution is calculated on a simple Cartesian grid without locally modifying the numerical
scheme or introducing an unknown local. This method is a first-order accuracy.

In the next step of this work, we shall introduce another fictitious domain method
based on a diffuse interface approach and we will use a numerical finite element scheme
to deal with general immersed boundary conditions. These two fictitious domain meth-
ods remain of the first order. Then, each method will be combined with a local multi-level
algorithm refinement mesh to increase the accuracy of the solution.

The other perspective will be to extend these methods in the fictitious domain elastic-
ity problems with moving boundary conditions. These fictitious domain methods allow
to simulate the moving boundaries with a low computational cost and require no remesh-
ing of the domain.
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l’Université de Montreal, 1965.

[15] S. MESBAHI, AND N. ALAA, Mathematical analysis of a reaction diffusion model for image restora-
tion, Ann. Univ. of Craiova, Math. Comput. Sci. Ser., 42(1) (2015), pp. 70–79.
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