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Abstract. The forced-vibration response of a simply-supported isotropic thick-walled
hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave
excitations on its curved surfaces is studied within the framework of linear elastody-
namics. Exact semi-analytical solutions for the steady-state displacement field of the
cylinder are constructed using recently-published parametric solutions to the Navier-
Lamé equation. Formal application of the standing-wave boundary conditions gener-
ates three parameter-dependent 6×6 linear systems, each of which can be numerically
solved in order to determine the parametric response of the cylinder’s displacement
field under various conditions. The method of solution is direct and demonstrates
a general approach that can be applied to solve many other elastodynamic forced-
response problems involving isotropic elastic cylinders. As an application, and con-
sidering several examples, the obtained solution is used to compute the steady-state
frequency response in a few specific low-order excitation cases. In each case, the so-
lution generates a series of resonances that are in exact correspondence with a unique
subset of the natural frequencies of the simply-supported cylinder. The considered
problem is of general theoretical interest in structural mechanics and acoustics and
more practically serves as a benchmark forced-vibration problem involving a thick-
walled hollow elastic cylinder.

AMS subject classifications: 74H45, 74J05, 35Q74, 74B05
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1 Introduction

The vibration of an isotropic thick-walled hollow elastic circular cylinder is one of the
classical applied problems of elastodynamics and has been of longstanding general in-
terest to applied mathematicians, acousticians, engineers, and physicists [1–4]. There
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is a vast literature on the free vibration of finite-length isotropic hollow elastic circu-
lar cylinders, and while much of the fundamental work on the subject was carried out
prior to the 1980s, there has, over the last three decades, been a steady stream of pub-
lications devoted to developing and testing various methodological approaches to ob-
taining natural frequencies and mode shapes under a variety of end conditions (see, for
example, [5–14] and references therein). The literature on the forced vibration of hollow
elastic cylinders (finite-length, isotropic, circular, or otherwise) is much smaller in com-
parison. Forced-vibration analyses of thick-walled elastic cylinders based on the exact
three-dimensional (3D) theory of linear elasticity, in particular, remain scarce. In the con-
text of forced-vibration analyses based on the Navier-Lamé equation of motion, the most
notable and general work is due to Ebenezer and co-workers [15] (ERP), who devised
an exact series method to determine the steady-state vibration response of a finite-length
isotropic hollow elastic circular cylinder subjected to arbitrary axisymmetric excitations
on its surfaces.

As pointed out in many reviews (see, for example, [3]), many fundamental forced-
vibration problems involving hollow elastic cylinders have not yet been studied or solved
using the exact 3D theory of linear elasticity. A useful and analytically tractable model
problem that has been surprisingly overlooked is the steady-state vibration response
problem for a simply-supported isotropic thick-walled hollow elastic circular cylinder
subjected to arbitrary excitations on its curved surfaces. For a simply-supported cylin-
der, arbitrary asymmetric excitations on the curved surfaces can be naturally expressed as
superpositions of two-dimensional (2D) harmonic standing waves in the circumferential
and axial directions. Thus, the precursor is to consider individual 2D harmonic standing-
wave excitations on the curved surfaces. This latter problem is theoretically significant in
its own right since it is one of the few model problems for which the effects of individual
harmonic excitations on the curved surfaces of the cylinder can be isolated and studied
without having to incorporate non-trivial corrections in order to simultaneously satisfy
the end conditions. In general, the exact nature of these effects will be obscured by other
excitations needed to generate the desired end conditions.†

The free-vibration analog of the proposed problem, that is, the free-vibration prob-
lem for a simply-supported isotropic (thick-walled) hollow elastic circular cylinder, is
an important benchmark problem in many numerical free-vibration studies (see, for ex-
ample, [13] and references therein). Explicit analytical formulations and mathematical
analyses of this problem are however not easy to find in the literature. Weingarten and
Reismann [16] applied the method of eigenfunction expansions to this problem and ob-
tained an implicit solution in 1974. The free-vibration analog can also be extracted as
a special case of the largely overlooked work of Prasad and Jain [17], who, already in
the mid 1960s, considered the problem of free harmonic standing waves in a simply-

†Incidentally, a corollary of ERP’s work [15] is that arbitrary axisymmetric excitations on the curved surfaces
of a finite-length hollow elastic cylinder can be mathematically expressed as (finite or infinite) superpositions
of one-dimensional harmonic standing waves in the axial direction. Curiously, the effect of the individual
harmonics on the steady-state vibration response was not considered in [15].
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supported transversely isotropic hollow elastic circular cylinder. In the two aforemen-
tioned works, the authors did not actually solve their obtained frequency equations, and
thus, did not explicitly obtain any natural frequencies or mode shapes. These have how-
ever since been obtained both indirectly‡ and through the use of specialized methods
tailored to solving the general free-vibration problem for an isotropic hollow elastic cir-
cular cylinder [6, 8, 13, 14].

Although hitherto unstudied, the problem of interest in this paper is not without
precedent. Hamidzadeh et al. (see [3] and references therein) considered the problem of
determining the resonant frequencies of an infinitely-long isotropic thick-walled elastic
circular cylinder subjected to harmonic boundary stresses. Using a ”frequency sweep-
ing” procedure (see [3] for details), they calculated the resonant frequencies and subse-
quently compared them to the natural frequencies given in [18]; dissimilarities were ob-
served for short cylinders and fundamental resonant modes. The boundary-value prob-
lem considered by Hamidzadeh et al. is the infinite-cylinder analog of the boundary-
value problem that we seek to study in this paper.

Before entering into details, it is useful to give a brief overview of the paper. In Sec-
tion 2, we define the boundary-value problem of interest. In Sections 4-6, we construct,
exploiting certain known solutions to the Navier-Lamé equation [19] (Section 3), an ex-
act semi-analytical 3D elastodynamic solution to the problem. The method of solution
is direct and demonstrates a general approach that can be applied to solve other similar
forced-vibration problems involving elastic cylinders. The solution itself, although exact
and given in closed form, involves six constants whose values are not given in explicit an-
alytical form. It is in this sense that the obtained solution is a ”semi-analytical” solution.
Some numerical examples are subsequently given in Sections 8-9, wherein the obtained
solution is used to study the steady-state frequency response in some example excita-
tion cases. In each case, consistency with published natural frequency data is observed.
More detailed conclusions based on our numerical investigations are summarized in Sec-
tion 11.

2 Mathematical definition of the problem

Consider a simply-supported isotropic hollow elastic circular cylinder of length L and
inner and outer radii R1 and R2, respectively. The geometrical parameters {L,R1,R2} are
all finite, but otherwise arbitrary. Suppose the cylinder is subjected to time-harmonic
stresses on its curved surfaces and furthermore that these stresses are spatially non-
uniform and are such that the circumferential and longitudinal variations are also har-
monic. In this paper, we shall work in the circular cylindrical coordinate system wherein

‡It is a well-known and often-cited fact that the characteristics of free harmonic standing waves in a finite-
length simply-supported hollow elastic cylinder are formally equivalent to those of free harmonic traveling
waves in a corresponding cylinder of infinite length, the latter of which are well-studied (see, for exam-
ple, [18]). Numerical solutions to the free standing-wave problem are thus readily available as a corollary
(see [1] for further discussions).
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all physical quantities depend on the spatial coordinates (r,θ,z), which denote the radial,
circumferential, and longitudinal coordinates, respectively, and on the time t. Using this
notation, the boundary stresses on the curved surfaces are:{

σrr(R1,θ,z,t)
σrr(R2,θ,z,t)

}
=

{
A
D

}
cos(mθ)sin

(
kπ

L
z
)

sin(ωt), (2.1a){
σrθ(R1,θ,z,t)
σrθ(R2,θ,z,t)

}
=

{
B
E

}
sin(mθ)sin

(
kπ

L
z
)

sin(ωt), (2.1b){
σrz(R1,θ,z,t)
σrz(R2,θ,z,t)

}
=

{
C
F

}
cos(mθ)cos

(
kπ

L
z
)

sin(ωt), (2.1c)

where σrr(r,θ,z,t) is a normal component of stress, σrθ(r,θ,z,t) and σrz(r,θ,z,t) are shear
components of stress, {A,B,C,D,E ,F} are prescribed constant stresses (each having units
of pressure), k and m are prescribed non-negative integers, and ω > 0 is the prescribed
angular frequency of excitation. Since the harmonic temporal variation is separable from
the harmonic spatial variations in each of the excitations (2.1a)-(2.1c), these represent
harmonic standing-wave excitations.

The specific problem of interest here is to determine the elastodynamic response of the
cylinder when it is subjected to the non-uniform distribution of stress (2.1) on its curved
surfaces. In other words, we seek to determine the (frequency-dependent) displacement
field at all points of the cylinder. The governing equation of motion for the displacement
is the Navier-Lamé (NL) equation, which can be written in vector form as [20]:

(λ+2µ)∇(∇·u)−µ∇×(∇×u)+b=ρ
∂2u
∂t2 , (2.2)

where u≡ u(r,θ,z,t) is the displacement field, λ > 0 and µ > 0 are the first and second
Lamé constants, respectively§, and ρ> 0 is the (constant) density of the cylinder. Since
there are only surface forces acting on the cylinder, the local body force is zero (i.e., b=0).
The radial, circumferential, and longitudinal components of u shall here be denoted by
ur(r,θ,z,t), uθ(r,θ,z,t), and uz(r,θ,z,t), respectively.

Although we have stated that the cylinder is simply supported, we have not yet spec-
ified the boundary conditions at the flat ends of the cylinder, which are situated at z=0
and z = L. The classical simply-supported (SS) boundary conditions for the stress and
displacement at the flat ends of the cylinder are:

ur(r,θ,0,t)=ur(r,θ,L,t)=0, (2.3a)
uθ(r,θ,0,t)=uθ(r,θ,L,t)=0, (2.3b)
σzz(r,θ,0,t)=σzz(r,θ,L,t)=0, (2.3c)

where σzz(r,θ,z,t) is the normal component of stress along the axis of the cylinder.

§Note that the first Lamé constant λ need not be positive, but we have assumed it to be so for the purposes
of this paper.
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Conditions (2.1a)-(2.1c) must be satisfied for all θ ∈ [0,2π], z∈ (0,L), and arbitrary t.
Conditions (2.3a)-(2.3c) must be satisfied for all r ∈ [R1,R2], θ ∈ [0,2π], and arbitrary t.
Note that we have not given any information about the displacement field and its time
derivatives at some initial time t= t0, and thus the problem as defined is not an initial-
boundary-value problem. Note that, for forced motion, at least one of {A,B,C,D,E ,F}
must be non-zero when m 6=0. If m=0, then at least one of {A,C,D,F} is required to be
non-zero in boundary conditions (2.1).

For future reference, we cite here the cylindrical stress-displacement relations from
the linear theory of elasticity [3]:

σrr =(λ+2µ)
∂ur

∂r
+

λ

r

(
∂uθ

∂θ
+ur

)
+λ

∂uz

∂z
, (2.4a)

σθθ =λ
∂ur

∂r
+
(λ+2µ)

r

(
∂uθ

∂θ
+ur

)
+λ

∂uz

∂z
, (2.4b)

σzz =λ
∂ur

∂r
+

λ

r

(
∂uθ

∂θ
+ur

)
+(λ+2µ)

∂uz

∂z
, (2.4c)

σrθ =µ

(
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
=σθr, (2.4d)

σrz =µ

(
∂ur

∂z
+

∂uz

∂r

)
=σzr, (2.4e)

σθz =µ

(
∂uθ

∂z
+

1
r

∂uz

∂θ

)
=σzθ . (2.4f)

Relations (2.4), which provide the general mathematical connection between the com-
ponents of the displacement and stress fields, will be used extensively in solving the
above-defined boundary-value problem.

Since the excitations are time-harmonic, relations (2.4) and solution uniqueness to-
gether imply that the response of the cylinder must necessarily be so as well. In other
words, the displacement field u(r,θ,z,t) = ũ(r,θ,z)sin(ωt), where ũ(r,θ,z) denotes the
stationary or time-independent part of the displacement field. It is the latter object that
we ultimately seek to determine and to then study.

3 Some parametric solutions to the Navier-Lamé equation

In the absence of body forces, the following parametric solutions to Eq. (2.2) can be ob-
tained using a Buchwald decomposition of the displacement field (see [19] for details):

ur =

(
2

∑
s=1

[
as

{
J′n(αsr)
I′n(αsr)

}
+bs

{
Y′n(αsr)
K′n(αsr)

}][
cs cos(nθ)+ds sin(nθ)

])
φz(z)φt(t)

+
n
r

[
a3

{
Jn(α2r)
In(α2r)

}
+b3

{
Yn(α2r)
Kn(α2r)

}][
−c3sin(nθ)+d3cos(nθ)

]
χz(z)χt(t), (3.1a)
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uθ =
n
r

(
2

∑
s=1

[
as

{
Jn(αsr)
In(αsr)

}
+bs

{
Yn(αsr)
Kn(αsr)

}][
−cs sin(nθ)+ds cos(nθ)

])
φz(z)φt(t)

−
[

a3

{
J′n(α2r)
I′n(α2r)

}
+b3

{
Y′n(α2r)
K′n(α2r)

}][
c3cos(nθ)+d3sin(nθ)

]
χz(z)χt(t), (3.1b)

uz =

(
2

∑
s=1

γs

[
as

{
Jn(αsr)
In(αsr)

}
+bs

{
Yn(αsr)
Kn(αsr)

}][
cs cos(nθ)+ds sin(nθ)

]) dψz(z)
dz

ψt(t), (3.1c)

where n is a non-negative integer and {a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3} are arbitrary
constants. The constituents of Eqs. (3.1a)-(3.1c) are as follows:
(i) The constants α1 and α2 in the arguments of the Bessel functions are given by

α1=

√ ∣∣∣∣κ− ρτ

(λ+2µ)

∣∣∣∣ , α2=

√ ∣∣∣∣κ− ρτ

µ

∣∣∣∣ , (3.2)

where κ∈R\{0} and τ∈R\{0} are free parameters.
(ii) The correct linear combination of Bessel functions is determined by the relative values
of the parameters {λ,µ,ρ,κ,τ} as given in Table 1.

Table 1: Conditions on the radial part of each term in Eqs. (3.1a)-(3.1c).

Linear Combination s=1 term s=2 term
{Jn(αsr),Yn(αsr)} κ> ρτ

(λ+2µ)
κ> ρτ

µ

{In(αsr),Kn(αsr)} κ< ρτ
(λ+2µ)

κ< ρτ
µ

(iii) In Eqs. (3.1a)-(3.1b), primes denote differentiation with respect to the radial coordi-
nate r.
(iv) The functions φz(z), φt(t), ψz(z), ψt(t), χz(z), and χt(t) are given by

φz(z)=ψz(z)=

{
Ecos

(√
|κ|z

)
+Fsin

(√
|κ|z

)
, if κ<0,

Eexp
(
−
√

κz
)
+Fexp

(√
κz
)

, if κ>0,
(3.3a)

φt(t)=ψt(t)=

{
Gcos

(√
|τ|t
)
+Hsin

(√
|τ|t
)

, if τ<0,
Gexp

(
−
√

τt
)
+Hexp

(√
τt
)

, if τ>0,
(3.3b)

χz(z)=

{
Ẽcos

(√
|κ|z

)
+ F̃sin

(√
|κ|z

)
, if κ<0,

Ẽexp
(
−
√

κz
)
+ F̃exp

(√
κz
)

, if κ>0,
(3.3c)

χt(t)=

{
G̃cos

(√
|τ|t
)
+ H̃sin

(√
|τ|t
)

, if τ<0,

G̃exp
(
−
√

τt
)
+ H̃exp

(√
τt
)

, if τ>0,
(3.3d)

where
{

E,F,G,H,Ẽ, F̃,G̃,H̃
}

are arbitrary constants.
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(v) The constant γs in Eq. (3.1c) is given by

γs =

 1, if s=1,
1
κ

(
κ− ρτ

µ

)
, if s=2.

(3.4)

Note that Eqs. (3.1a)-(3.1c) are valid so long as (λ+2µ)κ 6=ρτ (i.e., α1 6=0) and µκ 6=ρτ (i.e.,
α2 6=0); otherwise the radial parts must be modified as discussed in [19]. In the following,
these conditions will be satisfied, by construction.

4 General form of the displacement field

4.1 The general case k 6=0

When k 6=0, general solutions suited to the boundary-value problem defined in Section 2
can be easily constructed from the parametric solutions given in Section 3 by identifying
one or a combination of the physical parameters {L,R1,R2,k,ω} with the (free) mathe-
matical parameters κ and τ. Let

κ=−
(

kπ

L

)2

and τ=−ω2,

and then choose particular solutions defined by taking E=0 in Eq. (3.3a), Ẽ=0 in Eq. (3.3c),
G= 0 in Eq. (3.3b), G̃= 0 in Eq. (3.3d), and n=m in Eqs. (3.1a)-(3.1c). Noting the forms
of Eqs. (3.1a)-(3.1c) and comparing (2.1a) with (2.4a), (2.1b) with (2.4d), and (2.1c) with
(2.4e), we may immediately deduce that the axial and temporal parts of the displacement
components are given by

φz(z)=ψz(z)=Fsin
(

kπ

L
z
)

, χz(z)= F̃sin
(

kπ

L
z
)

, (4.1a)

φt(t)=ψt(t)=Hsin(ωt), χt(t)= H̃sin(ωt). (4.1b)

By defining a new set of arbitrary constants

Ās≡ ascsFH, B̄s≡bscsFH, Ãs≡ asdsFH, B̃s≡bsdsFH, (s=1,2), (4.2a)

Ā3≡ a3d3F̃H̃, B̄3≡b3d3F̃H̃, Ã3≡ a3c3F̃H̃, B̃3≡b3c3F̃H̃, (4.2b)

the following two independent particular solutions may be extracted from Eqs. (3.1a)-
(3.1c):

ur =

(
2

∑
s=1

[
Ãs

{
1©
}
+ B̃s

{
2©
}]
−m

r

[
Ã3

{
3©
}
+ B̃3

{
4©
}])

sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (4.3a)

uθ =

(
m
r

(
2

∑
s=1

[
Ãs

{
5©
}
+ B̃s

{
6©
}])

−
[

Ã3

{
7©
}
+ B̃3

{
8©
}])

cos(mθ)sin
(

kπ

L
z
)

sin(ωt), (4.3b)

uz =

(
kπ

L

)( 2

∑
s=1

γs

[
Ãs

{
9©
}
+ B̃s

{
10©
}])

sin(mθ)cos
(

kπ

L
z
)

sin(ωt), (4.3c)
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and

ur =

(
2

∑
s=1

[
Ās

{
1©
}
+ B̄s

{
2©
}]

+
m
r

[
Ā3

{
3©
}
+ B̄3

{
4©
}])

cos(mθ)sin
(

kπ

L
z
)

sin(ωt), (4.4a)

uθ =−
(

m
r

(
2

∑
s=1

[
Ās

{
5©
}
+ B̄s

{
6©
}])

+ Ā3

{
7©
}
+ B̄3

{
8©
})

sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (4.4b)

uz =

(
kπ

L

)( 2

∑
s=1

γs

[
Ās

{
9©
}
+ B̄s

{
10©
}])

cos(mθ)cos
(

kπ

L
z
)

sin(ωt), (4.4c)

where

{
1©
}
=

 J′m(αsr)=
m
r

Jm(αsr)−αs Jm+1(αsr)

I′m(αsr)=
m
r

Im(αsr)+αs Im+1(αsr)

, (4.5a)

{
2©
}
=

 Y′m(αsr)=
m
r

Ym(αsr)−αsYm+1(αsr)

K′m(αsr)=
m
r

Km(αsr)−αsKm+1(αsr)

, (4.5b)

{
3©
}
=

{
Jm(α2r)
Im(α2r)

}
,
{

4©
}
=

{
Ym(α2r)
Km(α2r)

}
, (4.5c){

5©
}
=
{

9©
}
=

{
Jm(αsr)
Im(αsr)

}
,
{

6©
}
=
{

10©
}
=

{
Ym(αsr)
Km(αsr)

}
, (4.5d)

{
7©
}
=

 J′m(α2r)=
m
r

Jm(α2r)−α2 Jm+1(α2r)

I′m(α2r)=
m
r

Im(α2r)+α2 Im+1(α2r)

, (4.5e)

{
8©
}
=

 Y′m(α2r)=
m
r

Ym(α2r)−α2Ym+1(α2r)

K′m(α2r)=
m
r

Km(α2r)−α2Km+1(α2r)

. (4.5f)

Note that particular solutions (4.3) and (4.4) automatically satisfy end conditions (2.3a)
and (2.3b). Note also that (by virtue of (2.4c))

σzz(r,θ,z,t)=F(r,θ)sin
(

kπ

L
z
)

sin(ωt),

where the precise form of F(r,θ) is not relevant for our purposes, and thus displace-
ments (4.3) and (4.4) as well automatically satisfy end conditions (2.3c). It can be deduced
from inspection of (2.4), (4.3), and (4.4), that solution (4.3) is incompatible with bound-
ary conditions (2.1a)-(2.1c), whereas solution (4.4) is compatible. Solution (4.4) therefore
furnishes the general form of the displacement field appropriate to the boundary-value
problem defined in Section 2. Henceforth, we switch to a less cumbersome notation by
dropping the bars above the arbitrary constants.
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Table 2: Parametric relationships defining three distinct sub-problems. In the second column, the relationship is
expressed in terms of the physical excitation parameters k and ω, whereas in the third column, the relationship
is expressed in terms of the mathematical parameters κ and τ.

Case Parametric Relationship (k, ω) Parametric Relationship (κ, τ)

1 ρω2

(λ+2µ)
< ρω2

µ <
(

kπ
L

)2
κ< ρτ

(λ+2µ)
and κ< ρτ

µ

2
(

kπ
L

)2
< ρω2

(λ+2µ)
< ρω2

µ κ> ρτ
(λ+2µ)

and κ> ρτ
µ

3 ρω2

(λ+2µ)
<
(

kπ
L

)2
< ρω2

µ κ< ρτ
(λ+2µ)

and κ> ρτ
µ

The proper choices of Bessel functions in the radial parts of the displacement com-
ponents depend on the relative values of the material and excitation parameters; three
cases can be distinguished as listed in Table 2. In order to provide a complete solution
that involves only real-valued Bessel functions, the problem will be solved separately for
each of these three cases. Note that there are two degenerate cases not included in Table
2:

(i)
ρω2

(λ+2µ)
=

(
kπ

L

)2

and (ii)
ρω2

µ
=

(
kπ

L

)2

.

These two cases require special treatment and shall not be considered here. As a final
remark, note that solution (4.4) is not valid when k=0.

4.2 The special case k=0

It can be established (employing results from [19] or otherwise) that

ur =0, uθ =0, uz =
[

AJm(αr)+BYm(αr)
]

cos(mθ)sin(ωt), (4.6)

where α=
√

ρω2/µ, is a solution to Eq. (2.2) that is furthermore compatible with bound-
ary conditions (2.1a)-(2.1c) when k=0. Solution (4.6) therefore furnishes the general form
of the displacement field appropriate to the boundary-value problem defined in Section 2
in the special case k=0.

5 Analytics I: general case k 6=0

5.1 Case 1: ρω2

(λ+2µ)
< ρω2

µ <
( kπ

L
)2

In this case, κ < ρτ/(λ+2µ) and κ < ρτ/µ (c.f. Table 2), and thus, according to Table 1,
linear combinations of {Im(αsr),Km(αsr)} (and their derivatives) should be employed in
the radial parts of (4.4) (i.e., the modified Bessel functions should be chosen from (4.5)),
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where the constants α1 and α2, as determined from Eq. (3.2), are:

α1=

√(
kπ

L

)2

− ρω2

(λ+2µ)
, α2=

√(
kπ

L

)2

− ρω2

µ
. (5.1)

The constant γs in Eq. (4.4c), as determined from Eq. (3.4), is given by

γs =


1, if s=1,

1−
[(

ρω2

µ

)/( kπ

L

)2
]

, if s=2.
(5.2)

Inputting the above ingredients into (4.4), the displacement components take the form:

ur =

{
2

∑
s=1

[
As

(
m
r

Im(αsr)+αs Im+1(αsr)
)
+Bs

(
m
r

Km(αsr)−αsKm+1(αsr)
)]

+
m
r

[
A3 Im(α2r)+B3Km(α2r)

]}
cos(mθ)sin

(
kπ

L
z
)

sin(ωt), (5.3a)

uθ =−
{

m
r

(
2

∑
s=1

[
As Im(αsr)+BsKm(αsr)

])
+A3

[
m
r

Im(α2r)+α2 Im+1(α2r)
]

+B3

[
m
r

Km(α2r)−α2Km+1(α2r)
]}

sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.3b)

uz =

(
kπ

L

){ 2

∑
s=1

γs

[
As Im(αsr)+BsKm(αsr)

]}
cos(mθ)cos

(
kπ

L
z
)

sin(ωt), (5.3c)

where the constants αs and γs are given by Eqs. (5.1) and (5.2), respectively.
We must now determine the values of the constants {A1,A2,A3,B1,B2,B3} in

Eqs. (5.3a)-(5.3c) that satisfy boundary conditions (2.1a)-(2.1c). Substituting Eqs. (5.3a)-
(5.3c) into Eqs. (2.4a), (2.4d), and (2.4e), and performing the lengthy algebra yields the
stress components:

σrr(r,θ,z,t)=2µ

{
2

∑
s=1

As

[(
βs

2µ
+

m(m−1)
r2

)
Im(αsr)−

αs

r
Im+1(αsr)

]
+A3

[
m(m−1)

r2 Im(α2r)+
α2m

r
Im+1(α2r)

]
+

2

∑
s=1

Bs

[(
βs

2µ
+

m(m−1)
r2

)
Km(αsr)+

αs

r
Km+1(αsr)

]

+B3

[
m(m−1)

r2 Km(α2r)− α2m
r

Km+1(α2r)
]}
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×cos(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.4a)

where

βs =λ

[
α2

s−γs

(
kπ

L

)2
]
+2µα2

s , s=1,2, (5.4b)

and

σrθ(r,θ,z,t)=−2µ

{
2

∑
s=1

As

[
m(m−1)

r2 Im(αsr)+
αsm

r
Im+1(αsr)

]
+A3

[(
α2

2
2
+

m(m−1)
r2

)
Im(α2r)− α2

r
Im+1(α2r)

]
+

2

∑
s=1

Bs

[
m(m−1)

r2 Km(αsr)−
αsm

r
Km+1(αsr)

]

+B3

[(
α2

2
2
+

m(m−1)
r2

)
Km(α2r)+

α2

r
Km+1(α2r)

]}

×sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.5a)

σrz(r,θ,z,t)=µ

(
kπ

L

){ 2

∑
s=1

As (1+γs)

[
m
r

Im(αsr)+αs Im+1(αsr)
]

+A3

[
m
r

Im(α2r)
]
+

2

∑
s=1

Bs (1+γs)

[
m
r

Km(αsr)−αsKm+1(αsr)
]

+B3

[
m
r

Km(α2r)
]}

cos(mθ)cos
(

kπ

L
z
)

sin(ωt). (5.5b)

Application of the boundary conditions then proceeds by substituting Eqs. (5.4), (5.5a),
and (5.5b) into the LHSs of Eqs. (2.1a), (2.1b), and (2.1c), respectively, and then canceling
identical sinusoidal terms on both sides of the resulting equations. When m 6= 0, this
procedure yields six conditions that can be compactly written as the following 6×6 linear
system: [

A1 B1
A2 B2

][
XA
XB

]
=

[
S1
S2

]
, (5.6a)

where, using a shorthand notation, the 3×3 matrix blocks {Ai,Bi : i=1,2} are

Ai =

 fm,i−vm+1,i gm,i−wm+1,i (m−1)qm,i+mwm+1,i
(m−1)pm,i+mvm+1,i (m−1)qm,i+mwm+1,i hm,i−wm+1,i

2(pm,i+vm+1,i) (1+γ2)(qm,i+wm+1,i) qm,i

, (5.6b)
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Bi =

 f̃m,i+ ṽm+1,i g̃m,i+w̃m+1,i (m−1)q̃m,i−mw̃m+1,i

(m−1) p̃m,i−mṽm+1,i (m−1)q̃m,i−mw̃m+1,i h̃m,i+w̃m+1,i
2( p̃m,i− ṽm+1,i) (1+γ2)(q̃m,i−w̃m+1,i) q̃m,i

, (5.6c)

and the 3×1 column blocks {XA,XB,S1,S2} are

XA =

 A1
A2
A3

, XB =

 B1
B2
B3

, S1=

 A

−B

C

, S2=

 D

−E

F

. (5.7)

The shorthand notation employed in Eqs. (5.6b)-(5.7) is as follows:{
fm,i

f̃m,i

}
≡
(

β1Ri

2µ
+

m(m−1)
Ri

){
Im(α1Ri)
Km(α1Ri)

}
, i=1,2, (5.8a){

gm,i
g̃m,i

}
≡
(

β2Ri

2µ
+

m(m−1)
Ri

){
Im(α2Ri)
Km(α2Ri)

}
, i=1,2, (5.8b){

hm,i

h̃m,i

}
≡
(

α2
2Ri

2
+

m(m−1)
Ri

){
Im(α2Ri)
Km(α2Ri)

}
, i=1,2, (5.8c){

pm,i
p̃m,i

}
≡ m

Ri

{
Im(α1Ri)
Km(α1Ri)

}
, i=1,2, (5.8d){

qm,i
q̃m,i

}
≡ m

Ri

{
Im(α2Ri)
Km(α2Ri)

}
, i=1,2, (5.8e){

vm+1,i
ṽm+1,i

}
≡α1

{
Im+1(α1Ri)
Km+1(α1Ri)

}
, i=1,2, (5.8f){

wm+1,i
w̃m+1,i

}
≡α2

{
Im+1(α2Ri)
Km+1(α2Ri)

}
, i=1,2, (5.8g)

and

[A B C D E F]≡
[
AR1

2µ

BR1

2µ

CL
kπµ

DR2

2µ

ER2

2µ

FL
kπµ

]
. (5.8h)

5.1.1 Special case: m=0

When m=0, uθ =0, σrθ =0, and boundary conditions (2.1b) are identically satisfied. Ap-
plication of boundary conditions (2.1a) and (2.1c) yields the 4×4 linear system:

f0,1−v1,1 g0,1−w1,1 f̃0,1+ ṽ1,1 g̃0,1+w̃1,1
2v1,1 (1+γ2)w1,1 −2ṽ1,1 −(1+γ2)w̃1,1

f0,2−v1,2 g0,2−w1,2 f̃0,2+ ṽ1,2 g̃0,2+w̃1,2
2v1,2 (1+γ2)w1,2 −2ṽ1,2 −(1+γ2)w̃1,2




A1
A2
B1
B2

=


A

C

D

F

, (5.9)

where the matrix elements are the evaluated zero- and first-order Bessel functions ob-
tained from substituting m=0 in Eqs. (5.8a), (5.8b), (5.8f), and (5.8g).
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In this special case, the non-zero components of the displacement field reduce to:

ur(r,z,t)=

{
2

∑
s=1

αs

[
As I1(αsr)−BsK1(αsr)

]}
sin
(

kπ

L
z
)

sin(ωt), (5.10a)

uz(r,z,t)=
(

kπ

L

){ 2

∑
s=1

γs

[
As I0(αsr)+BsK0(αsr)

]}
cos
(

kπ

L
z
)

sin(ωt), (5.10b)

where constants αs and γs are given by Eqs. (5.1) and (5.2), respectively, and the constants
{A1,A2,B1,B2} are those obtained from solving Eq. (5.9).

5.2 Case 2: ( kπ
L )2< ρω2

(λ+2µ)
< ρω2

µ

According to Tables 1 and 2, the Bessel functions {Jm(αsr),Ym(αsr)} (and their deriva-
tives) should in this case be employed in the radial parts of (4.4) (i.e., the unmodified
Bessel functions should be chosen from (4.5)). The displacement components thus take
the form:

ur =

{
2

∑
s=1

[
As

(
m
r

Jm(αsr)−αs Jm+1(αsr)
)
+Bs

(
m
r

Ym(αsr)−αsYm+1(αsr)
)]

+
m
r

[
A3 Jm(α2r)+B3Ym(α2r)

]}
cos(mθ)sin

(
kπ

L
z
)

sin(ωt), (5.11a)

uθ =−
{

m
r

(
2

∑
s=1

[
As Jm(αsr)+BsYm(αsr)

])
+A3

[
m
r

Jm(α2r)−α2 Jm+1(α2r)
]

+B3

[
m
r

Ym(α2r)−α2Ym+1(α2r)
]}

sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.11b)

uz =

(
kπ

L

){ 2

∑
s=1

γs

[
As Jm(αsr)+BsYm(αsr)

]}
cos(mθ)cos

(
kπ

L
z
)

sin(ωt), (5.11c)

where

α1=

√
−
(

kπ

L

)2

+
ρω2

(λ+2µ)
, α2=

√
−
(

kπ

L

)2

+
ρω2

µ
, (5.12)

and γs is again given by Eq. (5.2).
The constants {A1,A2,A3,B1,B2,B3} in Eqs. (5.11a)-(5.11c) must as before be chosen so

as to satisfy boundary conditions (2.1). Proceeding as in the previous case, we first obtain
general formulas for the radial components of the stress field. Substituting Eqs. (5.11a)-
(5.11c) into Eqs. (2.4a), (2.4d), and (2.4e), and performing the lengthy algebra yields the
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required stress components:

σrr(r,θ,z,t)=2µ

{
2

∑
s=1

As

[(
− ηs

2µ
+

m(m−1)
r2

)
Jm(αsr)+

αs

r
Jm+1(αsr)

]
+A3

[
m(m−1)

r2 Jm(α2r)− α2m
r

Jm+1(α2r)
]

+
2

∑
s=1

Bs

[(
− ηs

2µ
+

m(m−1)
r2

)
Ym(αsr)+

αs

r
Ym+1(αsr)

]

+B3

[
m(m−1)

r2 Ym(α2r)− α2m
r

Ym+1(α2r)
]}

×cos(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.13a)

where

ηs =λ

[
α2

s +γs

(
kπ

L

)2
]
+2µα2

s , s=1,2, (5.13b)

and

σrθ(r,θ,z,t)=−2µ

{
2

∑
s=1

As

[
m(m−1)

r2 Jm(αsr)−
αsm

r
Jm+1(αsr)

]
+A3

[(
m(m−1)

r2 − α2
2

2

)
Jm(α2r)+

α2

r
Jm+1(α2r)

]
+

2

∑
s=1

Bs

[
m(m−1)

r2 Ym(αsr)−
αsm

r
Ym+1(αsr)

]

+B3

[(
m(m−1)

r2 − α2
2

2

)
Ym(α2r)+

α2

r
Ym+1(α2r)

]}

×sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.14a)

σrz(r,θ,z,t)=µ

(
kπ

L

){ 2

∑
s=1

As (1+γs)

[
m
r

Jm(αsr)−αs Jm+1(αsr)
]

+A3

[
m
r

Jm(α2r)
]
+

2

∑
s=1

Bs (1+γs)

[
m
r

Ym(αsr)−αsYm+1(αsr)
]

+B3

[
m
r

Ym(α2r)
]}

cos(mθ)cos
(

kπ

L
z
)

sin(ωt). (5.14b)

When m 6=0, application of the boundary conditions (2.1) as described in Section 5.1 yields
six conditions involving the constants {A1,A2,A3,B1,B2,B3} that can again be cast in the
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form (5.6a), where, in the present case, the 3×3 matrix blocks {Ai,Bi : i=1,2} are

Ai =

 Fm,i+Vm+1,i Gm,i+Wm+1,i (m−1)Qm,i−mWm+1,i
(m−1)Pm,i−mVm+1,i (m−1)Qm,i−mWm+1,i Hm,i+Wm+1,i

2(Pm,i−Vm+1,i) (1+γ2)(Qm,i−Wm+1,i) Qm,i

, (5.15a)

Bi =

 F̃m,i+Ṽm+1,i G̃m,i+W̃m+1,i (m−1)Q̃m,i−mW̃m+1,i
(m−1)P̃m,i−mṼm+1,i (m−1)Q̃m,i−mW̃m+1,i H̃m,i+W̃m+1,i

2
(

P̃m,i−Ṽm+1,i

)
(1+γ2)

(
Q̃m,i−W̃m+1,i

)
Q̃m,i

, (5.15b)

and the 3×1 column blocks {XA,XB,S1,S2} are as given by (5.7) and (5.8h). The shorthand
notation employed in Eqs. (5.15a) and (5.15b) is as follows:

{
Fm,i

F̃m,i

}
≡
(
−η1Ri

2µ
+

m(m−1)
Ri

){
Jm(α1Ri)
Ym(α1Ri)

}
, i=1,2, (5.16a){

Gm,i

G̃m,i

}
≡
(
−η2Ri

2µ
+

m(m−1)
Ri

){
Jm(α2Ri)
Ym(α2Ri)

}
, i=1,2, (5.16b){

Hm,i

H̃m,i

}
≡
(
−α2

2Ri

2
+

m(m−1)
Ri

){
Jm(α2Ri)
Ym(α2Ri)

}
, i=1,2, (5.16c){

Pm,i

P̃m,i

}
≡ m

Ri

{
Jm(α1Ri)
Ym(α1Ri)

}
, i=1,2, (5.16d){

Qm,i

Q̃m,i

}
≡ m

Ri

{
Jm(α2Ri)
Ym(α2Ri)

}
, i=1,2, (5.16e){

Vm+1,i

Ṽm+1,i

}
≡α1

{
Jm+1(α1Ri)
Ym+1(α1Ri)

}
, i=1,2, (5.16f){

Wm+1,i

W̃m+1,i

}
≡α2

{
Jm+1(α2Ri)
Ym+1(α2Ri)

}
, i=1,2. (5.16g)

5.2.1 Special case: m=0

When m=0, uθ =0, σrθ =0, and boundary conditions (2.1b) are identically satisfied. Ap-
plication of boundary conditions (2.1a) and (2.1c) yields the 4×4 linear system:


F0,1+V1,1 G0,1+W1,1 F̃0,1+Ṽ1,1 G̃0,1+W̃1,1

−2V1,1 −(1+γ2)W1,1 −2Ṽ1,1 −(1+γ2)W̃1,1

F0,2+V1,2 G0,2+W1,2 F̃0,2+Ṽ1,2 G̃0,2+W̃1,2

−2V1,2 −(1+γ2)W1,2 −2Ṽ1,2 −(1+γ2)W̃1,2




A1
A2
B1
B2

=


A

C

D

F

, (5.17)

where the matrix elements are the evaluated zero- and first-order Bessel functions ob-
tained from substituting m=0 in Eqs. (5.16a), (5.16b), (5.16f), and (5.16g).
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In this special case, the non-zero components of the displacement field reduce to:

ur(r,z,t)=−
{

2

∑
s=1

αs

[
As J1(αsr)+BsY1(αsr)

]}
sin
(

kπ

L
z
)

sin(ωt), (5.18a)

uz(r,z,t)=
(

kπ

L

){ 2

∑
s=1

γs

[
As J0(αsr)+BsY0(αsr)

]}
cos
(

kπ

L
z
)

sin(ωt), (5.18b)

where constants αs and γs are given by Eqs. (5.12) and (5.2), respectively, and the con-
stants {A1,A2,B1,B2} are those obtained from solving Eq. (5.17).

5.3 Case 3: ρω2

(λ+2µ)
< ( kπ

L )2< ρω2

µ

According to Tables 1 and 2, the s=1 term in each of the radial parts of Eqs. (4.4a)-(4.4c)
should employ the modified Bessel functions {Im(α1r),Km(α1r)} (and their derivatives)
while the s = 2 terms should employ the Bessel functions {Jm(α2r),Ym(α2r)} (and their
derivatives). The remaining terms are unmodified from those of Case 2. The displace-
ment components thus take the form:

ur =

{
A1

[
m
r

Im(α1r)+α1 Im+1(α1r)
]
+B1

[
m
r

Km(α1r)−α1Km+1(α1r)
]

+A2

[
m
r

Jm(α2r)−α2 Jm+1(α2r)
]
+B2

[
m
r

Ym(α2r)−α2Ym+1(α2r)
]

+
m
r

[
A3 Jm(α2r)+B3Ym(α2r)

]}
cos(mθ)sin

(
kπ

L
z
)

sin(ωt), (5.19a)

uθ =−
{

m
r

[
A1 Im(α1r)+B1Km(α1r)+A2 Jm(α2r)+B2Ym(α2r)

]
+A3

[
m
r

Jm(α2r)−α2 Jm+1(α2r)
]
+B3

[
m
r

Ym(α2r)−α2Ym+1(α2r)
]}

×sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.19b)

uz =

(
kπ

L

){
γ1

[
A1 Im(α1r)+B1Km(α1r)

]
+γ2

[
A2 Jm(α2r)+B2Ym(α2r)

]}

×cos(mθ)cos
(

kπ

L
z
)

sin(ωt), (5.19c)

where

α1=

√(
kπ

L

)2

− ρω2

(λ+2µ)
, α2=

√
−
(

kπ

L

)2

+
ρω2

µ
, (5.20)
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and γs is again given by Eq. (5.2).
The constants {A1,A2,A3,B1,B2,B3} in Eqs. (5.19a)-(5.19c) must again be chosen so as

to satisfy boundary conditions (2.1). Proceeding as usual, we first obtain the pertinent
components of the stress field. Substituting Eqs. (5.19a)-(5.19c) into Eqs. (2.4a), (2.4d),
and (2.4e), and performing the necessary algebra yields the required stress components:

σrr(r,θ,z,t)=2µ

{
A1

[(
β1

2µ
+

m(m−1)
r2

)
Im(α1r)− α1

r
Im+1(α1r)

]
+A2

[(
− η2

2µ
+

m(m−1)
r2

)
Jm(α2r)+

α2

r
Jm+1(α2r)

]
+A3

[
m(m−1)

r2 Jm(α2r)− α2m
r

Jm+1(α2r)
]

+B1

[(
β1

2µ
+

m(m−1)
r2

)
Km(α1r)+

α1

r
Km+1(α1r)

]
+B2

[(
− η2

2µ
+

m(m−1)
r2

)
Ym(α2r)+

α2

r
Ym+1(α2r)

]
+B3

[
m(m−1)

r2 Ym(α2r)− α2m
r

Ym+1(α2r)
]}

×cos(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.21)

where the constants β1 and η2 are as given by Eqs. (5.4b) and (5.13b), respectively,

σrθ(r,θ,z,t)=−2µ

{
A1

[
m(m−1)

r2 Im(α1r)+
α1m

r
Im+1(α1r)

]
+A2

[
m(m−1)

r2 Jm(α2r)− α2m
r

Jm+1(α2r)
]

+A3

[(
m(m−1)

r2 − α2
2

2

)
Jm(α2r)+

α2

r
Jm+1(α2r)

]
+B1

[
m(m−1)

r2 Km(α1r)− α1m
r

Km+1(α1r)
]

+B2

[
m(m−1)

r2 Ym(α2r)− α2m
r

Ym+1(α2r)
]

+B3

[(
m(m−1)

r2 − α2
2

2

)
Ym(α2r)+

α2

r
Ym+1(α2r)

]}

×sin(mθ)sin
(

kπ

L
z
)

sin(ωt), (5.22a)
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σrz(r,θ,z,t)=µ

(
kπ

L

){
A1(1+γ1)

[
m
r

Im(α1r)+α1 Im+1(α1r)
]

+A2(1+γ2)

[
m
r

Jm(α2r)−α2 Jm+1(α2r)
]
+A3

[
m
r

Jm(α2r)
]

+B1(1+γ1)

[
m
r

Km(α1r)−α1Km+1(α1r)
]

+B2(1+γ2)

[
m
r

Ym(α2r)−α2Ym+1(α2r)
]

+B3

[
m
r

Ym(α2r)
]}

cos(mθ)cos
(

kπ

L
z
)

sin(ωt). (5.22b)

When m 6= 0, application of the boundary conditions as described in Section 5.1 yields a
6×6 linear system that can again be cast in the form (5.6a); in the present case, the 3×3
matrix blocks {Ai,Bi : i=1,2} are

Ai =

 fm,i−vm+1,i Gm,i+Wm+1,i (m−1)Qm,i−mWm+1,i
(m−1)pm,i+mvm+1,i (m−1)Qm,i−mWm+1,i Hm,i+Wm+1,i

2(pm,i+vm+1,i) (1+γ2)(Qm,i−Wm+1,i) Qm,i

, (5.23a)

Bi =

 f̃m,i+ ṽm+1,i G̃m,i+W̃m+1,i (m−1)Q̃m,i−mW̃m+1,i
(m−1) p̃m,i−mṽm+1,i (m−1)Q̃m,i−mW̃m+1,i H̃m,i+W̃m+1,i

2( p̃m,i− ṽm+1,i) (1+γ2)
(

Q̃m,i−W̃m+1,i

)
Q̃m,i

, (5.23b)

and the 3×1 column blocks {XA,XB,S1,S2} are as given by (5.7) and (5.8h). The shorthand
notation employed for all matrix elements in Eqs. (5.23a) and (5.23b) is as previously
defined by Eqs. (5.8a), (5.8d), (5.8f) and Eqs. (5.16b), (5.16c), (5.16e), (5.16g).

5.3.1 Special case: m=0

When m=0, uθ =0, σrθ =0, and boundary conditions (2.1b) are identically satisfied. Ap-
plication of boundary conditions (2.1a) and (2.1c) yields the 4×4 linear system:


f0,1−v1,1 G0,1+W1,1 f̃0,1+ ṽ1,1 G̃0,1+W̃1,1

2v1,1 −(1+γ2)W1,1 −2ṽ1,1 −(1+γ2)W̃1,1

f0,2−v1,2 G0,2+W1,2 f̃0,2+ ṽ1,2 G̃0,2+W̃1,2

2v1,2 −(1+γ2)W1,2 −2ṽ1,2 −(1+γ2)W̃1,2




A1
A2
B1
B2

=


A

C

D

F

. (5.24)

The matrix elements in Eq. (5.24) are the evaluated zero- and first-order Bessel functions
obtained from substituting m = 0 in Eqs. (5.8a), (5.8d), (5.8f) and Eqs. (5.16b), (5.16c),
(5.16e), (5.16g).
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In this special case, the non-zero components of the displacement field reduce to:

ur =

{
A1α1 I1(α1r)−B1α1K1(α1r)−A2α2 J1(α2r)−B2α2Y1(α2r)

}

×sin
(

kπ

L
z
)

sin(ωt), (5.25a)

uz =

(
kπ

L

){
γ1

[
A1 I0(α1r)+B1K0(α1r)

]
+γ2

[
A2 J0(α2r)+B2Y0(α2r)

]}

×cos
(

kπ

L
z
)

sin(ωt), (5.25b)

where constants αs and γs (s=1,2) are given by Eqs. (5.20) and (5.2), respectively, and the
constants {A1,A2,B1,B2} are those obtained from solving Eq. (5.24).

6 Analytics II: special case k=0

As discussed in Section 4.2, a general displacement field compatible with the boundary-
value problem defined in Section 2 in the special case k=0 is given by particular solution
(4.6). We need now only to determine the values of the constants {A,B} in (4.6) that
satisfy boundary conditions (2.1a)-(2.1c). Substituting the components of solution (4.6)
into Eqs. (2.4a), (2.4d), and (2.4e) immediately yields the stress components:

σrr(r,θ,z,t)=σrθ(r,θ,z,t)=0, (6.1a)

σrz(r,θ,t)=µ

{
A
[

m
r

Jm(αr)−αJm+1(αr)
]

+B
[

m
r

Ym(αr)−αYm+1(αr)
]}

cos(mθ)sin(ωt). (6.1b)

Boundary conditions (2.1a) and (2.1b) are therefore satisfied identically. Application of
boundary conditions (2.1c) yields two conditions that can be compactly written as the
following 2×2 linear system:[

Qm,1−Wm+1,1 Q̃m,1−W̃m+1,1

Qm,2−Wm+1,2 Q̃m,2−W̃m+1,2

][
A
B

]
=

[
C

F

]
, (6.2a)

where the following shorthand notation is employed for the matrix elements of Eq. (6.2a):{
Qm,i

Q̃m,i

}
≡ m

Ri

{
Jm(αRi)
Ym(αRi)

}
, i=1,2, (6.2b){

Wm+1,i

W̃m+1,i

}
≡α

{
Jm+1(αRi)
Ym+1(αRi)

}
, i=1,2, (6.2c)
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C≡ C
µ

, F≡ F
µ

. (6.2d)

The general solution to system (6.2) is:

A=

(
Q̃m,2−W̃m+1,2

)
C−

(
Q̃m,1−W̃m+1,1

)
F(

Qm,1−Wm+1,1
)(

Q̃m,2−W̃m+1,2

)
−
(

Q̃m,1−W̃m+1,1

)(
Qm,2−Wm+1,2

) , (6.3a)

B=

(
Qm,1−Wm+1,1

)
F−

(
Qm,2−Wm+1,2

)
C(

Qm,1−Wm+1,1
)(

Q̃m,2−W̃m+1,2

)
−
(

Q̃m,1−W̃m+1,1

)(
Qm,2−Wm+1,2

) . (6.3b)

When m=0, (6.3) reduces to:

A=
Y1(αR1)F−Y1(αR2)C

α
[

J1(αR1)Y1(αR2)− J1(αR2)Y1(αR1)
] , (6.4a)

B=
J1(αR2)C− J1(αR1)F

α
[

J1(αR1)Y1(αR2)− J1(αR2)Y1(αR1)
] . (6.4b)

Thus, in the special case k=0, the displacement field is given by (4.6) with the constants
{A,B} given by (6.3), which reduces to (6.4) when m=0.

7 Consistency with the ERP field equations

As an analytical check, we have verified that, in the special m=0 case, the general stress
and displacement fields obtained from applying our method of solution agree with the
general axisymmetric field equations that would be obtained from applying the mathe-
matical framework of Ebenezer et al. (ERP) [15]. Demonstration of this consistency is
somewhat intricate; the details are therefore consigned to Appendix A. Equivalency of
our m=0 solution with the axisymmetric solution that would be obtained from the ERP
method then directly follows from application of the boundary conditions.

8 Example 1

As a numerical example, we examine the steady-state frequency response of a thick-
walled steel cylinder whose geometric and material properties are specified in Table 3.
As in other steady-state frequency-response analyses (see, for example, [15]), we shall
here restrict attention to studying the behavior of the stationary displacement field at a
few suitably-chosen representative points in the cylinder as a function of the excitation
frequency.¶ To do so, we numerically evaluate the formulas for the displacement field

¶Aside from nodal or semi-nodal points, we are free to choose any point in the cylinder as a representative
point.
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Table 3: Geometric and material parameter values used in Example 1.

Parameter Numerical Value
Length (L) 0.300 m
Outer radius (R2) 0.100m
Inner radius (R1) 0.050m
Mass density (ρ) 8000kg/m3

Young modulus (E) 190GPa
Poisson ratio (ν) 0.300
First Lamé constant (λ) 110GPa
Second Lamé constant (µ) 73.1GPa

Table 4: Natural frequencies
{

f (m)
n : n=1,··· ,9

}
of a simply-supported isotropic (thick-walled) hollow elastic

circular cylinder having the geometrical and material properties given in Table 3. All values are in units of kHz.
The above frequencies were computed using the free-vibration frequency data given in Table 6 of [14].

Mode number Circumferential wave number
n m=0 m=1 m=2 m=3
1 7.698 2.997 5.391 11.537
2 10.686 6.515 8.141 13.117
3 11.827 7.284 12.154 15.954
4 12.838 9.731 12.896 19.035
5 16.229 11.486 14.429 19.641
6 17.542 13.563 16.625 19.964
7 20.398 15.467 17.460 22.222
8 24.963 15.828 20.912 23.805
9 25.425 17.334 21.290 25.163

obtained in Section 5. The only non-trivial numerical detail is the determination of the
(frequency-dependent) solution constants {As,Bs : s=1,2,3}, which we obtain by numer-
ically solving the linear systems (5.6), (5.15), and (5.23) (or their m=0 analogs) pointwise
for each excitation frequency. An alternative is to use a symbolic algebra package, solve
these linear systems symbolically, and then evaluate the results at the excitation frequen-
cies of interest. While it is possible to obtain exact analytical expressions for each of the
solution constants (using a symbolic algebra package or otherwise), the resulting expres-
sions are too algebraically complicated for general use. Note that no numerical solution
is required when the longitudinal wave number k=0 since the equivalent solution con-
stants {A,B} in this special case are given, in closed form, by (6.3).

Using the parameter values given in Table 3, the components of the displacement field
were computed at excitation frequencies that are integer multiples of 1Hz with lower
and upper bounds of 1Hz and 50kHz, respectively. In all calculations, the excitation
amplitudes were set as follows: A=B=C=105Pa and D=E =F =− 105

2 Pa. Given that
the cylinder is being forced to vibrate, we expect to observe large displacements (i.e.,
resonances) when the excitation frequency is close to one of the natural frequencies of
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Figure 1: Frequency response of the displacement at the point (r,θ,z) = ((R1+R2)/2,π/5,L/7) for various
values of the longitudinal wave number k and circumferential wave number m= 0. For reference, the natural
frequencies listed in Table 4 are marked by ‘X’s on the frequency axis of each subplot.

the simply-supported cylinder. For circumferential wave numbers m={0,1,2,3}, the first
nine of these frequencies

{
f (m)
n : n=1,··· ,9

}
, computed using free-vibration frequency

data from [14], are given in Table 4. The absolute value of the (stationary) displacement
at the interior point (r,θ,z) = ((R1+R2)/2,π/5,L/7) is shown in Figs. 1-4 for various
values of the longitudinal wave number k and circumferential wave numbers m= 0, 1,
2, and 3, respectively. For visual reference, the natural frequencies listed in Table 4 are
marked by ‘X’s on the frequency axis of each subplot.

In each case, we observe unmistakable resonances around (a subset of) the natural
frequencies of the simply-supported cylinder. While the results may at first appear to
be particularly simple, there are several interesting features that should be noted. First,
note that each individual excitation (obtained by specifying a single pair of (m,k) values)
generates a unique series of resonances, as opposed to producing just one resonance.
In other words, a single harmonic excitation excites a set of resonant modes instead of
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Figure 2: Same as Fig. 1 except the circumferential wave number m=1.

exciting only one resonant mode. Unfortunately, there does not appear to be any math-
ematical rule for predicting which resonances will be excited by a particular excitation.
More precisely, if (for a given circumferential wave number m)

{
f (m)
n : n∈Z+

}
denotes

the complete natural frequency spectrum and
{

f (m)
j : j∈S(m,k)⊂Z+

}
denotes the sub-

set of the natural frequency spectrum at which an excitation with wave numbers (m,k)
generates resonances, then there appears to be no deterministic rule for predicting the
set of mode numbers {j : j∈ S(m,k)⊂Z+} given the wave numbers (m,k) of the excita-
tion. Second, note that the resonances generated by any single excitation generally have
different widths; in other words, the resonant modes excited by a particular excitation
generally possess different decay properties. Practically speaking, this means that the
displacement response to any harmonic excitation will have a varying degree of signifi-
cance in the neighborhoods of the associated resonant frequencies

{
f (m)
j

}
. For example,

when the circumferential wave number m = 1, the response to a standing-wave excita-
tion with longitudinal wave number k=1 is significant at more frequencies neighboring
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Figure 3: Same as Fig. 1 except the circumferential wave number m=2.

f (1)
4

=9.731kHz than neighboring f (1)
1

=2.997kHz or f (1)
7

=15.467kHz.
One other noteworthy feature in Figs. 1-4 is the conspicuous absence of resonances in

the neighborhoods of certain natural frequencies, in particular, around f (0)8 =24.963kHz
(when m=0), around f (1)2 =6.515kHz (when m=1), around f (2)4 =12.896kHz (when m=2),
and around f (3)4 = 19.035kHz (when m = 3). As it turns out, when m 6= 0, resonances
at these frequencies are produced by boundary stresses of type (2.1) with longitudinal
wave number k = 0, as shown in Fig. 5. The same figure also shows that, when m = 0,
no resonance associated with f (0)8 =24.963kHz is produced by such an excitation. Thus,
when m= 0, there exist resonant modes at certain frequencies that cannot be excited by
harmonic boundary stresses of type (2.1).

In Figs. 1-5, we used common vertical scales in all subplots in order to make it easier to
compare the different cases. We should however mention that the amplitudes of the res-
onances are not all equal, and this is evident when one views the displacement response
outside the common vertical range shown in the figures. Differences in amplitude not
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Figure 4: Same as Fig. 1 except the circumferential wave number m=3.

only occur between the different excitation cases; the amplitudes of the resonances gen-
erated by each individual excitation also vary. While it may be obvious to some readers,
it is worth emphasizing that the amplitudes, which inherently depend on the frequency
resolution‖ and on where in the cylinder the displacement is evaluated, should not be
interpreted as resonance intensities. In the present context of a lossless (i.e., undamped)
cylinder, the amplitudes are insignificant since, in theory, the amplitude of any resonance
asymptotically approaches infinity as the excitation frequency approaches the associated
natural frequency.

Barring small neighborhoods of (semi)nodal points, the frequency response anywhere
in the cylinder should be qualitatively the same and this is indeed borne out by numerical
experiments. Given any representative point, each standing-wave excitation generates a
series of resonances that are in correspondence with a subset of the natural frequencies

‖As previously stated, the components of the displacement field were computed at excitation frequencies
that are integer multiples of 1Hz with lower and upper bounds of 1Hz and 50kHz, respectively. When a
different frequency discretization is used (e.g., 2Hz instead of 1Hz), the numerical amplitudes change.
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Figure 5: Frequency response of the displacement at the point (r,θ,z) = ((R1+R2)/2,π/5,L/7) for various
values of the circumferential wave number m and longitudinal wave number k=0.

of the simply-supported cylinder. Quantitative differences in the detailed features of the
resonances (for example, their shapes and widths) are of course observed as the repre-
sentative point is varied, but these differences are not usually of interest in steady-state
vibration analyses of lossless isotropic elastic solids.

9 Supplementary examples

As supplementary examples, we study the frequency response of three different cylin-
ders, each possessing the same geometry and Poisson ratio ν=0.300 but differing in their
mass densities and Young moduli. The cylinder geometry is fixed as follows: L=0.500m,
R1 = 0.050m, and R2 = 0.150m. Thus, the mean radius R≡ (R1+R2)/2 = 0.100m, the
thickness-to-radius ratio h/R=1.00, and the length-to-radius ratio L/R=5.00. The mass
densities and Young moduli of the three cylinders are given in Table 5.
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Table 5: Three different cylinder materials having the same Poisson ratio ν=0.300.

Cylinder Material ρ(kg/m3) E (GPa)
Cadmium 8650 50

Ruthenium 12370 447
Rhenium 21020 463

For each of the three above-defined cylinders, the displacement responses at the point
(r,θ,z)= ((R1+R2)/2,π/5,L/7) to six different standing-wave excitations are shown in
Fig. 6. Note that the displacement responses to the different standing-wave excitations
are overlaid on each subplot with the understanding that they correspond to separate
excitation cases. So, it should be understood that, for instance, the orange curve is the re-
sponse to an excitation with wave numbers (m,k)=(2,1), whereas the dark blue curve is
the response to an excitation with wave numbers (m,k)=(2,3). Natural frequencies perti-
nent to each case were computed using free-vibration frequency data obtained from [18],
and as before, these frequencies are marked by ‘X’s on the frequency axis of each subplot.
It is interesting to note that each excitation excites the same resonant modes independent
of both the mass density and stiffness of the cylinder. For example, the fourth mode (cor-
responding to natural frequency f (2)4 ) is always excited by a standing-wave excitation
with longitudinal wave number k=0, whereas the fifth mode (corresponding to natural
frequency f (2)5 ) is always excited by a standing-wave excitation with longitudinal wave
number k=1. Although not shown here, the same conclusion is reached when consider-
ing other non-zero circumferential wave numbers (i.e., m 6=2).

10 Numerical epilogue: a comment on mode orthogonality

It is worthwhile to comment in more detail on the subtle and perhaps counterintuitive
nature of the result that each harmonic standing-wave excitation excites many resonant
modes. The excitations in the present problem are pure 2D boundary stresses that vary
harmonically in the circumferential and axial directions. As such, these boundary stresses
are characterized by two parameters: the circumferential wave number m and the ax-
ial wave number k. The resonant modes of the cylinder, on the other hand, are three-
dimensional, and hence cannot be uniquely specified using only the wave numbers m
and k. The key to understanding the preceding numerical results is to recognize that the
wave numbers m and k are insufficient for indexing (i.e., uniquely classifying) all the dif-
ferent vibration modes of a thick-walled cylinder (a fundamental problem that has been
previously discussed in the context of free vibrations in [21–23]). For any given fixed
values of m and k (and assuming that all other parameters are also fixed), there exists a
countably-infinite setM(m,k)={Mi(m,k) : i∈Z+} of physically distinct resonant modes
each possessing a unique shape composed of m full (cosine) waves around the circum-
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Figure 6: Responses at the point (r,θ,z)= ((R1+R2)/2,π/5,L/7) to various standing-wave excitations with
wave numbers m and k as indicated for three different hollow cylinders. The cylinders possess identical geometries
and Poisson ratios (see text) but differ in their mass densities and Young moduli (c.f. Table 5). Natural
frequencies pertinent to each case are marked by ”X”s on the frequency axis of each subplot.

ference of the cylinder and k half (sine) waves along the axis of the cylinder.∗∗ A resonant
mode Mi(m,k)∈M(m,k) is excited when the excitation frequency f is at (or close to)
the mode’s respective resonant frequency, which, say, is equal to the natural frequency
f (m)
j . It is important to note that there is no formal correspondence between the integers

i, j, and k, and for no reason should they be expected to possess equal values. If the val-
ues of m and k are fixed such that (m,k)= (m∗,k∗) in excitations (2.1a)-(2.1c), then these
excitations will necessarily excite all of the modes in M(m∗,k∗) (each at its respective
resonant frequency) because all of the modes inM(m∗,k∗) have wave numbers m=m∗

and k= k∗ (by definition). Despite the fact that all members ofM(m∗,k∗) are character-
ized by the same circumferential and axial wave numbers, the constituent modes are: (i)
excited at different frequencies; (ii) physically distinct (i.e., possess unique shapes); and
most importantly (iii) linearly decoupled (i.e., no constituent mode is a linear combina-
tion of other constituent modes). In short, all members of any M(m,k) are orthogonal
despite their common wave numbers m and k. Hence, the observed numerical results do
not violate mode orthogonality.

∗∗This is true by virtue of the fact that, for a simply-supported cylinder, there exists a countably-infinite set
of unique free-vibration modes for any given fixed values of m and k [18].
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Figure 7: (Top Row) Stationary shapes of the first three members of M(1,1) for the cylinder considered in
Example 1. The respective excitation frequencies are as indicated. (Bottom Row) Aerial views of the shapes of
M1(1,1) and M3(1,1) at z= L/2. For reference, the center point of the undeformed free cylinder is (in each
case) marked by a black dot.

To give a numerical example, we revisit Example 1 and explicitly compute the (sta-
tionary) shapes of the first three resonant modes in M(1,1). For these computations,
all parameters are set to the values given in Section 8 except the stress amplitudes
{A,B,C,D,E ,F}, which (for simplicity) are here set as follows: A= C =D=F = 0 and
B=E=0.500MPa. The results, obtained from use of our exact k 6=0 solution (Section 5), are
shown in Fig. 7. As validation of these results, we note that the shapes ofM1(1,1) and
M2(1,1) are fully consistent with the corresponding free-vibration mode shapes given
in [14].†† To further expose the differences in the shapes of M1(1,1) and M3(1,1), we
display their respective shapes in the mid-plane z = L/2 in the lower panel of Fig. 7.
Clearly, the three modes shown in Fig. 7 are orthogonal, and as expected, the mode num-
bers i and j (as defined above) generally differ from the axial wave number k (see Table
6).

Given the above comments, it is clear that no resonant mode can be individually
excited by excitations (2.1a)-(2.1c) for any given fixed values of the wave numbers m and
k.

††Specifically, the first and fourth modes (respectively) shown in Fig. 4 of [14] in the ”S-S n=1” case. Note
that the circumferential wave number is denoted by the letter n in [14].
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Table 6: Values of mode numbers i and j (as defined in the text) and axial wave number k for the three modes
shown in Fig. 7.

Mode i j k
M1(1,1) 1 1 1
M2(1,1) 2 4 1
M3(1,1) 3 7 1

11 Conclusions

In summary, we have studied analytically the linear elastodynamic response of a simply-
supported isotropic thick-walled hollow elastic circular cylinder subjected to 2D har-
monic standing-wave excitations on its curved surfaces. Our mathematical formulation
employed the exact 3D theory of linear elasticity. An exact semi-analytical solution for the
steady-state displacement field of the cylinder was constructed using recently-obtained
parametric solutions to the Navier-Lamé equation. In order to provide a solution that
involves only real-valued Bessel functions, the problem was solved separately in three
distinct parameter regimes involving the excitation frequency. In each case, application
of the standing-wave boundary conditions generates a parameter-dependent 6×6 lin-
ear system, which can be solved numerically in order to study the parametric responses
of the cylinder’s displacement field under various conditions. Standard Bessel function
identities were also used to cast the radial part of the solution (which involves Bessel
functions of the first and second kinds) in a derivative-free form thereby making the
obtained semi-analytical solution apt for numerical computation. The method of solu-
tion, which exploits known solutions to the Navier-Lamé equation [19], demonstrates a
general approach that can be applied to solve other elastodynamic forced-response prob-
lems involving isotropic, open or closed, solid or hollow, elastic cylinders with simply-
supported or other end conditions.

As an application, and considering several numerical examples, the obtained solution
was used to determine the steady-state frequency response in some low-order excitation
cases. In each case, the solution generates a series of resonances that are in perfect corre-
spondence with a unique subset of the natural frequencies of the simply-supported cylin-
der. It is worth emphasizing that each standing-wave excitation generates a unique series
of resonances (of varying widths), as opposed to generating just a single resonance. Put
another way, each standing-wave excitation excites a set of (orthogonal) resonant modes
as opposed to exciting only one resonant mode. Unfortunately, for any given value of the
circumferential wave number m (and assuming the values of all cylinder parameters are
fixed), there is no way of predicting which modes will be excited given the value of the
longitudinal wave number k.

While the above numerical results provide important physical insight, they are cur-
sory in the sense that many fundamental aspects of the studied problem remain numer-
ically unexplored. For instance, there is the fundamental problem of the ”resonance dy-
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namics”, that is, how the resonances generated by any given standing-wave excitation
evolve in frequency space under the variation of a material or geometric parameter. The
resonant mode shapes and their evolution under parametric variation(s) is another fun-
damental aspect requiring systematic investigation, and (as mentioned in the Introduc-
tion) the ultimate goal is to tackle the more general forced-vibration problem involving
arbitrary asymmetric surface excitations–a problem for which the present work provides
the necessary foundation. We hope to explore these topics in future publications.

Appendix

A General axisymmetric solution using the ERP field equations

In this appendix, we show how our general axisymmetric solution may be reproduced
from the general ERP field equations. For brevity, we shall here only provide the deriva-
tion for the Case 1 sub-solution. The sub-solutions in the other two cases may be similarly
reproduced using the same logic.

A.1 General ERP field equations

According to ERP [15], the following is an exact axisymmetric solution to Eq. (2.2), for
arbitrary values of krn, (n=1,··· ,Nr) and kzn, (n=1,··· ,Nz):[

u(ERP)
z

u(ERP)
r

]
=

[
u(1)

z

u(1)
r

]
+

[
u(2)

z

u(2)
r

]
+

[
u(3)

z

u(3)
r

]
, (A.1a)

where

[
u(1)

z

u(1)
r

]
=


Pcos(Ω1z)+

Nr

∑
n=1

2

∑
s=1

PnsC0(krnr)cos(kznsz)

Nr

∑
n=1

2

∑
s=1

PnsψnsC1(krnr)sin(kznsz)

, (A.1b)

[
u(2)

z

u(2)
r

]
=


QJ0(Ω2r)+

Nz

∑
n=1

2

∑
s=1

Qns J0(krnsr)cos(kznz)

Nz

∑
n=1

2

∑
s=1

Qnsχns J1(krnsr)sin(kznz)

, (A.1c)

[
u(3)

z

u(3)
r

]
=


RY0(Ω2r)+

Nz

∑
n=1

2

∑
s=1

RnsY0(krnsr)cos(kznz)

Nz

∑
n=1

2

∑
s=1

RnsχnsY1(krnsr)sin(kznz)

, (A.1d)
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Ω1=

√
ρω2

(λ+2µ)
, Ω2=

√
ρω2

µ
, (A.1e)

C0(krnr)= J0(krnr)+ζnY0(krnr), C1(krnr)= J1(krnr)+ζnY1(krnr), (A.1f)

P, Q, R, {Pns :n=1,··· ,Nr; s=1,2}, {Qns :n=1,··· ,Nz; s=1,2}, {Rns :n=1,··· ,Nz; s=1,2} are
arbitrary constants (determined by the specific excitation), and the remaining (frequency-
dependent) constants are given by:

kzn1=

√
ρω2

(λ+2µ)
−k2

rn, kzn2=

√
ρω2

µ
−k2

rn, n=1,··· ,Nr, (A.2a)

krn1=

√
ρω2

(λ+2µ)
−k2

zn, krn2=

√
ρω2

µ
−k2

zn, n=1,··· ,Nz, (A.2b)

ψn1=
krn

kzn1
, ψn2=−

kzn2

krn
, n=1,··· ,Nr, (A.2c)

χn1=−
krn1

kzn
, χn2=

kzn

krn2
, n=1,··· ,Nz. (A.2d)

The non-arbitrary constants {ζn : n = 1,··· ,Nr} in (A.1f) are chosen so as to satisfy cer-
tain conditions (see [15] for details). Since these constants will have no relevance in the
analyses that follow, it is sufficient for our purposes to leave them unspecified.

The components of the stress field corresponding to the displacement field (A.1) are
then as follows [15]:

σ
(ERP)
rr =−PΩ1λsin(Ω1z)

+
Nr

∑
n=1

2

∑
s=1

Pns

{[
(λ+2µ)ψnskrn−λkzns

]
C0(krnr)− 2µ

r
ψnsC1(krnr)

}
sin(kznsz)

+
Nz

∑
n=1

2

∑
s=1

Qns

{[
(λ+2µ)χnskrns−λkzn

]
J0(krnsr)−

2µ

r
χns J1(krnsr)

}
sin(kznz)

+
Nz

∑
n=1

2

∑
s=1

Rns

{[
(λ+2µ)χnskrns−λkzn

]
Y0(krnsr)−

2µ

r
χnsY1(krnsr)

}
sin(kznz), (A.3a)

σ
(ERP)
zz =−PΩ1(λ+2µ)sin(Ω1z)

+
Nr

∑
n=1

2

∑
s=1

Pns

[
−(λ+2µ)kzns+λψnskrn

]
C0(krnr)sin(kznsz)

+
Nz

∑
n=1

2

∑
s=1

Qns

[
−(λ+2µ)kzn+λχnskrns

]
J0(krnsr)sin(kznz)

+
Nz

∑
n=1

2

∑
s=1

Rns

[
−(λ+2µ)kzn+λχnskrns

]
Y0(krnsr)sin(kznz), (A.3b)
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σ
(ERP)
rz =−QΩ2µJ1(Ω2r)−RΩ2µY1(Ω2r)

+µ
Nr

∑
n=1

2

∑
s=1

Pns

[
−krn+ψnskzns

]
C1(krnr)cos(kznsz)

+µ
Nz

∑
n=1

2

∑
s=1

Qns

[
−krns+χnskzn

]
J1(krnsr)cos(kznz)

+µ
Nz

∑
n=1

2

∑
s=1

Rns

[
−krns+χnskzn

]
Y1(krnsr)cos(kznz). (A.3c)

As noted in ERP [15], the harmonic time dependence has been dropped (for convenience)
from all field equations.

A.2 Reduction and equivalency of the ERP field equations

To enforce the vanishing of the longitudinal stress component (A.3b) at the ends of the
cylinder (i.e., to satisfy condition (2.3c)), we set the arbitrary ERP constant kzn =(nπ/L)
and prescribe Pns=0, ∀n,s in Eq. (A.3b) and thereby in all of the remaining ERP field equa-
tions. The values of the constants ψns, krn, and kzns appearing in the associated summands
are subsequently irrelevant. Unless the parameters are such that ρω2/(λ+2µ)=(nπ/L)2

(a singular case that we have ignored, see comments at the end of Section 4.1), we can
also prescribe P=0 in (A.3b) and thereby in (A.3a) and (A.1b). Hence, under the condi-
tion that ρω2/(λ+2µ) 6=(nπ/L)2, the sub-solution (A.1b) is zero, i.e.,

(
u(1)

z ,u(1)
r

)
=(0,0).

The general displacement field that we seek is thus entirely contained in sub-solutions
(A.1c) and (A.1d).

Anticipating that we shall only require the individual harmonics of the stresses
(A.3a)-(A.3c) and thereby only the corresponding individual harmonics of the displace-
ment field, each sum over n in Eqs. (A.1) and (A.3) collapses to a single term that depends
on the prescribed value of n. Universally replacing the index n (in the ERP field equa-
tions) by k (the longitudinal wave number in our problem) then yields the following for
the frequency-dependent ERP constants:

krn1−→ krk1=

√
ρω2

(λ+2µ)
−
(

kπ

L

)2

=


iα1, Case 1,
α1, Case 2,
iα1, Case 3,

(A.4a)

krn2−→ krk2=

√
ρω2

µ
−
(

kπ

L

)2

=


iα2, Case 1,
α2, Case 2,
α2, Case 3,

(A.4b)

χn1−→χk1=−
krk1

kzk
=


α1/i( kπ

L ), Case 1,
−α1/( kπ

L ), Case 2,
α1/i( kπ

L ), Case 3,
(A.4c)
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χn2−→χk2=
kzk

krk2
=


( kπ

L )/iα2, Case 1,
( kπ

L )/α2, Case 2,
( kπ

L )/α2, Case 3,
(A.4d)

where the final equalities in (A.4a)-(A.4d) are with reference to constants {α1,α2} as de-
fined by Eqs. (5.1), (5.12), and (5.20), for Cases 1, 2, and 3, respectively.

A.2.1 Displacement components

For Case 1, the radial component of the ERP displacement field, which is the sum of
the non-vanishing radial components u(2)

r and u(3)
r in sub-solutions (A.1c) and (A.1d),

reduces as follows:

u(ERP)
r =

{
2

∑
s=1

χks

[
Qks J1(krksr)+RksY1(krksr)

]}
sin(kzkz)

=

 α1(
kπ
L

)[Qk1i−1 J1(iα1r)+Rk1i−1Y1(iα1r)
]

+

(
kπ
L

)
α2

[
Qk2i−1 J1(iα2r)+Rk2i−1Y1(iα2r)

]sin
(

kπ

L
z
)

=

 α1(
kπ
L

)[(Qk1+iRk1)i−1 J1(iα1r)+
2
π

Rk1K1(α1r)
]

+

(
kπ
L

)
α2

[
(Qk2+iRk2)i−1 J1(iα2r)+

2
π

Rk2K1(α2r)
]sin

(
kπ

L
z
)

=

 α1(
kπ
L

)[Q̃k1 I1(α1r)+ R̃k1K1(α1r)
]

+

(
kπ
L

)
α2

[
Q̃k2 I1(α2r)+ R̃k2K1(α2r)

]sin
(

kπ

L
z
)

=
{

α1

[
A1 I1(α1r)−B1K1(α1r)

]
+α2

[
A2 I1(α2r)−B2K1(α2r)

]}
sin
(

kπ

L
z
)

, (A.5)

where relations (A.4a)-(A.4d) have been employed in obtaining the second equality in
(A.5), the definition of the modified Bessel function of the second kind

Kn(x)=
π

2
in+1[Jn(ix)+iYn(ix)

]
, n∈N, (A.6)
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in obtaining the third equality, and the fundamental definition of the modified Bessel
function of the first kind

Ip(x)≡ i−p Jp(ix), p∈R, (A.7)

in obtaining the fourth equality. The last equality in (A.5) ensues upon replacement of
the arbitrary constants

Q̃ks≡Qks+iRks, R̃ks≡ (2/π)Rks, (s=1,2), (A.8)

by a new set of arbitrary constants {A1,A2,B1,B2} as follows:

Q̃ks−→
(

kπ

L

)
Asγs =

{
( kπ

L )A1, if s=1,
α2

2A2/( kπ
L ), if s=2,

(A.9a)

R̃ks−→−
(

kπ

L

)
Bsγs =

{
−( kπ

L )B1, if s=1,
−α2

2B2/( kπ
L ), if s=2.

(A.9b)

Using the same logic (and again considering Case 1), the axial component of the ERP
displacement field, which is the sum of the non-vanishing axial components u(2)

z and u(3)
z

in sub-solutions (A.1c) and (A.1d), similarly reduces as follows:

u(ERP)
z =QJ0(Ω2r)+RY0(Ω2r)+

{
2

∑
s=1

[
Qks J0(krksr)+RksY0(krksr)

]}
cos(kzkz)

=QJ0(Ω2r)+
[

Qk1 J0(iα1r)+Qk2 J0(iα2r)
]

cos
(

kπ

L
z
)

+RY0(Ω2r)+
[

Rk1Y0(iα1r)+Rk2Y0(iα2r)
]

cos
(

kπ

L
z
)

=QJ0(Ω2r)+
[
(Qk1+iRk1)J0(iα1r)+(Qk2+iRk2)J0(iα2r)

]
cos
(

kπ

L
z
)

+RY0(Ω2r)− 2
π

[
Rk1K0(α1r)+Rk2K0(α2r)

]
cos
(

kπ

L
z
)

=QJ0(Ω2r)+
[

Q̃k1 I0(α1r)+Q̃k2 I0(α2r)
]

cos
(

kπ

L
z
)

+RY0(Ω2r)−
[

R̃k1K0(α1r)+ R̃k2K0(α2r)
]

cos
(

kπ

L
z
)

=
[

QJ0(Ω2r)+RY0(Ω2r)
]
+

(
kπ

L

){
γ1

[
A1 I0(α1r)+B1K0(α1r)

]
+γ2

[
A2 I0(α2r)+B2K0(α2r)

]}
cos
(

kπ

L
z
)

. (A.10)

The first bracketed term in the final line of (A.10) is equivalent to the axial component
of (4.6) in the special m = 0 case. Comparing (A.5) with (5.10a) and the cosine term of
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(A.10) with (5.10b), we see that, in Case 1, the displacement components obtained from
the ERP method are identical to the displacement components obtained from our method
of solution in the special m=0 case. Using relations (A.4a)-(A.4d), definitions (A.6)-(A.7),
and analogs of substitutions (A.9), and applying the same logic, it is straightforward to
show that the equivalence holds for Cases 2 and 3 as well. Thus, in the special m=0 case,
the general displacement field obtained from our method of solution is identical to the
general axisymmetric displacement field obtained from the ERP method.

A.2.2 Stress components

For Case 1, the axisymmetric radial stress obtained from our method of solution is (omit-
ting the sin(ωt) factor):

σ
(SC)
rr =

{
2

∑
s=1

As

[
βs I0(αsr)−

2µαs

r
I1(αsr)

]

+
2

∑
s=1

Bs

[
βsK0(αsr)+

2µαs

r
K1(αsr)

]}
sin
(

kπ

L
z
)

, (A.11)

which is immediately obtained upon substituting m=0 into Eq. (5.4).
Given the statements at the beginning of Section A.2, the ERP radial stress component

(A.3a) reduces to the following:

σ
(ERP)
rr =

2

∑
s=1

Qks

{[
(λ+2µ)χkskrks−λkzk

]
J0(krksr)−

2µ

r
χks J1(krksr)

}
sin(kzkz)

+
2

∑
s=1

Rks

{[
(λ+2µ)χkskrks−λkzk

]
Y0(krksr)−

2µ

r
χksY1(krksr)

}
sin(kzkz). (A.12)

Employing relations (A.4a)-(A.4d) and considering only Case 1, the frequency-dependent
ERP constants in (A.12) simplify as follows:

Ck1(ω)≡ (λ+2µ)χk1krk1−λkzk =
(λ+2µ)α2

1

( kπ
L )

−λ

(
kπ

L

)
=

β1

( kπ
L )

, (A.13a)

Ck2(ω)≡ (λ+2µ)χk2krk2−λkzk =2µ

(
kπ

L

)
=

β2(
kπ
L )

α2
2

, (A.13b)

where the final equalities in (A.13a)-(A.13b) are with reference to the (frequency-
dependent) constants {β1,β2} as defined by Eq. (5.4b). For future algebraic convenience,
we also define the frequency-dependent constants {Dk1(ω),Dk2(ω)} as follows:

χk1=
α1

( kπ
L )

i−1≡Dk1(ω)i−1, χk2=
( kπ

L )

α2
i−1≡Dk2(ω)i−1, (A.14)
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where the values of {χks : s = 1,2} in (A.14) are again pertinent to Case 1. Using the
compact notation of (A.13) for the frequency-dependent ERP constants and keeping in
mind that we are here only considering Case 1, the ERP radial stress component (A.12)
then reduces as follows:

σ
(ERP)
rr =

{
2

∑
s=1

Qks

[
Cks(ω)J0(iαsr)−

2µ

r
Dks(ω)i−1 J1(iαsr)

]

+
2

∑
s=1

Rks

[
Cks(ω)Y0(iαsr)−

2µ

r
Dks(ω)i−1Y1(iαsr)

]}
sin
(

kπ

L
z
)

=

{
2

∑
s=1

(Qks+iRks)

[
Cks(ω)J0(iαsr)−

2µ

r
Dks(ω)i−1 J1(iαsr)

]

−
2

∑
s=1

2
π

Rks

[
Cks(ω)K0(αsr)+

2µ

r
Dks(ω)K1(αsr)

]}
sin
(

kπ

L
z
)

=

{
2

∑
s=1

Q̃ks

[
Cks(ω)I0(αsr)−

2µ

r
Dks(ω)I1(αsr)

]

−
2

∑
s=1

R̃ks

[
Cks(ω)K0(αsr)+

2µ

r
Dks(ω)K1(αsr)

]}
sin
(

kπ

L
z
)

=

(
kπ

L

){ 2

∑
s=1

Asγs

[
Cks(ω)I0(αsr)−

2µ

r
Dks(ω)I1(αsr)

]

+
2

∑
s=1

Bsγs

[
Cks(ω)K0(αsr)+

2µ

r
Dks(ω)K1(αsr)

]}
sin
(

kπ

L
z
)

=

{
2

∑
s=1

As

[
βs I0(αsr)−

2µαs

r
I1(αsr)

]

+
2

∑
s=1

Bs

[
βsK0(αsr)+

2µαs

r
K1(αsr)

]}
sin
(

kπ

L
z
)

, (A.15)

where relations (A.4a)-(A.4b) have been employed in obtaining the first equality in (A.15)
and definitions (A.6) and (A.7) in obtaining the second and third equalities, respectively.
The fourth equality in (A.15) derives from use of (A.9), and the final equality in (A.15)
then follows from definitions (A.13)-(A.14) and the fact that

γ1=1, γ2=
1

( kπ
L )2

[( kπ

L

)2
− ρω2

µ

]
=

1
( kπ

L )2


α2

2, Case 1,
−α2

2, Case 2,
−α2

2, Case 3.
(A.16)

For Case 1 and longitudinal wave number k 6=0, the axisymmetric shear stress obtained
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from our method of solution is (again omitting the sin(ωt) factor):

σ
(SC)
rz =µ

(
kπ

L

){ 2

∑
s=1

αs(1+γs)
[

As I1(αsr)−BsK1(αsr)
]}

cos
(

kπ

L
z
)

, (A.17)

which is immediately obtained upon substituting m=0 into Eq. (5.5b).
Given the remarks at the beginning of Section A.2, the ERP shear stress component

(A.3c) reduces to the following:

σ
(ERP)
rz =−µΩ2

[
QJ1(Ω2r)+RY1(Ω2r)

]
+µ

{
2

∑
s=1

(−krks+χkskzk)
[

Qks J1(krksr)+RksY1(krksr)
]}

cos(kzkz). (A.18)

Employing relations (A.4a)-(A.4d) and considering only Case 1, the frequency-dependent
ERP constants in (A.18) are as follows:

ξks(ω)≡−krks+χkskzk =


2α1i−1, if s=1,(

α2+
( kπ

L )
2

α2

)
i−1, if s=2,

=

[
αs(1+γs)

γs

]
i−1, (A.19)

where the final equality in (A.19) derives from use of identity (A.16). Then, using the
compact notation

σ̄
(ERP)
rz ≡−µΩ2

[
QJ1(Ω2r)+RY1(Ω2r)

]
, (A.20a)

ξ̄ks(ω)≡ iξks(ω)=
αs(1+γs)

γs
, (A.20b)

and keeping in mind that we are considering Case 1, the ERP shear stress component
(A.18) reduces as follows:

σ
(ERP)
rz =σ̄

(ERP)
rz +µ

{
2

∑
s=1

ξ̄ks(ω)i−1
[

Qks J1(iαsr)+RksY1(iαsr)
]}

cos
(

kπ

L
z
)

=σ̄
(ERP)
rz +µ

{
2

∑
s=1

ξ̄ks(ω)
[
(Qks+iRks)i−1 J1(iαsr)+

2
π

RksK1(αsr)
]}

cos
(

kπ

L
z
)

=σ̄
(ERP)
rz +µ

{
2

∑
s=1

ξ̄ks(ω)
[

Q̃ks I1(αsr)+ R̃ksK1(αsr)
]}

cos
(

kπ

L
z
)

=σ̄
(ERP)
rz +µ

(
kπ

L

){ 2

∑
s=1

ξ̄ks(ω)γs

[
As I1(αsr)−BsK1(αsr)

]}
cos
(

kπ

L
z
)
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=−µΩ2

[
QJ1(Ω2r)+RY1(Ω2r)

]
+µ

(
kπ

L

){ 2

∑
s=1

αs(1+γs)
[

As I1(αsr)−BsK1(αsr)
]}

cos
(

kπ

L
z
)

, (A.21)

where relations (A.4a)-(A.4d) have been employed in obtaining the first equality in
(A.21), and then (A.6), (A.7), (A.9), and (A.20), in obtaining the second, third, fourth,
and fifth equalities, respectively.

The first bracketed term in the final line of (A.21) is consistent with the shear stress
component (6.1b) when m = 0. Comparing the final line of (A.15) with (A.11) and the
cosine term in the final line of (A.21) with (A.17), we see that, in Case 1, the axisymmet-
ric stress components obtained from the ERP method are identical to the axisymmetric
(m=0) stress components obtained from our method of solution. Using relations (A.4a)-
(A.4d), definitions (A.6)-(A.7), identity (A.16), and analogs of substitutions (A.9), and
applying the same logic, it is straightforward (albeit tedious) to show that the equiva-
lence holds for Cases 2 and 3 as well. Thus, in the special m= 0 case, the general stress
field obtained from our method of solution is identical to the general axisymmetric stress
field obtained from the ERP method.
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