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Abstract. A new second order time stepping ensemble hybridizable discontinuous
Galerkin method for parameterized convection diffusion PDEs with various initial
and boundary conditions, body forces, and time depending coefficients is developed.
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1. Introduction

In this work, we propose a new second order time stepping ensemble hybridizable
discontinuous Galerkin (HDG) method to efficiently simulate a group of parameterized
convection diffusion equations on a Lipschitz polyhedral domain Q ¢ R¢ (d > 2). For
j=1,...,J, find (g;,u;) satisfying

cjq; +Vu; =0 in Q x (0,77,

Owu; +V - q; + B - Vuj = f; in Q x (0,77, 1)
uj =9gj on 99N x (0,71,

u;(-,0) = u? in Q,
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where

Cj = C](xat)a f] = f](xat)a gj ‘= g](m>t)> 18] = B](xat)a ug] = u?(ZC)

are given functions.

For many computational applications in real life, one needs to solve a group of PDEs
with different input conditions, like the applications in petroleum engineering, which
need to predict the transport properties of rock core-sample in centimeter scale. We
need to capture the flow capacity of every single nanopore with different inputs, and
the porous media of shale core-sample is composed of more than 10° pores. However,
to efficiently simulate a group of PDEs with different inputs is a great challenge.

A first order time stepping ensemble method was proposed by [16] to study a set
of J solutions of the Navier-Stokes equations with different initial conditions and forc-
ing terms. The J solutions are computed simultaneously by solving a linear system
with one common coefficient matrix and multiple RHS vectors. This leads to a great
computational efficiency in linear solvers when either the LU factorization (for small-
scale systems) or a block iterative algorithm (for large-scale systems) is used. Later,
a second order time stepping ensemble algorithm was designed in [14]. Recently,
a new ensemble method was proposed to treat the PDEs which have different co-
efficients [11,12]. The ensemble method has been applied to many different mod-
els [8-10,15,17,18,20]. It is worthwhile to mention that the previous works only
obtained a suboptimal L>(0,T; L?(£))) convergence rate for the ensemble solutions.

More recently, we proposed a first order time stepping ensemble hybridizable dis-
continuous Galerkin (HDG) method in [3] to study a group of convection diffusion
PDEs with different initial conditions, boundary conditions, body forces and coeffi-
cients. We obtained an optimal L°(0, T; L?(f2)) convergence rate for the solutions on
a simplex mesh, and we obtained a L?(0,7T; L?(f2)) superconvergent rate if the poly-
nomials of degree k& > 1 and the coefficients of the PDEs are independent of time.
This ensemble HDG method uses polynomials of degree k for all variables, i.e., the flux
variables g; and the scalar variables u;.

In this work, we devise a new second order time stepping ensemble HDG method
for a group of convection diffusion PDEs. We use polynomials degree k to approximate
the fluxes and the numerical traces, and use polynomials degree k + 1 to approximate
the scale variable. This method was proposed by [19] and later analyzed by [21]
for a single steady elliptic PDEs, they obtained a superconvergent rate for the scalar
variable for all £ > 0. This HDG method has been extended to study the PDEs with
a convection term by [23, 24].

In this paper, we first restore the superconvergence for & = 0 by modifying the
stabilization function in [23]. Next, we show that the new ensemble HDG method
can obtain a L>°(0,T; L?(f2)) superconvergent rate for all £ > 0 on a general polyhe-
dron mesh and without assume the coefficients are independent of time. It is worth
mentioning that this new ensemble HDG method keep the advantages of the ensemble
methods, i.e., all realizations share one common coefficient matrix and multiple RHS



146 Y. Yu, G. Chen, L. Pi and Y. Zhang

vectors at each time step, which can be solved efficiently by some exist solvers as we
mentioned previously.

The paper is organized as follows. We introduce the improved HDG formulation
and the ensemble HDG method in Section 2. Next, we give some preliminary materials
and prove the ensemble HDG method is conditionally stable in Section 3. Then we give
a rigorous error analysis in Section 4. Finally, we provide some numerical experiments
to confirm our theoretical result in Section 5.

2. The ensemble HDG formulation

The HDG methods were proposed by [6], which are based on a mixed formulation
and introduce a numerical flux and a numerical trace to approximate the flux and
the trace of the solution. The global system involves the numerical trace only since
we can element-by-element eliminate the numerical flux and the solution. Therefore,
the HDG methods have a significantly smaller number of globally coupled degrees of
freedom comparing to DG methods. The HDG methods have been extended to many
models [4,5,7,25,26]. We emphasize that the HDG method in this work is considered
to be a superconvergent method. Specifically, if polynomials of degree k > 0 are used
for the numerical traces (global system), then we can obtain & + 2 order for the scalar
variables [22-24]. Hence, from the viewpoint of globally coupled degrees of freedom,
this method achieves superconvergence for the scalar variable.

To describe the ensemble HDG method, we introduce some notation. Let 7, be
a collection of disjoint shape regular polyhedral K that partition §). Here by shape
regular we refer to [2]. Let 07, denote the set {0K : K € T,}. For an element K
of the collection 7j, let e = K N 0N denote the boundary face of K if the d — 1
Lebesgue measure of e is non-zero. For two elements K and K~ of the collection 7y,
lete = 9K+ NOK~ denote the interior face between K+ and K~ if the d — 1 Lebesgue
measure of e is non-zero. Let £ and 5,? denote the sets of interior and boundary faces,
respectively, and let £, denote the union of £2 and £7. For each K € Ty, let h denote
the diameter of the smallest d-dimensional ball contain K, and h = maxgc7, hx. We
finally set

(’U),U)Th = Z (’U),U)K, <C>p>8ﬁl = Z <Cap>8K>

KeTy, KeTy,

where (-,-) i and (-, -)yx denote the standard L? inner product.
For any integer k > 0, let P*(K) denote the set of polynomials of degree at most k
on the element K. We recall the standard L? projection operators I, : L?(K) — P*(K)
and Py : L*(e) — P¥(e) satisfying
(Meu, w) g = (w,w)g, Yw € PYK), (2.1a)
(Paru, p)e = (u, pye, V€ PE(e). (2.1b)

Moreover, the vector L? projection I, is defined similarly.
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We consider the discontinuous finite element spaces:

Vi = {'v € [LQ(Q)]d tv|g € [Pk(K)]d, VK € 771},
Wy, = {w € L*(Q) 1 w|g € PMH(K), VK € 771},

My (g) = {u € L2(&n) : ple € P(e), Ve € &, ilgo = PMg} :

For wy, € Wy, and r;, € Vj, let Vv, and V - r, denote the gradient of w;, and the
divergence of r;, applied piecewise on each element K € 7},.

2.1. The improved HDG method

Next, we consider the spatial semidiscretization for (1.1) by an improved HDG
method. Forall j = 1,...,J, find (g, w;n, Ujn) € Vi x Wy x My(g;) satisfying

(¢iqin, 75)7 = (Wjn, V - 75) 75, + (Wjn, 75 - o, = 0,
(Opwjn, i), = (@jn, Vw;) 7, +(@jn - n, wj)o, — (Bjujn, Vw;)T,

— (V- By)ujn, wi) 7, + (Bj - nitjn, wy)or, = (f5,w5)7,
(@jn - m, pj)om, =0

(2.2)

for all (rj,wj, u;) € Vi, x Wy, x Mj,(0). The numerical traces on 07y, are defined by
qjn-n=qjn-n+ h;(l(PMujh — Ujp). (2.3)
Remark 2.1. The stabilization functions in [23] are defined as following
qjn - =qjn-n+ h;(l(PMujh — Ujn) + ch(u]'h — Ujn), 2.4
where ch are positive stabilization functions defined on 97;. Comparing with our
stabilization function (2.3), a upwind term in (2.4) was added to guarantee the well-

posedness but destroy the superconvergence when k& = 0 (see [23] for a single convec-
tion diffusion PDE and [13] for an optimal control problem).

2.2. The ensemble HDG formulation

It is easy to see that the system (2.2)-(2.3) has J different coefficient matrices since
cj and B} are different for each j, the superscript n denotes the function value at the
time ¢,,. The main idea of the ensemble algorithms is change the variables ¢} and 37
into their ensemble means:

J

> 4 B'=

J=1

=

<=
Sl

J
> By (2.5)
j=1
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Next, we suppose the time domain is uniformly partition into /V steps and the time step
is At := % Lett, :=nAt forn =2,..., N, we define

1
o w™ = A7 (Bw™ — 4w + w7 ?) .

Forall j =1,...,J and n = 2,..., N, our BDF-2 discretization plus second-order
extrapolation on the deviation from the average state ensemble HDG method finds

(g}, u?,uj) € Vi, x Wy, x My(g;) satisfying

(E”q;-bh,rj)T — (u?h, V- Tj)Th + <ﬁ§‘h,rj . n>8T}

= (=) Ca -~ a?)om) (2.6)

for all r; € V},, and

(0w w5) 7. = (s Vos) 7o + (@ 1 ws) oy
(VB ), - (@) 4 (@ T,
= (17 wi)g, =~ ([V- (B = 8] (e =) wy)
(8" =By (2 = ). V)
H([B" - 8) m] G - 2) ) (2.6b)
for all w; € W}, and
(@ 15) o, =0 (2.60)

for all u; € My (0), and the numerical fluxes are defined by
@, m=qp, o+ hi (Pauly, — ) (2.6d)

To start up the second order time stepping ensemble HDG system (2.6), besides

. .. .. 0 O /\O . . 1 1 /\1
the initial condition (qjh, Uy, ujh) we need the 1Onforrnat1on of (qjh, Ujp, ujh). We take

vu
the initial conditions u? i = = Iy quo, q] b= —— . Since u? ih is double-valued on &,

J
then the restriction of u? i, 00 & s double Valued Therefore, we only take one as the

initial condition for % i Followed in [11], (q] B U L) ; ut,) is computed by the following
backward Euler ensemble HDG method

(Elqjl,h,rj)n — (u;h,v . 'rj)Th + <ﬂ}h,rj .n>87_} = ( (cl —ct ) qjh,’l“])

1

Th
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for all 7; € V, and
<%(ujlh - “?h)tij>7h — (@ns Vwj) . + (G - 1 w5) o
— (v Buhwy) (Bl Vuy) 4 (B m) ),
= (1} wi), = ([9- (B = 8] ws) h-(@ — B)un, V).
+([(B - 8)) - n]iy, w;)

for all w; € W,
The following equivalent system is derived to benefit the theoretical analysis.

T

Lemma 2.1. System (2.6a)-(2.6d) is equivalent to the following system
(Enq?h’rj)T - (u?h’ v rj)Th + <a?h’rj ’ n>a7‘h

= (@ =) (2q" - }‘{2),rj)7h, 2.72)

(8 ujh’wj) (V q]hvw]) <q]h naﬂ]>a7—h
_ ((V.Bn)ujh,wj)T <B u]h,ij) <(,8 ‘n)u Jh’w]>a7‘h
+ <h1_(1 (PMu;»Lh — ﬂ?h),Pij — Mj>87'
= (fvw) g, = (V- B" = 8] (u =) wy)
(@ -8y (2w = ). Vo)
+ (18"~ 8y) -m] (25" — ) ) (2.7b)

T
fOl’ all (rj,wj,uj) eV, x Wj, x Mh(O).

The proof of Lemma 2.1 is simply by substituting (2.6d) into (2.6a)-(2.6c), sub-
stracting (2.6¢) from (2.6b) and using integration by parts.

3. Stability

Throughout the paper, we use the standard notation W"™P(D) for the Sobolev
spaces on D with norm || - ||, »,p and seminorm | - |, , p. We use H™(D) instead
of W™P(D) when p = 2. We omit the index p and D in the corresponding norms and
the seminorms when p = 2 or D = (). Also, we omit the index m when m = 0 in
the corresponding norms. We denote by C'(0,7; W"*(Q2)) the Banach space of all con-
tinuous functions from [0, 7] into W"*(2). The definition of LP(0,T; W"™*(Q)) with
1 < p < oo is similar.
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To obtain the stability of (2.1) in this section, we assume f; € C(0,T; L2(%2)),
g; € HY0,T; H'2(09)), uJ € L*(Q2) and the vector fields 8; € C(0,T; [Wloo( %)
and satisfying
V-B; <0, B;=0(1). 3.1)
These exists a positive constant ¢y such that the coefficients ¢; > ¢y, and ¢; €
C(0,T; L>(9)), and the ensemble mean satisfy the following condition

1
| —2"| < 3 min {¢",¢"1,e" 2}, n=2,...,N, (3.2a)

|cjl- - El‘ < min {El,EO} . (3.2b)
The following error estimates for the L? projections are standard:

Lemma 3.1. Suppose integers k,¢ > 0. There exists a constant C independent of K € Ty,
such that

Jw - Tpw||x < O Mwlpprx,  Ywe HTY(K), (3.32)
lw — Pywllog < Ch¥ 2 |wlpsr i, Yw e HAFL(K). (3.3b)

We also use the following local inverse inequality:

_1
lwnllox < Chy?lwpllx, Ywp € Wh. (3.4)

3.1. Preliminary material

Next, we give the following several lemmas, which will be frequently used in our
analysis.

Lemma 3.2. For any real numbers a,b and ¢, we have

1
5(3@ —4b+c)a

1 1
=7 [a® 4+ (2a — b)* —b® — (2b— ¢)*] + Z(a —2b+c)?.
Lemma 3.3. For v € [Wh*°(Q)]? and w € W, we have
1 1
(yw,Vw) 7, = 5(’7 MW, W) g7, — §(V CYW, Ww)T;, - (3.5)

The proofs of Lemmas 3.2 and 3.3 are trivial and we omit them here.

Lemma 3.4. Suppose the function v := v(x,t) is smooth enough, then the following
estimates hold true

2 _
105 0" |7 < CAH 0w T4,y iz (3.6a)
At* o H ttvnHT = CAt3||atth[2L2 (tn—2,tn):L2(Q)]" (3.6b)
Hat’l) - a+ nHT < CAt?)Hattt'UH LQ(tn 27 )LQ(Q)] (3.6C)
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where

A

M INE (v" — 20" 0" P

The proof of (3.6¢) can be found in [11], the proofs of (3.6a)-(3.6b) are very similar
to the proof of (3.6c) and hence we omit them.
The following lemma is very crucial for our analysis.

Lemma 3.5. For v € [WH(Q)]4, (w, u) € W), x My(0), V - < 0 and h small enough,
we have

2

1
Hh F(Pyw—p)|| = (Veyww)y, — (Yw, Vw)7, + (v - np, w)ar,

Th

1 -2 2
ziHh 2(Pyyw — ) — Ch||Vuwl||7, . 3.7)

Th

Proof. Using (v - nu, p1)o7;, = 0, V -~ < 0 and integration by parts, we have

—~

Veyw,w), = (yw, Vw) 7, + (v - np, w)ar,

'y-n(w—u),w—,u>87h—g(V-’yw,w)Th by (3.5)

|
|
7~ T~

v - n(w — Pyw),w — PMw>8T

n(Pyw — p), Pyyw — ,u>

DO | = Q w|>—~/\w|>—~[\3|r—l

1
~ - n(Pyw — p), Pyyw — u> — —(V “yw, w)7;,

(hHVw\\mthVw\muPMw uH«m)

/\

| \/

/\

~ - n(Pyw — p), Pyyw — M>8Th by (3.4)
1] -1 2
> = Ol - g | (P - )

T

1
— §<'y -n(Pyw — ), Pyyw — M>8T

The mesh size h small enough and v € [W>°(Q)]4 imply 1n 1_ 37 -n > 0, therefore,

1 2
2

=] = (7 w0, = (Tl + b o

T,
2

— Ch||Vuwl||7, . O
T,

1 1
25 Hh 2(Pyw — p)
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Lemma 3.6. Let (q]”h, uly, ayh) be the solution of (2.7), then we have the following bound
IVaiall 7,

_1
<¢ (IVF gl + VT a5 oy + IV, + [ -3, )

Proof. We take r; = Vul, in Eq. (2.7a) and use integration by parts to get

Hv%hHT - (@ ]mv%h) L+ (U = W, Vg )
+ (@ e gt —ay )vujh)Th
— (" jh,Vu]h) +<PMujh—ﬂ?h,Vu?h-n>a7_h
- ((c"—c ) (2a5" — 4 ?) Vi)

then the desired result is followed by the Cauchy-Schwarz inequality and the local
inverse inequality (3.4). O

Lemma 3.7 (Discrete Poincaré-Friedrichs inequality). For all (w, u) € W}, x My (0), we
have

ol < ClIVwls, + OHh  w— )

T

The proof of Lemma 3.7 is found in [2, Lemma 5].

Lemma 3.8. For all v € [WH>(Q)]? and (v, w,v,®) € W}, x Wy, x My(0) x My(0), we
have

— (V-yw,v)7, — (yw, Vv)7;, + (7 - nw,v)s7;,
1 2
(1ol + ol + i o =] )
h

+ (V- Ipyw], v)7, — (oY - nw, 0) 7. + (7 - n(W — w),v — )y - (3.8)
Proof. We note that (v - nw,v)s7, = 0, then

—(Vyw,v)g, = (Yw, Vo) + (v nd, )y,
=(v-Vw,v)r + {7 n(0—w),v)y7 by (3.5)
= (v Vw,v)g, = (v nw, V)7, + (v -n(W0 —w),v=0)yy,
('7 IIy7y) - Vw, v) —< (v — yy) - nw U>8T
+(H0'y Vw, v) —<H0'y nw v>a7_ +<’7 w—w),(v—ﬁ)>a7_h.
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We use integration by parts to get

—(V-yw,v)7, — (Yw, Vo)7, + (v - n@, v)a,
=— (V- (v = Ooy)w,v)7, — ((v = o) - Vo,w)7,

+ <(7 - H07) ‘W, v — 6>a7-h

+ (Ho'y - Vw, v)Th — <(H0'7 - nw, 6>8Th

+ (v -n(@ —w), (v - 6)>a7_h.

Since v € [Wh(Q)]9, then ||y — ToY|0.coc < Chi|v|1,00.5- Use the local inverse
inequality (3.4) to get

= (V-yw,v)7, = (yw, V)7, + (v - n, v)ar,
<0 (1wl + 1ol + | 2
- h h 8771

+ (V- [Ho'yw],v)Th — (Iyy - nw,6>a7_h + (v -n(w —w),v —i)\>a7_h.

1
h(Py — D)

This proves the desired result. O

3.2. Stability

Next, we prove the Ensemble HDG system (2.1) is conditionally stable. Unlike the
previous works, we do not assume the Dirichlet boundary conditions are zeros. Hence,
the proof here is more involved.

Theorem 3.1. The ensemble HDG system (2.1) is conditionally stable, i.e. the condition
stable under the assumption (3.2). In particular, for j = 1,...,J, we have

N
max Hu?hHi_h + Atz H\/E—”q]"h| %L
n=2

2<n<N

N
<cary” (|14
n=2

+.0 (Il + bl + SUVTGhI 1051, i )

7+ 19715 oa)

and the constant C' depends on (3; and c;.

The proof of Theorem 3.1 follows by triangle inequality, the definition of H > norm
and Lemma 3.10.

To deal with the inhomogeneous boundary condition in the stability analysis, we
need some additional notation. Let m; € H'(0,T; H'(2)) be an arbitrary function
such that m;|sn = g;, and define

n n n N ~~n n
w]'h = ujh — Hk+1mj7 wjh = ujh — PMm] . (3.9)

This implies w7, = 0 on &Y. Now we give the estimate for Wi,
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Lemma 3.9. Let (w;?h, @;Lh) be defined in (3.9) and (q]”h, u?h, uA"jh) be the solution of (2.7),
then we have the estimate

Vil < € (V@ @l + Va5 g, + 1VE245)5,)
_1 N
+ | (PMw?h_w?h)Han +C||vmz|, . (3.10)
Proof. By Lemma 3.6 and the triangle inequality, we get
IVgall, < 1Veully, + [IVTesam3 ]
< (V@i + VT + Ve
_1 N
i Py~ 23, ) + € 9,
< (Ve gy + Ve gy + 1Ve2a )
_1 N
_1
+ || (ParTlysamy — Pagm) Wh) +C||vm|,.
<O (IVeahly + Ve e |y + 1Ve2a )
_1
+ O\ (Paryy )|+ €[ vm3 O

Lemma 3.10. Let (w},, @7,) be defined in (3.9) and (qjj,, u},, uj;,) be the solution of
(2.7), if the condition (3.2) holds, we have

N
a7 + AfZ2 IVerag |,
n=

N
conrs (11 + omle)
n=2
+C (H“ﬁh”% + Hw]thzTh + HatijiQ(O,T;LQ(Q)) + AtH\/ch]th%) )

the constant C in the above inequality depends on (3; and c;.

Proof. By the definitions of w;?h, @;Lh in (3.9), we can rewrite (2.7a) and (2.7b) as

@ gn i)y — (Wi Vo rg) 1+ (@i om0

:( (@ — ) (2q5, " — ;L,jz),rJ-)Th +(mj, Vo) —(mf,rin), (3.11a)
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n -~ a2t . n
(3 w]h’vj) (V qjh’UJ)T <qjh 'n’vj>a7’h - (VB wjh’vj)Th

_1
h

= (f103) 5, = (OF (Mesaw}) svy) = ([V- (B" = B))] (uy ! — w;??z),%')n
(( B" - By )(2”’% t- w]h )’ij>,7_h + <(Bn —:3?) (2wjh b @;Lh 2)Uj>a,rh
i
((ﬁn B7) (20 1mf~ —Hk+1mn72)avvj)

Th
<( 3" - B7) 2PMm;1 1 — Pymy™ 2)Uj>8’7'h
+ (V- B gym?, ), 7+ (B" Hk“mgb,ij)
— (B n, Pumvg )y — (Wit Par (Tam — m2), P —vj>aTh (3.11b)

Now we take (r;,v;,v;) = (qj,, w},, w},) in (3.11), add them together, use Lemma 3.2
and stability (3.7) with (w, p1,y) = (w},, @;‘h,ﬁn) to get

lewull7, + 2w = w17, = e 17, = 2wt = w17,

i
2

+ 4AtHth_2wgh ‘HU HT + “quh|’n 2Hh PMth wj )H

<((C -G )(2qjh - jh )’qjh)7’h+(mj’v'qjh)ﬁ_<mj’qjh‘n>a771
_|_

(F1 )y — (O Thepim ), + CR|| V|2

OTh

~ (V- (8" = B (i ) )

(8"~ 8p) (2w —wpy ). Vus)

+{(B" -8 om0 - @)

~ (V- (" - 8 @y ™" = Tpm) ), )

(" =By @™ M=), V)

+((B" = 8) - ma (2m ™ = Pamy )y

- <V : Bnﬂkﬂm}?,wﬁ)n + (Bnnkﬂm?avw?h)n

~(B" -, Pas] w3h>a7h - <hK1P (Parm? =), Pygulh, — A?h>afrh — iRi.
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Next, we estimate {R 1 term by term. By (3.2), there exists a constant x > 0, such
that
K

|E" — c”| < mmm{cn - 1,5"72}. (3.12)

Using the above condition (3.12) and the Young’s inequality to have

By < 5oy Ve i+ 1VE ) Vel
< o (SIVEa + IVETa I + Ve ).

For the term Ry + R3, we use integration by parts to obtain

Ry + R3 = — (ij’q]h) ‘\/_qthTh + CvanHT

w7

For the term R4, we use the Cauchy-Schwarz inequality to get

R <2 (|lufil|7, + 1177117 )

For the term Rj, by the definition of 11, in (2.1a) and we use the Cauchy-Schwarz
inequality and the estimate (3.6a) to get

Rs = = (9 erimf, wi) 7.
= = (9 mj, i)
< ¢ (lorm I, + )
< CAt_lHatm HLQ(tn otmiL2(Q) T C’Hw” ;

() Jth'

For the term Rg, by the estimate (3.10) and let 4 sufficient small, one has

R <Ch (|[VE a7, + HV‘"‘lqn’lHTh + Ve )

+0thf% (P =3[ + onllmi I,
<sitrmy (IVEa 5 + Ve Ta 5, + Vo2,

2
+EHhK Pijh—w?h)Ha +CHVm”HT

22/\n 1

For the term R; + Rs + Ry, we let (v, v, w,v,w) = (Bn - B7, 2w§§:1 ]h , 207,
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@"h 2,w]h,wjh) in (3.8) to get

R7+ Rg + Ry
< (Il + g I, + g 21, + [

+ <v : [HO (B" -p7) (2wl =y 2)],w;‘h>7

1 9
hi(Pywiy, — w?h)HaT)

—n 2 ~
- ([ - ) (2w )] )
OTh
= 2wy, @, ) Wl @nh>
J J ] J T,

+<(Bn_’ﬁjn) (2w]h _w]h
;1,:2) €V, we get

Using (3.11a) with r; = IT,(8" — 5}1)(2711?1;1 —w;

157

R7+ Rg + Ry
2
< (Il + o I, + g 21, + e (Parg = @) )
+ (e T (B" - B)) (2wl — iy 2>)Th
(( — ¢ )(2‘1 o 2), o (8" —5?)(2%}1 —wjnhz))n
( T (5" ><zw]h —w?f))n
For h small enough, Cauchy-Schwarz inequality and Young’s inequality give
R7+R8+R9
_24(Ii+1 (H\/_qth’Th_FH e 1q |’7}L+H e 2q_]h H’Th>

O (llull7, + N5 1, + il + I9mg 17

1—6HhK2 Pagul, — @)

‘afrh'
Using integration by parts and the estimate (3.10), we have

Rig + R11 + Ri2
<C (Il + 19l ) (19, + 19532017 )

1 N
<a (vl + i (Pura — 23 )

+ Co (IVmy 7, + 9m3 2|17, )
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<Co (V&g + Ve 7, + Ve a7,
_1 2
+0a (| (Parw - ap)|[) -+ v )
+ Co ([mp 5, + [[9ms =215, ) -
Choosing « small enough, we get

Rio + Ri1 + Ry

S24 m+1 (H\/_thHTh_'_H e 1qjh H7‘h+H” e 2q]h H%)

g5 (P )
+C ([Vm3 7, + I Vmy 7+ om3 )17 )
We use integration by parts to get
Ris+ Ris + Ris
= (5" Vmg wh) < [ o [V sim]l il
<C[[Vm3 |y llwfhll, < € ([9m3 7, + w3 )

where C' depends on 5". We hide the dependence on B; since we assume that 8; =
O(1) in (3.1). Therefore, by all the estimate above one gets

1 —
gz UlBull7, + N2e =i [ = i 17, = 2 = w7
2

1
+4At(Hwﬂh_2wﬂh i HTh)_'_H\/_thHTh 2Hh (Parwf, = nh)HaTh

<C (HthHTh + Hw HTh + H HTh + At_lHatm?HLQ(tn,g,tn;B(Q))>
+C (177115, + Iomg 7, + [V 7 + [Vmi =27, )
2/@—|— 1 n—
+e (1!\/0_"qjh\\ﬁ+1|VC" T+ Ve a7 )

6(k
+ZHhK (Parwfy — @) H\/_thHTh

7h HaTh (k+1)
We add last inequality from n = 2 to n = N, rearrange it, and multiply 4At to get

Jmax ||z, + Afz IVEall7, < CNZ (1715, + Ivm3I17,)

n=2

+C <ijhH7‘h + ijth + HatijLZ(o,T;LQ(Q)) + AtH\/gqjl‘hHTh) J
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then the result followed by Gronwall’s inequality the C' in the above inequality depends
on B; and ¢;. O

4. Error analysis

The strategy of the error analysis for the Ensemble HDG method is based on [1].
Throughout, we assume the data, the solutions of (1.1) are smooth enough and the
domain (2 is convex.

4.1. HDG elliptic projection
Forany ¢ € [0,7] and j = 1,...,J, let (ajh,ﬂjh,ﬁjh) € Vi, x Wy, x Mp(g;) be the

solution of the following steady state problem

=0, (4.1a)
9T,

(¢ @jnomi) g, = (@, Vi), + <ﬁjhﬂ“j ">
(V@ wi) g, = (Tjn 1 15) 7, = (V- Biigns wy) 7,
— (Bijn, Vuy) 5, + (8, - ma T ) o7
+ <h}1 (PMﬂjh - /ﬂ\jh),Pij - Mj>
T
=(fj = Oy, wj) 1 (4.1b)

for all (rj,wj,uj) e Vi, x Wj, x Mh(O).
The proofs of the following estimations are presented in Appendix A.

Theorem 4.1. Forany t € [0,T] and j = 1,...,J, we have

la; = Tjull7, < OB, 10:a; = Oedjnl| . < CHM,
I00s — Ol < OH, g =y, < OB,
100w = itijnll 7, < CRF*2 |Gy — Butjn| 7, < CRE2,

1 ~
-, <, |

1
3 (a — = k+1
B (Outign — duii) |, < CnFH.
OTh

4.2. Main result

We can now state our main result for the ensemble HDG method.

Theorem 4.2. If the condition (3.2) holds and the domain is convex, then we have the
following error estimate

max luf =yl < C (a4 nt2) 4.2)
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N
Atz H\/E_”(q;l - anh)HzTh <C <At2 + hk“) . (4.3)
n=1

Remark 4.1. To the best of our knowledge, all previous works only contain a subop-
timal L>(0,T; L*(f2)) convergent rate for the ensemble solutions u;. Only one other
very recent work [3] contains an optimal L>(0,T; L?(§2)) convergent rate for the en-
semble solutions wu;, and a L*(0,T; L?(Q2)) superconvergent rate if the coefficients of
the PDEs are independent of time and degree polynomial k£ > 1; our main result:
Theorem 4.2 is the first time to obtain the L°°(0, T’; L?(12)) supconvergent rate for the
ensemble solutions u; for all £ > 0 and without assume that the coefficients of the PDEs
are independent of time. It is also the first time to obtain the superconvergent rate for
a single convection diffusion PDE when £ = 0.

4.3. Proof of Theorem 4.2

The proof of (4.2) with n = 1 is quite standard in backward Euler discretization,
thus we omit it, and we prove (4.2) holds for all n > 2.

4.3.1. The equations of the projection of the errors

Lemma 4.1. For egh =qj), _a;‘lh{ €y = Uy — Uy, ]h =u" i~ ]h; forallj=1,...,J,
we have the following error equations

(En‘??;a"“j)ﬁ — (e, Vo) + (€5 o,

=(@ =)~ i ~ah) 7). (4.42)

(9+€?vay‘)7 (V- efwi) g, = (eh - mosis)or,
e]h,w]) - (8" e],:,ij)Th +(B"- n,e%wﬁan

+ PMe]h ),PMU}]' _Mj>87’

- (V-
(i
(v (B" - 8y) (2ufy = w2 =) wy )
- ("
(@

Th

n 1 n—2
2u = Ujp, —u ) Vw])T
-~n

(2u - u],;2 - Ejh)wj>a7_h + (O} — 3;@%, wj)Th (4.4b)

forall (rj,w;, ;) € Vi x Wy, x Mp(0)andn =1,...,N.

The proof of Lemma 4.1 follows by subtracting Eq. (4.1) from Lemma 2.1.
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4.3.2. Energy argument

We take r; = Ve% in (4.4a) and use integration by parts to get the following lemma.

Lemma 4.2. We have
T,
HVe}‘h HTh + HhK2 (e;‘Lh - e?h)
<c (Ve + )

+C[|(@ =) (25" — @i =) |l (4.5)

Lemma 4.3. If the condition (3.2) holds and the domain is convex, then we have the
following error estimate

‘87@

hi® (Parety — e)

N
s 5, B IVEE I < 0 (a6 14%).
n=

Proof. We take (rj,w;, p;) = (e?,:, ;‘Z,e%) in (4.4), use the polarization identity
(3.2), stability (3.7) with (v, w, u) = (87 j ,e]h, Jh) and add them together to get

1 n n n— n—
gz (17 + l2ess = 3™ 15 = el 117 — ll2etn ™" = e 117,
1 n n— 2
+ m”eﬁ = 2¢j, 1 + e HT + H‘/_ne HTh 2Hh (Puegh — € h)HaTh
<(@ =) gt = g2 = @h)oeh ) + (0 = 0T eln) 5

V- (,3 5") (2un 1 _ u;lh 2 _ ﬁ?h),e%)n

-
< 2u” 1—u?h2—u 1) Ve]h)
(@

Th
n—2 on

. n n) 2
n, (2an0 - ujh)e;%h%ﬁ + Oh||vet

Jh HTh
6
Z (4.6)

Next, we estimate {R;}$_; term by term. For the first term R;, since

_l’_

n—2

— — . n—1
205 — @t =@, =26t — el — APOg), 4.7)
we use condition (3.12) to get

n—2

n 1
R1:<(c —c" )(Qe]h —e?h —At23ttq]h), Jh)

K ) n e n—1 1 — n—2

< sy (VPR + IV 4 IV )
1 — ~

+ 8(r + 1) | cne;'thQTh + CA#HB;Q‘J%H%-
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For the term Ry, we have
Ry = (0 (uj —wjy) + 0w} — O uf efy) .
112 2 n 2
< C (|| =) |7, + 10w — gl + llesall, ) -
For the term R3 + R4 + Rs, Eq. (3.8) and (4.4a) give

Rs+ R4+ R;5

2
T

n 1 n on
<c (Hm;zl — =7+ e |, + ||hE (Parel =€)

+ (- [m@ - ) ot i -] e

Th

— (T (B" - B87) (2ufy" — i — ) -n,e§2>8T
+< B =B} m(2uly =l =g, = 2 A ), el — el >a¢h
0 (I = =l + e + b et - i)
+ <C" ]h’HO g 5") (2ufy =y ? — ﬂ?h))Th
- (- g @) (B - ) (2 )

+ <(ﬂ" - B?) (M Do w2 T - )
Similar to (4.7), we have

n 1 n—2 _ un— 2 +
2u _ujh —'LL jh = erh ]h —At 8tt Ghs

n 1 n—2 __-—n ~n—1 =
2ugy, " — ugy —uj, — 2y, —i—u]h —i—ujh

_2( w ;L;LL 1) (]Z i ]h ) AtQOzjt_ +At28tt _]h

Therefore, when h is small enough, we have

R3+R4—|—R5
(H\/_ethTﬁHV e+ Ve el 1)

<7
—24 /<;+1

2 n— n—
_— <H€th3-h + |€fn IH% + |€fn 2“%)
2 2

16Hh PMGJZ 1 6%_1) 16Hh (e = i) T
~ 2
+ CAE| 0| +0At4Ha;athT +CAt4‘ n2 208 (@ — ) ‘m_h.
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By the Cauchy-Schwarz inequality and h small enough, by (4.5) and (4.7), we get
f— 2 n n—1 n n—2
Ro <t (IWVEEIE, + Ve e |+ Va1 )
+ CN“H@J%H%-

We add (4.6) from n = 2 to n = N and use the above inequalities to get

max “ejh“n+AtZ|"/_ne HTh

2<n<N

n

h2 att A]h)

)

<cary (g, + ol +]
n=2

N
+ ey (|17 (g — )
n=2

7 o — o |7 )

N
+ 08ty Jlegi |7, + € (el
n=2

Next, we bound the terms on the right side of (4.8) by Lemma 3.4.

1
7+ lenllZ, + Atlledll7,) “4.8)

N
Ar? Z H@;gﬂth% < C’AtllHaﬁtﬁjhH;(O,T;H(Q))7
=2

N
MZ a7, < CAE|0ud;n]”

L2(0,T; LQ(Q))

Atz H6+ wj — g )HTh < CHat(uj _ﬂjh)HiQ(O,T;LQ(Q))’

AtZ Hat“? - atJr“?HQTh < CAtZlHatttujHi?(O,T;LQ(Q))’

1 2 2
2 9t (71 =n
hi Oy (ujh - ujh) H

1 ~
gCA#W@@A@h—@@
oTh

Atf’é‘

Gronwall’s inequality, the estimates above, Theorem 4.1 applied to (4.8) and (4.2) give
the desired result. U

L2(0,T;L2(0T))

As a consequence, a simple application of the triangle inequality for (4.3) and The-
orem 4.1 give the proof of Theorem 4.2.

5. Numerical experiments

In this section, we present some numerical tests of the Ensemble HDG method
for parameterized convection diffusion PDEs. A group of simulations are considered
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containing J = 3 members. Let Fu; be the error between the exact solution u; at the
final time 7" = 1 and the Ensemble HDG solution u}}, i.e., Eu; = [[u} — uf}[|7;,. Let

N
Bq; = | Aty [} — 4l
n=1

We test the convergence rate of the Ensemble HDG method on a square domain 2 =
[0,1] x [0, 1]. In the first test, the data is chosen as

e =11(1+18), c=121+1t), c3=13(1+1),
181 == [17 1]7 62 - [272]7 63 - [373]7
u; = e 'sin(x), wup = cos(t)cos(z), uz=e""",

and the initial conditions, boundary conditions, and source terms are chosen to match
the exact solution of Eq. (1.1). It is easy to see that the coefficients c; satisfy the
condition (3.2).

In order to confirm our theoretical results, we take At = h when k = 0 and At = h3
when & = 1. The approximation errors of the Ensemble HDG method are listed in
Table 1 and the observed convergence rates match our theory.

6. Conclusion

In this work, we devised a new superconvergent Ensemble HDG method for pa-
rameterized convection diffusion PDEs. This new Ensemble HDG method shares one
common coefficient matrix and multiple RHS vectors, which is more efficient than per-
forming separate simulations. We obtained a L>(0, T; L?(2)) superconvergent rate for
the solutions for all polynomial degree k > 0. As far as we are aware, this is the first
time in the literature, it is even the first time for a single convection diffusion PDE to
obtain the superconvergence rate when k£ = 0.
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Appendix A

In this section, we only give a proof of ||g; — @7, < CRML luy — T, <

1 ~
Ch**2 and ||h (W — win)llo7, < Ch**! since the rest are similar. To prove the rest,
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Table 1: History of convergence.

Degree R Eq Ew
g V2 Error Rate Error Rate
271 | 1.0360E+00 4.1730E-01

272 | 5.3867E-01 | 0.94 | 6.0658E-02 | 2.78
k=0 | 272 | 2.7518E-01 | 0.97 | 1.8030E-02 | 1.75
2% | 1.3795E-01 | 1.00 | 4.8156E-03 | 1.90
275 | 6.9056E-02 | 1.00 | 1.2012E-03 | 2.00
21 | 3.5178E-01 1.5269E-01
272 | 7.8269E-02 | 2.17 | 9.6593E-03 | 3.98
k=1 |22 | 1.9677E-02 | 1.99 | 1.2344E-03 | 2.97
2% | 4.9408E-03 | 1.99 | 1.5697E-04 | 2.98
275 | 1.2367E-03 | 2.00 | 1.9823E-05 | 2.99

qu EUQ

D _h

cgree 2 Error Rate Error Rate
21 | 3.0237E-01 1.8409E-01

272 | 1.7819E-01 | 0.76 | 4.3019E-02 | 2.10
k=0 | 273 | 9.7785E-02 | 0.87 | 1.2796E-02 | 1.75
274 | 5.1027E-02 | 0.94 | 3.5441E-03 | 1.85
275 | 2.5807E-02 | 0.98 | 8.9715E-04 | 1.98
271 | 1.2216E-01 5.9224E-02
272 | 2.3969E-02 | 2.35 | 3.9697E-03 | 3.90
k=1 |27® | 54027E-03 | 2.15 | 3.8968E-04 | 3.35
27% | 1.3536E-03 | 2.00 | 4.8216E-05 | 3.01
275 | 3.3937E-04 | 2.00 | 6.0519E-06 | 2.99

Degree e Eas Bus
V2 Error Rate Error Rate
21 | 2.2660E-01 8.5994E-02

272 | 1.2689E-01 | 0.84 | 2.4143E-02 | 1.83
k=0 | 273 | 6.5402E-02 | 0.96 | 6.2378E-03 | 1.95
2% | 3.2963E-02 | 0.99 | 1.5734E-03 | 1.99
275 | 1.6515E-02 | 1.00 | 3.9432E-04 | 2.00
271 | 6.5344E-02 1.7573E-02
272 | 1.7278E-02 | 1.92 | 2.1733E-03 | 3.02
k=1 | 272 | 4.3806E-03 | 1.98 | 2.6866E-04 | 3.02
274 | 1.0990E-03 | 1.99 | 3.3473E-05 | 3.00
275 | 2.7501E-04 | 2.00 | 4.1812E-06 | 3.00

we differentiate the error equations in Eq. (4.1) with respect to time ¢. It is worth
mentioning that we do not need to assume that the coefficients are independent of
time. However, we need to assume the coefficients are independent of time in the
previous work [3].

To shorten lengthy equations, we define the following HDG operators %; and ¢:

B (ﬁjh, Ujh, Wik; Tj, Wy, Mj)

= mi) g, = @ Vo 15) g+ (i 5 )+ (VT ) 7,
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— @ 1), + (B (Parin = ). Pagw — ”j>an
= (B, Vws) g, = (V- Bilijn wy) 7, + (Bj - Mg, wj )y (AD)
G (@ Wi, Ujns 5, Wi, 117)

:(cjajh,rj)n — (@jp, V - rj)Th + (Tjn, ) -n>a7_h + (V- ajh,wj)Th
— @ 1), + (B (Parin = ) Pagw — ”j>an

+ (B, Vws) . = (Bj - MiLjn, wy) o

By the definition of (A.1), we can rewrite the HDG formulation of the system (4.1), as
follows: find (q;,, Wjn, wjn) € Vi X Wy, x My(g;) such that

for all (rj,w;, u;) € Vi x Wi, x Mp(0).
In the next lemmas, we present some basic properties of the operators %; and ;.

Lemma A.1. For any (U;n, Wjn, fi;,) € Vi X Wiy x Mp(0), we have
B (Tjh, Wi, Tojp; Tjh, Win, Tgp,)
~(ciTin,Tyn) 5, + (W (Parin = Tijn) Paryn = Tijn)
1

1 _ N _ _
- §</8j - (Wjn — [jp,) Win — Mjh>aTh - §(V - BiWjn, Win) 7.

OTh

Lemma A.2. For any (T, Wik, Ujn; Bjn, Zjhs Zih) € Vi x Wi x My (0) x Vi, x Wy, x My (0),
we have

B (@m@mﬂjh;ﬁjh, —Zjh, —Ejh> + ¢ (T'jh,?jh,?jh; —th,@jh,ﬂjh)
=By - n(@yn —Tjn) Zn — Zin)

Proof. By definition:

T,

B <ﬁjh,@jhﬂjh;ﬁjh, —Zjhs _zjh) + € (I_?jm?thJh; —ﬁjh,@jhﬂjh>
=(¢TjnPsn) . — (@in: V- Bjn) 1 + (Wins Bjn - ) o — (V- Tjn Zjn) .

= (hi (Pargn = Bn), ParZn = Fn ), + (B maZin)r,
h

(
— (¢ Tjn) 7.+ (Zjns V- Tjn) . = (ZinoTjn - 1)y + (V- Py Wjn) .

+< PMZ]h—ZJh) Pijh—wjh>

+

Wi, VZin) 7+ (V- BWinsZjn) 7. — (B - nWins Zjn) o

oT, + <1_7jh : n’@jh>a7—h
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+ (8%, VWjn) . — (B - MZjn, Win) .
=(B7Wjn, VZjn) . + (V- BiWin Zjn) . — (B - "Wih, Zjn) o,
+ (BiZjn, VWjn) . = (Bj * NZjh Win) o

= (B -n(Win — ;1) Zjn — 2 :
<IBJ ( Jjh ]h)’ Jh ]h>87.h

A.1 Proof of main result

A.1.1 Step 1: Error equation
Lemma A.3. For E?h = I.qj — Qjp €}y, = Upyruj — Ty, and a]@h = Pyu; —ﬁjh, we have
Bi(edy € €0 Ty, W), 115)
=<(Hkqj —q;) -mw; - ”j>an + <h1_<1 (M 1vj — ), Prw; — Mj>
_ <B(Hk+1uj — uj),ij)Th — <V . B(Hk+1uj - uj),wJ-)Th

+ <,3 . n(PMuj - uj),wj — ,u,j>a7_h. (A.3)

T

Proof. By the definition of operator #; in (A.1), we have
B (Mg, Mg 10, Parvg, mj,wj, p15)
:(cjl'lkqj,rj)Th — (Mps1uj, V- rj)Th + (Pyuj, T )y
+ (V- (). wy) 7, + (i (Mg = ), Parwy = g )
— (Iiq; 'naluj>87’h — (Bl t1u;, ij)n
= (V Billesauj, wy) 7+ (Bj - nPauj, wy) o

=(ci(Mkq; = q;),7;) _ + (ci5,m5) 7 = (w5, V-r5)
T

Th

+ (g, m )ar + (Tegy - nywy) o — (g, Vwg)
+ (it (Mg =), Parw; — “j>an — (T0hq; - 1 115) 57,
— (B (M, “j)’ij)Th + (8 Vuy,w5) .

_ <v - B (T — uj),wj)Th + <B - (Paruy — ), wy — uj>(m
(

(g, + (Mg, -~ ) '"’wj>a7-h — (9, Vwy) 7,
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+ <h2<1 (Mes11t5 — ), Parwy — uj>m - <(Hij - q)) -n,w>
— (8 (Wesr; — UJ),VWJ')E + BV w;) 7
- <V By (Mg 1w — uj)7wj)7_h + <ﬁj - (Paruy — ), w; — Mj>

Note that the exact state u; and exact flux g; satisfy

T

T,

(qu]‘,Tj)Th — (u;, V- Tj)’rh +(uj,7; 'n>aTh =0,
—(g5, Vwj) . + (g nwj) o + (BiVuy, wi) . = (f; — Oy, wy) 7.
<qj : nauj>a7' =0

for all (rj,wj, u;) € Vi, x Wi, x Mj,(0). Then we have
j (HkQJ7 Hk+1uj7 PMU]? Tj, Wy, M])
I r-) +<H —q;) n,w; — >
=(cj(Thq; — q;),7; . (TIkg; — q;) -7, w; — p; o
+ (F5 = gy wg) 7+ (it (i = ), Parwy = py)
h
- (ﬁj (Mg 105 — uj),ij> (V By (M 1u; — uj), w])
Th Th
+<,@n(PMuJ —uj),wj—,uj> , (A4
OTh
subtract (A.2) from (A.4), we have
%; <€?ha€?ha€?h;rj,wj,ﬂj)
<CJ (TTq; — q;), 7 >7_h <(Hqu q;) -1, wj — Mj>a7_h
< (M = ), Py = iy ) = (85 (TMeya; = ), Vo )
T Th

V- B (Mgq1u; — uj), wj> + <Bj -n(Pyuj — uj), wj — ,uj> )
Th 0Tn

A.1.2 Step 2: Estimate for ¢}

The proof of the following lemma is similar to a result established in [23] and hence is
omitted.

Lemma A4. Forallj=1,...,J and (e}‘h,e]a.h) € Wy, x My(0), we have

_1 ~
[Veill 7 + Hhx2 (€5 — €5n) HBTh

_1 ~
<Olelylly, + Ol (Prc =), + ClIea; — gl
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The next lemma is based on energy arguments.

Lemma A.5. For h small enough, we have

1 PNIE:
el + || (Prseti = <5) |,
1 2 _1 2
<C|Tirq; — q57 + C”h;((Hij - QJ)HaTh + CHhK2 (M1 — uj)Hm.h

1 2 9
+ Cth((PMuJ - u]') Ha’Th + CHH[H_l’u]' - uJHTh
Proof. First, the basic property of #; in Lemma A.1 and use V - 8; < 0 to get

(9 wu _uw..q _u _u
B <€jh7€jh7€jh7€jh7€jha5jh>
qa _q -3 a4
. 2 U
> (CJEjh’Ejh)Th + HhK (PMajh Ejh)HaTh

1
Then, taking (7, wj, ) = (a;?h, Ens sj@h) in (A.3) and the stability (3.7) with (v, w, u) =
(Bj,a;%h,ajﬁh), we have
q q 1 _% u u 2
(Cjejh’ejh)Th + §HhK (Prrefn — €5n) Hm_h
9 _
gChHVs}‘hHTh + (cj (Hkqj — qj),es;.]h)Th + <(Hkqj - Qj) .n,a;?h — E}Lh>8’7'h
_ <h;{1 (Hk—I—luj — uj),PMe}‘h — 6§h>87’ — (,@J (Hk_Hu]' — Uj),Vc?}Lh)
h Th

_ (V yer (Hk+1uj — uj),&?}‘h>7_h + <ﬁj . n(PMuj — uj),&?}‘h - 891h>87‘h

R;.

[
e

1
Next, we estimate {R;}’_, term by term. First, by A.4 and Young’s inequality, we have

.
I

_1 ~ 12
Ry < Chl|e%, |15 + ChHhK2 (Pareth, — 6}%)”8,@ +C||Tig; - g7
1 2 1
Rs < Of[nfe (Mg = a)| )+ 50107,
1y, -1 a|?
+ 1—6Hh1<2 (Parefy — €5n) HBTh +C||Tg; — qjuz‘h’

1
R5 < C|Mpqqu; — uangh + EH’E?hHQTh

1, -1 2
+ gl s = i+ g -
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1 1 _
R7 < C‘ 12( PMUJ —uj H HhK2 g jh —8‘?]1)”87,
h
1 2
= CHh%(PM%‘ - uj)H 16” 7

1. -1 2 )
1_6Hh : PMﬁgh—*f}lh)Haﬁ+CHHqu'—qJHTh'

Young’s inequality for the terms R, and Ry,

Ry < C|[Mq; — q]”ﬁ 16” HTh
2
Ry < CHh Hkﬂu] Uj HaTh 16 Hh PMEJh —&; h)HaTh.

For the term Rg, using the Poincaré inequality Lemmas 3.7 and A.4, we have
~Ejh )H8Th>

Ry < O[T — ]l (uvf-:]huT il e
ﬂ 2
)

< O[Ty s - u]un gl + 16Hh (Pt -

+ CHHk‘qj —4qj 7',

Sum all the estimates above, and let A small enough, we get
q |2 _% U u 2
5l + (| Passli = <)

1 2
<O|[ Mg, — qjl|7; + O (Mg — a) [, + cHh (Wi — )|
]

2
) Harh + O[Ty -

1
+ CHh[Q((PMu] —Uu
As a consequence, a simple application of the triangle inequality gives optimal con-

vergence rates for |lg; — g | 7,

Lemma A.6. We have
Hq] a]hHTh < Hq] - HquHTh + HHk‘QJ _athTh < ol aans

A.1.3 Step 3: Estimate for ¢, by a duality argument

The next step is the consideration of the dual problems

Cj‘I’j + V\I’] =0 in Q,
V"I’j—ﬁj'v\PJZQj in Q, (A.5)
on 0f2.

;=0
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Elliptic regularity. Since the domain 2 is convex, we have the following regularity
estimate

12511 qall + 195520 || < Cregl|©) 120 |- (A.6)

With the above dual problems (A.5) and regularity (A.6), we can derive the follow-
ing error estimates.

Lemma A.7. For h small enough, we have
Il < Ch2 | T0ka; — gy, + Chl|Thia; — gl + Ol

_1
+ O [hi (e — ) Han + Chlhg (2 — =) Han

_1 ~
+ ChHhK2 (Pareth, — &%) Hm_h + Ch2 || Parg — gy + C|[Tirey — g

Proof. Consider the dual problem (A.5) and let ©; = &}, we take (r;,wj, p;) =
~II,®,, 11,1V, Py¥,)in Eq. (A.3) in Lemma A.3, we have
3o k1% J q

B (6?,1,6%,6]@;1; —Hk‘I’j,HkH‘I’j,PM‘I’J’)
5 (L@, 1 0, Py <9, jh,e?h>

+ (B -n(ef, — i), M1 ¥ — PM‘I’]‘>8Th

<cj 0,8, — &;),e ]h)T <(Hkq’j —®;) n,el, —e;fh>87h
n (ﬁj My ¥, — ) Va]h) ~(8;- (Party — 1), - )
h
+ (B (e — 5 T Wy — Pary ) (A7)
h
On the other hand, by (A.3), we have
%j (8;-1h, 8;-1;” &“J@h; —Hkq)j, HkJrl\Ifj, PM\I/J>
=- <Cj (TTkg; — q]'),ﬂk@j) + <(Hk‘Ij —q;) -, e T — PM‘I’j>
Th T,
+ <h;{1 (Hk-i-luj — UJ),PMH]C_H\IIJ — PM\I’]'>87_ — <B] (H/H_luj — uj)’vnk-f—llllj),r
h h
- <V - B (Mg 1uj — uj)7Hk+1\Ijj)7_ + <5j - (Pauj —uj), M U5 — PM‘I’j>
h
Since there holds
((Titq, —a) -m Pt
T,
:<qu]‘ . n,PM\If>8Th < 'n PM\IJ> = <HkQJ n PM\I/>
<Bj . n(PMuj — U,j),PM\IJj>

T,

0Ty’

—0= <5j -n(Paru; —Uj)a‘pj>

T, T,
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This gives
B, (s;?h,s;%h,s]@h; —Hkq>j,nk+1\1/j,PMfoj>
= - <Cj (g, — qJ')’Hk‘I’j) + <(Hkqj = q;) 1 ) — ‘I’j>
Tn oTn
+ <h[_(1 (HkJrluj — uj),PMHkJrl\Ifj — PM\I/j> o — <BJ (Hk+1uj — u]‘),VHkJrl\Ifj)T
h h
— (VB (Meruy— ), T 1 0, ) (B n(Part = ), Ty 1 W5~ \Ifj>aT. (A.8)
h
Comparing the above two equalities (A.7) and (A.8), we have
2
lesill7, = = (e (Mg — a) 1025 )+ (o (10, — ), <%, )
h Th
+ (Mg — @) -, T W5 — W)

oTh
+ < Hk+1u] — u]) PMHkJrl\I/j — PM\IJJ>

T,

-1 u
<(Hk‘1’ —®;) -m, el — 63h>aTh_<hK (Hk+1‘1’j—‘1’j),PMeyh_5?h>a7.h
(18] HkJrl\I} ) ngh) <18] (PM\II] - \I}j)7€.1]‘th B E?\h>a7—

h

Bj n h 8 HkJrl\I/ PM\I/ ,Bj(HkJrluj‘—Uj),VHkJrl\I/j
E ot

(V B (Wi 1w —uj), Hk+1‘1’> <5] (PMUj—uj),Hk+1‘I’j—‘I’j>
2

h

T
1

R;.
=1

Next, we estimate {R;}}2, term by term. First,
Ri+ Ry
= (e~ o)) (Teqy - q;). Ty )+ (¢ (I, — ;). <7,
h

< Ch!thoHHkq]‘ - "‘ChHE?hHTh

Th

I

qJ’HThHg}Lth thTh'

Then, we have
R34+ Ry + Rs + Rg + Ry

< Ch> <H1’quj — quBTh + Hh;(l (HkJrlUj — u])H + Hh Elp — EJh)H

T T

_1 ~ _1
+ 0|\ (P =), + €|l e =i |, )l

For the term Ry, by Lemma 3.7, we get

_1 —~
R, < Ch? <H€?hH7.h + HhK2 (P, — &%) HW) €%l -
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For the terms Rg and R;2, we have
Rg + Rio
= (B; - n(Pu¥y = Wy) el )+ (B n(Pyuy — ), T ¥ )
T aT;

= (8, n(Pay =W))< = <h) o+ (B m(Paruy — ), i ¥ — 05 )
7 o,

_1 _
<C (hHhK2 (PMe}Lh — 6?]1)"87_}1 + h% HPMUJ — uj”(97-h> H&;LhHTh
For the terms Ry and R;;, we use the boundness of II;; to get
Rio + Rn
< O Mesry = s, (VI ¥ll, + [T ¥, )
< O vy =y, (V@ iry =) + [V, + [T ] )
< O Werruy — w7 ||l -
Thus, combining all the estimates above give
legill, < Ch2 | Thka; — s, + ChIITIka; — gy, + Chllh
_1 _
+ O (T = ) Hm + Ch|[hic? (5 = <) Hm
1 _
+ Chh (Purety, — <) Hm_h + C13 || Paruy — w5
+ C|[Meauy — | 7
As a consequence, a simple application of the triangle inequality gives optimal con-
1
vergence rates for ||u; — ;|7 and ||h2 (@5 — jn)loT; -
Lemma A.8. For h small enough, we have
s = T, < Mesrg = wgl|; + [Maprvg —Tnl; < CRF2,

1 ~
+ th((PMuj — Ejh) H

1 ~ 1
O N
Th

OTh OTh

1
[P (Maaws = Py | < onb,
oT,
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