Numer. Math. Theor. Meth. Appl. Vol. 14, No. 1, pp. 71-112
doi: 10.4208/nmtma.0A-2020-0039 February 2021

Numerical Analysis of a High-Order Scheme for
Nonlinear Fractional Differential Equations with
Uniform Accuracy

Junying Cao' and Zhenning Cai**

1 School of Data Science and Information Engineering, Guizhou Minzu
University, 550025 Guiyang, China

2 Department of Mathematics, National University of Singapore, Singapore
119076, Singapore

Received 7 March 2020; Accepted (in revised version) 28 May 2020

Abstract. We introduce a high-order numerical scheme for fractional ordinary dif-
ferential equations with the Caputo derivative. The method is developed by dividing
the domain into a number of subintervals, and applying the quadratic interpolation
on each subinterval. The method is shown to be unconditionally stable, and for gen-
eral nonlinear equations, the uniform sharp numerical order 3 — v can be rigorously
proven for sufficiently smooth solutions at all time steps. The proof provides a gen-
eral guide for proving the sharp order for higher-order schemes in the nonlinear
case. Some numerical examples are given to validate our theoretical results.
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1. Introduction

In the past decades, fractional differential equations have been studied extensively
by many researchers, due to its success in describing some physical phenomena and
chemical processes more accurately than integer order differential equations [18, 30,
33,34]. Like most classical differential equations, the exact solutions of fractional order
differential equations are usually not available to us. Even if analytical solutions can be
found, they usually appear in the form of series and are difficult to evaluate. Therefore,
the numerical study of fractional differential equations has also inspired a number of
excellent research works such as [6,7,12,13,15,21,29,41].

*Corresponding author. Email addresses: caojunying@gzmu.edu.cn (J. Cao), matcz@nus.edu.sg (Z. Cai)

http://www.global-sci.org/nmtma 71 (©2021 Global-Science Press



72 J. Cao and Z. Cai

In this work, we are interested in the following initial value problem: For some
v € (0,1), we would like to find y(x) such that

oDyy(x) = f(z,y(z)), 0<ax<T (1.1)

subject to the initial condition y(0) = yo. In (1.1), the operator (DY is the Caputo
derivative, defined by

oDYy(x) = / wi—y(z — )y (s)ds, (1.2)
0
where w;_, is defined by
x—V
wi—y(z) = (=) (1.3)

with I'(+) being Euler’s gamma function. The function w;_, (x) acts as the convolutional
kernel, which satisfies

t
/ wy(t — pwr—p(pp—8)dp =wi(t—s) =1, V0<s<t<4oo. 1.4

The numerical method for this equation has been extensively studied in the context of
linear partial differential equations. For example, the L1-type schemes based on piece-
wise linear interpolation have been studied in [5,10,27], where the numerical order is
2 — v. In [1], the second-order L2-1, method is proposed by quadratic interpolation.
To achieve the sharp order 3 — v for smooth solutions, one can use the L1-2 method
proposed in [11], which is also based on the quadratic interpolation, or the method
based on Taylor expansion as introduced in [20]. For this numerical order, fast numer-
ical schemes to discretize the Caputo derivative is proposed in [39]. Generalization to
(r + 1 — v)-th order schemes have been studied in [3, 23] by Lagrange interpolation.
A common problem in these methods is that the theoretical order of the solution at the
first time step can only achieve 2 — v, as is shown in the numerical analysis in [20].
Such a problem is also mentioned in [24], where the author uses a finer grid near the
initial value to maintain the numerical accuracy. In [32], it is found that the size of
the finer grid should be proportional to At>~¥, which may cause significant additional
computational cost especially when v is small. Moreover, it is pointed out in [16] that
the realistic solution « is usually nonsmooth at ¢ = 0, and the initial layer can also
cause the reduction of numerical order. To solve this issue, graded meshes have been
introduced to restore the numerical order [5,36]. In this case, the size of the finer grid
could be even smaller if a high-order scheme is needed. Therefore, we are motivated
to find a scheme that does not require a finer mesh for the first time step. For simplic-
ity, in this paper we restrict ourselves to the case of a uniform mesh, and assume the
smoothness of the solution. Other related works include, but not limited to [2, 8, 38].
In principle, these methods can be directly generalized to nonlinear problems. How-
ever, the analysis of convergence order on such methods for nonlinear problems is less
seen in the literature. In [4], the authors converted the Caputo fractional derivative
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to the Volterra integral and proved the order of accuracy 3 + v for 0 < v < 1 and 4
for v > 1. A similar technique is applied in [35]. In [17], the authors applied the L1
formula to the subdiffusion equation, and obtained the numerical order v due to the
insufficient smoothness of the solution. The numerical order 2 — v is proven in [22,26].
A special cubic nonlinear term is studied in [37] to obtain a second-order numerical
method. However, theoretical proofs of numerical schemes with order 3 — v for general
nonlinear problems are rarely seen in the literature. In [31], it is demonstrated that
the generalization of schemes with order 3 — v for linear problems also works for non-
linear problems, but the proof for nonlinear problems is given only for the truncation
error. Clearly, nonlinearity has caused significantly difficulty in the numerical analysis,
especially on the transition from the estimation of the truncation error to the error of
the solution.

The aim of this work is to introduce a new (3 — v)-th order scheme for the fractional
differential equation (1.1). Our main contributions include:

e A new finite-difference approximation of the Caputo derivative is developed,
which leads to a high-order numerical method for (1.1) with uniform accuracy at
all time steps.

e The unconditional stability for the linear problem is proven rigorously.

e A novel proof for the convergence order is proposed for the general nonlinear
right-hand sides.

Our method is based on the block-by-block approach [14,19] commonly used for inte-
gral equations [28,40]. To avoid degeneracy (order reduction) at the first time step, the
proposed scheme couples the solutions at first two time steps, so that no smaller time
steps are needed to achieve the sharp numerical order. Such coupling is not required
in the later steps. The analysis of stability is complicated by these initial steps, which
requires close look at the structure of the solutions. The convergence analysis is based
on a novel technology that couples the idea of a recent work [25] and the strategy we
used in the proof of stability, so that the order 3 — v can be achieved for sufficiently
smooth solutions and general nonlinear right-hand sides. The reference [25] provides
a general framework which may be helpful to prove the numerical order for a number
of high-order schemes such as [1,11]. In this paper, we follow the general steps therein
with some alteration to the initial steps.

The rest of this paper is organized as follows. Our numerical scheme is introduced in
Section 2. In Section 3, we prove the unconditional stability of our method. Section 4 is
devoted to the proof of the convergence order, as is verified by our numerical examples
in Section 5. Finally, some concluding remarks are given in Section 6.

2. A finite difference approximation to the Caputo derivative

In this section, we will construct an efficient numerical scheme for the problem
(1.1). For simplicity, we consider a uniform grid on [0, 7] defined by the grid points
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xrj = jAx, j = 0,...,2N, where N is a positive integer, and Az = % is the grid
size. Below we are going to use the short hand y; = y(z;) and f; = f(x;,y;) for all
j=0,...,2N.

First, we propose a high-order approximation to the Caputo derivative (D% y(x) on
grid points x; based on piecewise quadratic interpolation. To present the quadratic

interpolation, we introduce the following notation:
Tz ,2,,2)9(T) = 00,5 (2)y; + 01,5 (2)Yj+1 + 02,5 ()yj4+2, JEN, (2.1)
where ¢; j(x),i = 0,1, 2, are Lagrange interpolating polynomials defined as

1
vo,5(z) = W(ﬂc —zj11)(T — Tj42),

1
p1,5() = _A—xg(m —zj)(r — zj12),
1
802,j(33) = m(ﬂf - xj)(l“ - l"j+1)-

When j = 1,2, we approximate (D% y(x;) by ODg([[xo,xﬂy)(xj):

1 1
0Dyy(x1) = / y,(S)Wlfu(l“l — 8)ds ~ / [I[xo,xg}y(s)],wku(ﬂh — s)ds
0 0

= A7"yo + Apy1 + AT e, 2.2)
T2 T2 ,
0Dyy(x2) = / y,(S)Wlfu(lb — 8)ds ~ / [I[xo,xg}y(s)] wi—y(x2 — 8)ds
0 0

= Ay yo + A3 y1 + A3 e, 2.3)
where .

. J

A;’O = /0 @io(s)wi—y(zj —s)ds, i=0,1,2, j=1,2.

To approximate (D%y(x;) for j > 2, we assume that the values of yo,y,...,y; are all

given. Different approximations will be used for odd and even j. When j = 2m + 1, we
approximate y(x), x € [0, zgm41] by

y(x) ~ I[xo,mz]y(x)a if ze [$0,x1]a
I[x2k717x2k+1]y(m), if ze€ [xzk,l, 1’2k+1]7 k= 1, e, M.
This suggests the following approach
1
0D7y(2m+1) 2/ Y (8)w1—v(Tomy1 — 5)ds
0
Mmoo rTokt

+ Z/ Y (8)wi—p (T2m1 — 8)ds

k—1"Y T2k—1

%/0 [T,02)9(8)] w1—s (@211 — 5)ds
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m Tok+1 ,
+ Z/ [I[$2]€_17$2]€+1}y(8)] wl_V(x2m+1 - S)ds

k=1"Y%2k-1

1,0 2,0
AQm—l—lyO + Agpn1y1 + A1 v2

+ Z ( 2m+1y2k 1+ A2m+1y2k + A2m+1y2k+1> (2.4)

where
ALY " d i =0,1,2 2.5
Im41 — ; @i o(8)wi—v(T2m+1 — 8)ds, 1=0,1,2, (2.5)

T2k+1
AZ21§L+1 / Gioh1(S)wi—p(Tomi1 — s)ds, 1=0,1,2, k=1,...,m. (2.6)
x

2k—1

Similarly, when j = 2m + 2, we approximate the Caputo derivative on z; based on the
following piecewise quadratic interpolation of y(z):

y(x) ~ I[x%x%ﬁ]y(x), Va € [xok, Tok12], k=0,...,m. 2.7)

As a consequence, oDYy(z2,+2) can be approximated in the same way as (2.4), and
the result is

m

0DLy(zom+2) Z ( 2m+2y2k + A2m+2y2k+1 + A2m+2y2k+2> (2.8)
k=0

where

T2k+-2
A;f;‘LJFQ = / @i o (8)w1—v(Tomia — s)ds, 1=0,1,2, k=0,...,m. (2.9)

T2k

In all cases, the Caputo derivative oD%y(x;) is approximated by a linear combina-
tion of y;. Furthermore, by straightforward calculation, it can be found that for any
fixed 7, j and k, the coefficient A}’k is proportional to Axz~". Therefore we summarize
(2.2)-(2.4) and (2.8) to write down them uniformly as

oDyy(x;) ~ 0 DALY;, (2.10)

where the newly introduced operator oD%, is the discrete Caputo derivative defined by

Ax™" (ﬁoy(] + 131y1 + ﬁ2y2), it j=1,
Az~ (Eoyo + 513/1 + l~72y2), if j=2,
*”szHDk yk’ if j=2m+1, m=1,...,N —1,
_V22m+2Dk Yk, if j=2m+2, m=1,...

ODZmyj =
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Here all the coefficients “D”s are constants depending only on v, and their values can
be computed analytically:

~  3v—4 ~  2(1-v) ~ v

DO_2F(3—1/)’ Dl_r(?,—y)’ D2_2r(3—u)’

~ v —2 ~ 4u ~ v+2

Do = »TB-v) ' 2TB-v) Da = 2T(3—v)

w(m) _ 1 _2 I 1—v 1-v] 2—v 2—v

Dy = TG ) ( 5 [(2m)"™" +3@2m +2)7"] — [(2m) (2m + 2) ]) ,

P _ov [(2m — 2k)'™Y + 6(2m — 2k +2)' 7 + (2m — 2k + 4)' 7]
2k T TB-v) 2

— [(2m —2k)*™ — (2m — 2k + 4)*77] ) k=1,...,m,

Do, = r(%—u) ((2 —v) [(2m —2k)"Y + (2m — 2k +2)' ]

+ [(2m — 2k)*7" — (2m — 2k + 2)*7"] > k=0,...,m, (2.11)
D((]m) _ F(31— V) (2 ; 1% [(2m)17,, o 3(2m + 1)171/] _ (2m)27u + (2m + 1)2u> ’
D™ — F(31_ 3 ( 2 5 L l2m =2 +32m) " —4@2m + 1) ]

—(2m — 2> +3(2m)*™" — 2(2m + 1)2—">,
Dy = F(31_ 3 <2 5 L [4@m —2) 4 32m) Y — 2m + 1)1

+2(2m —2)°7Y = 32m)*™" + (2m + 1)”),

() F(m) = (m) v+2
Dg]:b) = D27]?+17 Dg]:bzl = D;]:b s k= 27 e, My Déz)_’_l = DQ?;-}—Q = m
Based on the approximation (2.10), the numerical scheme for (1.1) with initial
condition y(0) = yo can be written as

0D2$yj = f(:vj,yj), ] = 1, e ,2N. (212)

The above scheme is implicit. Since (D% ,y1 depends on ¥, the values of y; and y»
have to be solved simultaneously, which is the key to getting uniform accuracy without
loss of precision at the first time step. For j > 2, solving y; needs only to solve a single
equation.

Remark 2.1. Our numerical scheme includes more coefficients than some other high-
order schemes such as the L1-2 method [11] due to different discretizations on odd
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and even time steps. In fact, we can find from (2.11) that the difference between odd
and even time steps exists only in the first few coefficients with subscripts 0,1,2. In
particular, the coefficients D%)ﬂ and ﬁé’;{rz are the same for all m, indicating that the
numerical scheme for the nonlinear solver stays the same throughout the evolution of

the solution except for the first two time steps.

3. Stability analysis

This section is devoted to the stability analysis of our numerical scheme. Consider
the fractional ordinary differential equation (1.1) with right-hand side

flz,y) =Xy, A>0. (3.1)

In this case, the scheme (2.12) for k¥ > 2 can be rewritten as

7j—1
(1+a@)y =Y diye, k=3,...,2N, (3.2)
k=0
where
D(m)
&ttt ==k k=0,...,2m, (3.32)
Qo
zj@ﬂ
At ==k k=0,...,2m+1, (3.3b)
Qo
(m) —(m) v+ 2 D VAV id
= D = D = = e . .
@0 2m+1 2m+2 = T3 )2 o o >0 (3.30)

Our purpose is to show that there exists a constant K such that |y;| < K|yo| for any
j. Such a property would be obvious from (3.2) if all the coefficients d{; were positive.
Unfortunately, this is not true for some v € (0,1). The following lemma shows the
properties of the coefficients d{%.

Lemma 3.1. For any 0 < v < 1, j > 4, the coefficients in the scheme (3.2) satisfy
o
D Y—ody, = 1.

2

2 dj o
@ k>3a0r(1—u)

(-
3) d_, >0, d >0 d >0

(4) There exists vy € (0,1) such that d§72 > 0 if v € (0,1p), and d§72 <0ifv e
(I/(], 1)
27y

> >0
27 8agl'(1 —v)

1, oo .
(5) ;(di_l) +dj
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Proof. For simplicity, below we only present proof for the case j = 2m + 1, m > 2.
The proof for even j is very similar. The statements below rely on some technical
inequalities, which are provided in Appendix A.

(1) By the fact that the scheme (2.12) for j = 2m + 1 is exact for constant solutions,
we have

2m
Z Dlgm) + Dg??l)—l—l =0.
k=0
According to the definition in the (3.3), we immediately obtain the equality of (1).

(2) Forany k = 2,...,2m — 2, we let glgm) =I(3 - y)Dlgm). According to (3.3), we
have

1
J2mtl — (m)
b awl(3— )Tk >
and we are going to prove
o™ < —@2 -1 - )w@m+1—k) V! (3.4)

by considering the following three cases separately.

Case 1: k = 2. In this case, we claim that

m 2—v
i =

[4(2m —2)'" +3(2m) ™ — 2m + 1)1 7]
+ [2(2m - 2)*7 = 3(2m)*™Y + (2m + 1)?77]

5 o
< —1(2—1/)(1—1/)1/(2771—1) L

To show this, we rewrite the above inequality by applying binomial expansion on both
sides:

f(—l)j (31;)3%1 (274 — (~1))) <ﬁ>j+l+u

7=0
+00 j+14+v
< e (215)36+a0u+20+1 (%f v
This inequality holds if
WH—@4yzg@+mg+m,Vj:QL”” (3.5)

When j = 0, this can be directly verified. When j > 1, let

hz) = 2~ 12 (2 +3)(x +2)
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It can be easily verified that h(z) is convex when = > 1. Using A/(1) > 0 and h(1) > 0,
we conclude that h(x) is positive for all = > 1. Therefore (3.5) holds.

Case 2: k = 4,6,...,2m — 2. In this case,

g = 25",

where k' =m — % and
G =@ =) [(2K) 2K +2)'7V] + (2K)> Y — (2K +2)* 7.

If ¥ > 1, by Lemma A.2, we can obtain

2
_(m) _ o n—p [ 2 (I-—vp/( v+1 2

2—v

<e-n(*" e

Thus
2 _
g$”<m3_m<:;>@m—krwl

<—;2—mu—yw@m+1—mﬂ4.

When &’ = 1, by Lemma A.1(7), we get
g =2 [4—v— (24 )2
1
< 2—7(21/ -3)2-v)(1—-v)v
< =322 -v)(1 - vy,
(3—2v)

where we have used 37 < ~=5—*, which comes from the convexity of the function 37".
The above inequality implies that (3.4) also holds for & = 2m — 2.

Case 3: k= 3,5,...,2m — 3. In this case, we have
(m) _ 1.m)
gk; - 59]5 )

(k=1)

5, and

where k =m —
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Since k > 2, we can apply Lemma A.1(1),(2) to get

a™ < (2 - v)(2k) (8 - 12_% {QV N (%)UD

— 2(2k)> [2(2—@% (2_”;( ”)"]
e sl ()
Let
oreafe (3]
Then

fv)=3

(%)V <1og %)2 — 2”(log 2)2] <0.

Therefore f(v) > f(0)(1 —v) + f(1)v = 4v. Thus
m ~(m 4 TN—1—v
o) = 50 <~ - )1 - V(2R

- —%(2 S = v @m A1 — k)

(3) All the three inequalities can be directly shown as follows:

D™ oul-v 4y

Q2mtl = _om _ 0
2m ap r—vjapy v+2 ~
1 2—v
d2m+1 - _ _ 2 _ 2 1—v 2 1—v _ 4 2 1 1—v
it — (< 25 e - 2 ()~ a(m 1)
—[(2m —2)>7 = 3(2m)*™" +2(2m + 1)*7] ) > 0,
[Due to Lemma A.1(3)]
1 2—v
d2m+1 — _ 2 1-v__ 3(2 1 1-v] 9 2—v 9 1 2—v 0.
=y (o [m) - 3em ) ) 2m P 1)) >
[Due to (A.6)]
(4) Since
(m) 1—v
D 2
d2m+1 2m—1 _ 9 _ _ 9~V
2m—1 = ao F(?)—V)Oco [3( V) (6+V) ]a

the sign of d2™"1 is determined by the sign of h(v) := 3(2 — v) — (6 + v)27%, which

satisfies

2
" — —97(log 2)2 _
R (v) (log 2) <6 Tog 2 —i—y) <0,
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h'(0) =6log2 —4>0, h'(1)= g(log2 —1)<o.

Therefore h(v) first increases and then decreases. By h(0) = 0 and h(1) = —3, we
know that h(v) has only one zero v in (0,1), and h(r) > 0if v € (0,19) and h(v) < 0
if v € (1, 1), which agrees with the conclusion of the lemma.
(5) By Lemma A.1(8), we directly have
L omi1y2 2m+1 2 2 2\ 9—v
Z(deJr )"+ gty = 2+0)2 [12—v* = (12+8v +17) 27"]
C-v)1-v) 27"y
82+v)  8agl'(l1—v)’

which completes the proof. O

The above lemma shows that for v < 1, all the coefficients d{; are positive. In this
case, as mentioned previously, the stability of the scheme can be immediately obtained
from (3.2). However, this does not hold when v > 1y. To deal with this case, below we
are going to rewrite the scheme (3.2) as equations with all positive coefficients. To this
end, we introduce

i =y —Oy;j—1 forall j>1, %o=yo,
J

where 6 = 2+ . In fact, we have 6 = 1d
y; can be represented by 7; through

, for all j > 4. Thus the numerical solution

J
v =5+ 0y =G5+ 071+ 0%y 0= = > 07 (3.6)

For j > 4, we can rewrite the scheme (3.2) by subtracting both sides by fy;_1:

j—2 j—2
i+ ay; =0y 1+ > dyp =071+ Y (W‘k + ) dJ,Hk,_k> Yk (3.7)
k'=k

k=0 k=0

where we have inserted (3.6) to write the right-hand side as functions of ;. By defining
d=-1, &, =0"F4 E:Jﬁ” k=0,...,5—1, j>4, (3.8)

Eq. (3.7) becomes
j—2

i+ oy =051+ > dlgk, j >4 (3.9)
k=0
Note that the same equation does not hold for j = 3. When j = 3, we can use the same
method to rewrite 73 + &ys as a linear combination of 7y, 4; and 7. The result is

U3 + ays = daga + dig1 + diyio, (3.10)
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where
+6 44w v—1
B=dd_—p="2 3.11
2 2 7/—|—2 + < ) 9 ( )
2 1%
d3 = d30 + d3 = [ —12+3 (v +2v +4) (3) } (3.12)
1(1/ 2)2 2\"”
ds=d30 +dj = 492 ) 3.13
Th =5 T [ ”””(3” G139

Additionally, we define d3 = —1, so that for any j > 3, we have
d, =dj, —6d],,, foral k=0,...,j—1 (3.14)

The following lemma shows that in the new “scheme” (3.9), all the coefficients are
positive.

Lemma 3.2. For 0 < v < 1, the coefficients defined in (3.8) satisfy

2
1 0<J§<9<§;

) d >0, k=0,...,j-2, j>3

(3) 0+>I2d < j >3

-1

T
R

Proof. (1) Using the fact that (%)”_1 is a convex function, we have (%)”
Therefore by (3.11),

3_ v+6 44+v3-v wv(v+3)

d — = 0.
27052 ur2 2 2(1/+2)>

The inequality d3 < 6 is a direct result of Lemma A.1(5) since

1 1%
3 vol—v
ds—0=— — v — 2+—>2 ]
20 2—1—1/[6 v < 2 3

The fact that § < 2 1s obvious since 6 = u—+2

(2) When j = 3, by Lemma A.1(4) and (3.12), we immediately see that d3 > 0. The
fact that d3 > 0 can be observed from

1 (v —2)? 2\" 1 (v —2)?
dg:ing;s [4—2u+3u<§>]>§Ey+2;3(4—21/+2y)>0.

When j > 3, by (3.8) and Lemma 3.1(5), we get

&y =0*+dj_,= (di 1) +dl_y > 0. (3.15)

-
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For other cases, we notice that (3.8) implies the following recurrence relation of J{;:
&, =0d], +d, k=0,...j-3 (3.16)

Since ¢} > 0 for all k = 0,...,j — 3, Eq. (3.16) shows that d/,, > 0 implies d/, > 0.

Thus, by mathematical induction with the base case (3.15), we see that Ji > 0 for all
k=0,...,j—2.

(3) When j = 3, direct calculation yields
0+ di + dj

et o1 —se—as 3 (2) (3v° + 4v* + 20v + 16)
2(2+v)3 3 '

By Lemma A.1(6), we see that the above quantity is less than 1. When j > 4, we let Q;
be the left-hand side of the inequality. It can be observed from (3.8) that

-2
(1-60)Q;=0(1—67)+Y (1 -0 1)al.

<.

k=0
According to Lemma 3.1(2), we have
1-0)Q; <01 —07)+> d +(1-0""")d_,
k=0
=0+ d, - 67707+ d_y),
k=0

where we have used (3.15) at the last step. Now we apply Lemma 3.1(1) to get
1-0)Q;<0+1—d_ =0+1-20=1-0,
which indicates Q; < 1. O
Base on this lemma, we can show the stability for the numerical solution ;.

Lemma 3.3. For 0 < v < 1, we have
72 +ay? <y3 foral j>0. (3.17)

Proof. We first prove (3.17) for j = 1. When f(z,y) = —\y, the scheme (2.12) for
the first two steps is

Doyo + D1y1 + Daya = —Boyi,

. . - (3.18)
Doyo + D1y1 + Daya = —Boy2,
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where 8y = AAz”. By solving the linear system, we can get

Ui + ayt
ao + a1l (3 — v)Bo + @2l'(3 — v)262 + asl'(3 — v)363 + asT'(3 — v)4Bs

— < = = , (319
bo + 0113 —v)Bo + b2I'(3 — v)2B2 + b31'(3 — v)363 + bal'(3 — v)* 55

2.
—J0

where the coefficients satisfy

ap = 16(2 —v)* > 0,
a1 =8(v —2)% [2V (5v° — 8v +12) —4 (V¥ + 2v)]
>8(v —2)* [(1 +vlog?2) (5v° — 8v+12) —4 (v* +2v)] >0,
as = 1607 (v +2)* — 2"y (50° + 40* — 280 + 32)
+4” (250" — T61° 4 1481° — 2561 + 192)
> 1602 (v + 2)? — 8(1 + v)v (5v° + 4% — 28v + 32)
+ (14 vlog4) (250" — 760° + 1480° — 2561 + 192) > 0,
az = 2" [320%(v +2) — 2"y (507 — 100 + 8) + 4 (v + 2)(4 — 3v)?]
> 2" (3202 (v 4+ 2) — 8(1 + v)v (507 — 10v + 8) + (1 + vlog4)(v + 2)(4 — 3v)?] > 0,
ag = 41202 > 0,
bo — ao = 128v(2 — v)? > 0,
b — a1 =82 —v) [2V (v* — 3002 + 280 — 8) —2(v +2) (V2 — 8v — 4)]
>8(2 —v)2” [(v* — 300> +28v — 8) — 2 (v* — 8v —4)] >0,
by — ag = 4" (—9v* + 1080° — 1961 + 192v — 128)
+ 278 (30 — 80 — ddr? + 48v + 32) — 4(v — 2)(3v + 2)(v + 2)?
> (1+vlog4) (—9v! + 1080 — 1961 + 192 — 128)
+8 (3v* — 8% — 44v? + 480 + 32) — 4(v — 2)(3v + 2)(v + 2)* > 0,
by —az = 2" [2"73 (3v° — 1607 + 8v + 8) — 4" (v + 2)(4 — 3v)?
—8(v —2)(v +2)(3v + 2)]
> 2"[8 (3v* — 160* + 8v + 8) — 4(v + 2)(4 — 3v)?
—8(r=2)(v+2)(3v +2)] >0,
by —ag = 4" (4 +4v — 307) > 0.

In the above derivation, we have omitted the details on the determination of signs for
all polynomials of degree less than or equal to 5, which is elementary but tedious. Since
Bo = AMAz"” > 0, these inequalities show that the coefficient of 33 on the right-hand side
of (3.19) is less than 1. Therefore 4?7 + ay? < y3.
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To show (3.17) for j = 2, we also solve the linear system (3.18) to get
Us + ay3
_y2 ) ag + d1F(3 — l/)ﬁo + d2r(3 — V)Qﬁg + dgr(?) — I/)gﬁg’
0 60 + 61F(3 - V)ﬁo + 62F(3 - V)Qﬁg + 631—‘(3 - I/)?’ﬁg + 64F(3 - I/)4 617

and it can be similarly shown that
by>a >0, 1=0,1,2,3, by>0.

Therefore (3.17) also holds for j = 2.
Next, we prove (3.17) for j = 3. Multiplying by 2j3 on both sides of (3.10), and
using the identity

2u05 = (yj +y)¥ = (5 + 05 + 0y 1) (y; — Oy;—1) =5 + 75 — 0%y7,,  (3.20)
we get
203 + ay3 + ais — a0%ys < dys + it + doyp + (d3 + di + dg) 7. (3.21)
Applying Lemma 3.2(1)(3) and the result (3.17) for j = 1,2 to the above inequality,
we obtain
U3+ ay3 <055+ ay3) +di (57 + ayt) +doys < (0+d3 + d3) v5 < w3

Therefore, we can obtain (3.17) for j = 3.

When j > 4, we apply mathematical induction and assume that the result holds for
all cases up to j — 1. To show (3.17), we multiply both sides of (3.9) by 2y; and apply
the identity (3.20), resulting in the following inequality:

277 + &yl + ay; — ad’y:

Jj—2 J—2 J—2
<0771+ > i + (9 +> di) U <07+ Gy + 75,
k=0 k=0 k=0

where Lemma 3.2(3) has been applied at the last step. Some rearrangement yields
Ui +ay; < 0(yiy +ay; ) + ) dy (5% + ayi) + doys-

b
Il
—

Now one can apply the inductive hypothesis to get

j—2
J; + dy) < (0+Zdi+d%> v < U5
k=1

By the principle of mathematical induction, the inequality (3.17) holds forall j > 0. O

By now, we are ready to show the stability of the original numerical solution yy.
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Theorem 3.1. The scheme (2.12) for Eq. (1.1) with f given in (3.1) is stable in the sense
that

lyk| < \yo! forall k> 0. (3.22)
Proof: By Lemma 3.3, we can get
1951 < lyo| forall j>0. (3.23)

Inserting this inequality to (3.6) yields

2 4
lyk| < ZGk Ty < ZHk Tyol < —Iyol

which completes the proof of the stability. O

4. Convergence analysis

Our convergence analysis follows the general idea of the recent work [25], which is
parallel to the proof of L?-stability of the fractional ODE (1.1) with respect to the initial
data. However, our analysis has to deal with the special processing of the first two time
steps and the non-positivity of the coefficients in the numerical scheme. For the sake
of clarity, we decompose our analysis into the following three subsections. Before that,
we make the following assumptions:

(H1) The exact solution y € C3([0,T));

(H2) The right-hand side f(x,y) is Lipschitz continuous with respect to y, i.e.
F(@.y") = fla,y™)| < Ly —y™| forany y* and y*. (4.1)

In the following analysis, we will restrict ourselves to the numerical solution exactly
on [0,7]. As in the beginning of the Section 2, we suppose 2NAx = T for a positive
integer N. For convenience, we define the numerical error by

ej =y(zj)—y;, j=0,...,2N,

and eg = 0. Furthermore, by the hypotheses (H2), we can find L, for j = 1,...,2N,
such that

[ y(x;)) = fzg,y5) = Li(y(z;) —y;),  |Lj| < L. (4.2)

Remark 4.1. In (H2), we have assumed the global Lipschitz continuity for the right-
hand side. If f(x,y) is local Lipschitz continuous with respect to y, then the same
numerical order can still be proved if the numerical solution converges. We just need
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to set sufficiently small time steps to make sure that y; is sufficiently close to y(z;) so
that the complete numerical solution is within the interval

I:= Lé‘%&%y@) - e,wrél[g%y(ﬁv) +e

for some constant e. Then we can set L to be the maximum Lipschitz coefficient for
y € I, and thus the proof in this section can still be applied.
4.1. Reformulation of the numerical scheme

Our first step is to rewrite our numerical scheme to better match the form of the
Caputo derivative (1.2). To this end, we introduce the notation

Vi = — Y1, k>0

for any quantity ¢, as corresponds to the first-order derivative appearing in the defi-

nition of the Caputo derivative. Furthermore, for anyn > 2and k = 0,...,n — 1, we
define B} as
B} =Ar"ag, B! =B, Az Vady, k=1,....,n—1. (4.3)
By (3.14), we have
n—1 n—1 B B
0DALYn = Az oy, — Az "y Z dryr = Az apy, — Az Z (di — ;) yk
k=0 k=0
n—1
= Az ag (yn + 0dpyn—1) — Az an Y dit(yr — Oyk—1) — Az aodigyo
k=1
n—1 B B
= Ax Yoo, — Ax" Y ayg Z Ay, — Ax™"apdyyo.
k=1

Now we can apply the definition of B} given in (4.3) to rewrite the discrete fractional
derivative as

n—1
0DAYn = Biin + Z (Bn_— B 1) ik — Az ™" aodg yo
k=1
n
= Z Bg_kVﬂk + (Bglfl — Aﬂcil'ozodg) Yo- (4.4)

Similarly, if we define y(x) = y(z) — fy(z — Az) and y(0) = yo, we have

0DALy(xn) = Bg_kVﬂxk) + (Bﬁfl — Aac*”ozoczg) 20- (4.5
k=1

Our analysis will be based on such a form of the discrete Caputo derivative. The fol-
lowing lemma provides the lower bounds and the monotonicity of the coefficients.
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Lemma 4.1. The coefficients B} satisfy By > ... > B'_; > 0 and

— 1 Tn—k
B > wi_p(x, — s)ds
k R YAV /:rnk1 1-v(n )

1
:ﬂ'BAac’/F@ —v)

[(k+ 1) — k7], (4.6)

where g = 0.

Proof. The monotonicity of the coefficients B is obvious by the definition (4.3) and
the positivity of d7, and below we focus only on the proof of (4.6).
When k£ = 0, we have

v+2 1

B} = Ax"Vag = > .
0 T (2—v)2" Ax'T(2 —v) — Az'T'(2 —v)

When k > 0, since (k + 1)!7% — k=¥ < (1 — v)k~", we just need to show

1 1

an < v
Bi (L =v)k 9Az*T(1 — v)

k.
~ 9AT(2 —v)

Below we separate our proof into four cases.
Case 1: n = 3. By direct calculation, one can obtain
B} = B3 — Ax""apds
B 27 3w +4) (2\"_,
CAT(3-v) | 2 3
—vlog2 | 4 2
1 —vlog 3(v+ )<1+V10g§>_4}

T AzT(3—-v) | 2
1 [ v (o +51V+52V2)]

T AT | 22— ni-v)

where

Bo =9 —12log 3 + 8log 2,
B1 = 3log3(4log2 — 1) — 12(log 2)* — 2,
B2 = 3log2(log 3 —log 2).

It is not difficult to check that 3y + B1v + Bov? > 0 when v € (0, 1). Therefore

B> —
V= Az'T(1—v)
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Similarly, the case k£ = 2 can be shown by

B3 = B} — Az Vapds
R L[y, s (2)
TAwTe-v) v+2|0 VT2 3

> 27 ey PR S P
T AxT(2—-v) v+2 A S

B 27" v[3+ (2 —3log3 + 3log 2)v]

- AzT(1—v) [1 * 22+v)(1—v) }
9—v

= Az'T(1 —v)

Case 2: n > 3 and k = n — 1. By definition,

n—1
B | = Bj — Ar " ap Z dy = Ar Vg (1 - I}
k=1

El’lr 3
LUTJL
N——

By Lemma 3.2(3) and (3.14), we can bound B"_; by
Bl | > Az ""apdy > Az apdy.
Now we consider odd and even n separately. If n = 2m + 1 and m > 1, by (3.3a),
B

>A§CVF(13 - <2 g v [3(2771 + 1)1*1/ _ (Zm)lf’/] _ [(27’)1 + 1)2711 . (2m)2”]> ‘

Using the inequality (A.6), we see that

ng“ = m@ — (1= v)(2m)™ (1 B 2?117jn> > 2AxVF1(1 —v) (2m)".

Similarly, when n = 2m + 2 and m > 1, we have

Bgrygi_% 2 m@ —v)(1—=v)2m)™" <1 — 5_]/)

6m

- S ey () (1- )

> SAeTa =y m

Case 3: n > 3 and k = n — 2. We can directly use the result for k = n — 1 to get

_ _ 1 n—1\" 1
B , > B" —(n—-2)7"- - (n—2)7".
n-2 = Pn-1 2 6Az*T(1 —v) (n—2) <n - 2> ” 9Az*T(1 — v) (n—2)
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Case4:n>3and k=1,...,n — 3. Using

2v
d-&d d">d” ——  (n—j)v! i=1,...,n—3
+1+ 3040F(1—I/) (n ]) y J 9 » 1 )
_ 1 1%
m n 2 n —v—1
= — d _—_—
n—2 4( n—l) tdy o> 4@0P(1 — I/) )
we obtain
n—1—k " n—1-k
PN _ P - 7 » 1
Bi=Biyt+Aaroo 3, dj> B+ BT ) 2 "
J=1 Jj=2
1 v n—1—k
> 00 -1 -V - _ —v—1 d
— 2Az'T(1 —v) (=17 + 4Am”F(1 —v) /1 (n—z) *

1

= et —p) " Y 4A:c”F(1 o (AR = (= 1)7]
1
> - - v
Z eyt 2 8A:c”F(1 yh
This completes the proof for all k = 0,...,n — 1. O

The purpose of the above lemma is an upper bound for the discrete fractional
derivative of |e;|?. We state the result in the following lemma:

Lemma 4.2. For any j > 3,

J J
23 5] (62 Y B ()
=3 k=3
We refer the readers to [25, Lemma A.1] for the proof of this lemma.

4.2. Estimation of the truncation errors

Most error estimation is based on the estimation of the truncation error. In our case,
it can be defined by

ri(Az) = oDyy(z;) —0DAy(x5), Jj=>1 “4.7)

Here (DX, y(z;) is defined by replacing y; in (2.2)-(2.4) and (2.8) with y(z;). As
mentioned previously, the first two time steps in our scheme have to be taken into
account independently. Therefore, for j > 3 we introduce the following modified
truncation error:

7j(Ax) =rj(Az) — L; 29] ke + Z _iVer, (4.8)

where ¢, = e, — fei_1. Below we are going to derive bounds for both (4.7) and (4.8).
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Theorem 4.1. Assume that (H1) holds. There exists a constant C; depending only on the
function y and the final time T, such that for all Ax > 0,

Irj(Az)| < C1Az*7Y, j=1,...,2N. (4.9)

Proof. Our error estimation will be established on the following error term of the
Lagrange interpolation:

y(x) - I[mk,mk+2]y(x)
y® (€ ()

:T(CE —x)(x — xpa1)(x — Tpyo), VX € [k, Tpaol, (4.10)

where ¢ (x) is a function defined on [z, xy o] with range (zy,xp12). Let My be the
upper bound of 3 on [0, T]. For any z € [z}, 42|, we have

M
[9(@) ~ Ty a9 (@) < 5 A (@2 — ), (4.11)
or more simply,
M M
ly(z) — I[xk7$k+2}y(x)| < %Aw(ka,Q —z)(x —xg) < %Ax?’. (4.12)

We first estimate 1 (Az):

r1(Az)|

'F(ll_ V) /Oml y’(s)(:ﬂl - S)fl’ds — ﬁ /05’31 [I[xo,xﬂy(s)], (xl _ s)ﬂjds

T T-v) /o [5(5) = Tiao,wa1y(s)] (w1 — 5)7 " 1ds
_ v z1 y(g)(£ (s)) B
= | e
v M z1 » V . B
< ﬁ?l /0 s(xg —s)(x1 —8) "ds = T %Amg’
e 4.13)

where we have used I'(2 — v) > % The Eq. (4.13) proves (4.9) for j = 1. The case
j = 2 can be similarly proven, and here we omit the details.

Now we estimate ry,,41(Az) for m > 1. In a similar way to (4.13), we can use
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integration by parts to obtain

’TZm—l—l(Al')’
v 1 L
B 'ﬁ/o [y(s) - I[mmrz]y(s)] (xom+1 — 8) lds
» m—1 Tokt1 ; _V_ld
* ﬁ P /I%_1 [y(s) o [ka—17$2k+1]y(8)](x2m+1 - 3) S
v T2m+1 o
+_f71i:775/£mn1 [9(5) = Tiann 1 o 119(9)] (@21 — 8) ™7 Mds|. (4.14)

Applying (4.11) and (4.12), we can estimate the truncation error by

[rom+1(Az)|
1

M 1 m— Tok+1
TLAg3 / (Tom+1 — s)_”_lds + Z / (Tom+1 — s)_”_lds
6 0 k=1 Y T2k—1

v T2m-+1 Ml 9 _
_ —A — Yd
+ T(1—0) /mm1 3 x*(Tom41 — 5) S

M1V
[
—“T(1-v)
M,y

= m [2*”(1 +3v)—(1—-v)2m+ 1)*11] Agd—V < Mle‘?’*”,

(D)

1 T2m—1 1 T2m+1
—Ax?’/ (Tome1 —8) " tds + gsz/ (omy1 — s) " Vds
0 x

6 2m—1

The case j = 2m + 2 can be similarly proven, and the details are omitted. O

To show the error bounds for (4.8), we need the error estimation for the first two
time steps.

Lemma 4.3. Assume that both (H1) and (H2) hold, and Az" < (7L)~'. Then
’61‘ g 1001A1‘3, ‘62’ < 1001A.%'3,
where the constant C is defined in Theorem 4.1.

Proof. By the numerical scheme (2.12) for k£ = 1,2 and the definition of the trunca-
tion error (4.7), we have

Az~"Die; + Az " Does = f(a1,y(z1)) — f(z1,51) — r1(Az),
Az""Dier + Ax""Daey = f(xa,y(x2)) — f(x2,92) — r2(Ax).
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After solving the equation, we get

2V Flan () — Flen ) — m(Ax)

lel] =T'(2 —v)Az”

— 272 [f(z2, y(z2)) — f(xo,y2) — ra(Az)] ‘

24+ v

<TI'(2—-v)Az” < (Llex| + ClAac‘?’*”) +2"7%v (Lles| + ClAac3”)>

3 1
< Ax¥ <§ (L]el\ + Cle‘g*”) + 3 (L]eg\ + Cle?”’))

3
< §LA9U”(]61\ + lea|) + 201 Az,

By similar means, we can obtain |es| < 2LAxY(|e1| + |ez|) + 3C1Az3. Summing up the
two inequalities yields

7
ler| + |e2| < §LA:E”(I61| + |ea]) + 5C1 Az,

Therefore when Az” < (7L)~!, we have
’61‘ + ’62‘ < 1001A.%'3, (4.15)
which completes the proof. O

The above lemma already shows that we do not lose any numerical accuracy for
the first two time steps. In fact, their orders are slightly higher than the general error
bound O(Axz37¥). This is necessary to provide error bounds for 7;(Az) in the following
theorem.

Theorem 4.2. Assume both (H1) and (H2) hold, and Az¥ < (10|L|)~'. There exists
a constant C' such that

|7 (Az)| < CAz>7. (4.16)
Proof. We first estimate the coefficients B§—1 and Bg_Q. According to (4.3),
_ _ + 2)Ax7Y _
Bl | < Arag= UT2AT T gp
o1 < AT Tag TG = Az,

BJ].;Q — BJ].;I = Ax_”aocg < AxVap < 3Ax7Y,
where we have used J{ < 1 implied by Lemma 3.2(3),(5). Now we can apply triangle
inequality to (4.8)
75(A2)| < [ry(A2)] + | (L +0)B]_y = B]_,| - les] + | E;672 = B]_| - lea
< CLAZYY £ 70C A3 4100, (|Lj| + 6A277) Ax®.

Here we have applied Theorem 4.1 and Lemma 4.3. Since Az” < (10|L|)~!, the above
inequality yields
I7;(Az)| < 13201 A%, O
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4.3. Error analysis

Now we are ready to summarize the previous two subsections and carry out the
error analysis for our scheme. The purpose of Section 4.1 is to provide preparatory
works to introduce an important tool — the complementary discrete convolution ker-
nels. Inspired by the property (1.4), we would like to find the discrete kernel P},
corresponding to the kernel w, (-), which satisfies

n
> PrBl,=1, V3<m<n<2N (4.17)

According [25, Eq. (2.6)], we have

SO (Byh, - B P for 1<j<n-3. (418)

Define
Then when m = 1, 2, we have

n
> Pp Bl =Pl B+ P} B+ Z v Bl < Z v Bl g=1, (4.20)
: e

n
> pr Bl =P ,Bl+ Z v 2<Z Bl =1 (4.21)
j=2

By Lemma 4.1, (4.18) and (4.19), we know that all the coefficients P]” > 0. These
coefficients help us “invert” the discrete fractional derivative, so that we can derive the
recursive inequality for the numerical error.

Lemma 4.4. For any n > 3, it holds that
len|? < ZP;; ]Z4L93 k|ek|2—|—|62|2—|—22 el - 7 (A, (4.22)

where 7;(Ax) is defined in (4.8).
Proof. Plugging (4.5) and (1.1) into (4.7), we get

j . — —
rj(Az) = f(aj,y(x) =Y B, Vilar) — (Bi_y — Az~ aodg) yo
k=1
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By (4.4), (2.12) and (4.2), the above equation can be further simplified, namely,

J

ri(Ae) = flagy(ey) - flesy) - . Bl Ve

k=1
— j
= Ljej — Z BI_, Ve, = 91 ke, — ZB Ve
=1
Now we use (4.8) to rewrite the above equation as
Z Bj,kVék = Lj Z Hj_kék — fj(A.%'). (4.23)
k=3 k=3

Now we multiply both sides of the above equation by 2¢;. The right-hand side can be
bounded by

293 er — 7j(Ax)
gLZeﬂ'*k (le;1* + lexl?) + 2le;| - |75 (Az)]
k=3
j .
<> ALYl + 20e; - |7 (Ax)),
k=3

where we have used 6 < %, and the left-hand side can be bounded from below by

Lemma 4.2. Catenating both bounds using (4.23), we see that

J
S LMl + 2 (A0 > Y BT ()
k=3 k=3

Multiplying both sides of the above equation by Pnf j and taking the sum over j, one
gets

n J n
> P, Z4L9]_k|ék|2 +2) Pl_lej| - |7;(Ax)]
j=3 = Jj=3

Z JZB] (Iel*)

Applying the identlty 4.17) ylelds
z . zw el + zz el 7y(a)

> Z V (1ef?) = [enl® — I&f,
k=3
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which is clearly equivalent to the conclusion of the Lemma (4.22). O

We can now apply mathematical induction to bound the error by the initial error
and the truncation errors.

Lemma 4.5. Let ¢, = ¢e,, — Oe,,_1 with § = (2+U) If

1

Az¥ <
Y= Q4npl

(4.24)

it holds that

k
|en] < 2EV(24WBng)<yeQ\ +2 max ZP,M@(M)\), for n>2,  (4.25)
=3

where 7;(Ax) is defined in (4.8), and E, is the Mittag-Leffler function defined by (B.8).

Proof. In the following proof, we need some useful properties of the kernel P}’
provided in Appendix B, wherein the complete details can be found. Here we simply
make references to the equations to be used.

For simplicity, we define

k
— — |z k|5
F, =2E, (24rgzy), G, =l|ea]+ 231;1}2(1123 Py ;|75 (Az)).

Then both F,, and G,, are monotonically increasing with respect to n. Below we are
going to prove the lemma using mathematical induction. Since E,(z) > 1 for all z > 0,
it is obvious that (4.25) holds for n = 2. Now we assume that n > 2 and the estimation
(4.25) holds for all es, ..., &,_1. Let

If |€,| < |€x(n)l, then the monotonicity of F}, and G, shows that
en| < lerm)| < Fin)Grn) < FaGa.
If |€,] > |€x(n)|, then by the inequality (4.22)

el <‘e”’<z 0 S AL Ha + o

k=3

+ Py Z4L6" e +2Z i 175 ( Am)]) (4.26)
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Using (B.1), (4.24) and 6 < %, we have

Py Z4L9" F < mpAzx¥ 121 <
k=3

l\')l»—l

Thus according to (4.26), we can estimate &, as follows:

|€n] <2<Z ]Z4L0] k\ek\+!€2\+22 i 17 Aw)‘)

. O .
<2Z ]Z4L9] "F.Gr +2G, <2) P JZZLLQJ "FiGn + 2Gy,
k=3 j=3 k=3

< (24LZPg_jfy +2> n = <48LZ v (24mp L) + )Gn.
j=3

Finally, we use (B.7) to find that

E,(24rpLx?) — 1
len| < [ 487pL v(2ArpLay) +2) G, =2E, (24npLx;) Gy, = F,G,,.
247TBL
Thus the lemma is proven by the principle of mathematical induction. O

Our final error estimation can be achieved by combining the above result with our
estimation of the truncation error, and the conclusion is given in the following theorem:

Theorem 4.3. Let y be the exact solution of (1.1) and (1.2), and {yk}igo be the numer-
ical solution obtained by (2.12). Assume y(z) € C3[0,T). If the step size Ax satisfies

1

Az” < 2
Y= gL (4.27)
then there exists a constant K depending on v, L and the final time T, such that
ly(zi) —y| < KAz*™Y for k=1,...,2N. (4.28)

Proof. Combining (B.2), (4.16) and (1.3), we have

k
1 . N
E P A < | m - g Pr . . (A
k= ] (Az) <1§?§Xk Wlu(xj)>j1 £ vl (Al

k
<T( —v)zf-CAx>™ Z P]f,jwl_,,(mj)
j=1
< [CrpT(1 — v)ak] Az,
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Substituting this estimate into (4.25) yields

én] < 2E, (24npLay) (|€2] + 20T (1 — v)a})] Az®™)

< 2E,(24npLa?) (le1| + |e2| + [2CmpI(1 — v)zl] Ax)
< 2B, (24rpLa}) (100 + 2Crpl (1 — v)a¥)Az*™", for n > 2, (4.29)

where we have used the estimation (4.15). Therefore, the numerical error |e;| can be
estimated by

k
lex| = Zkanén < 3021a§k én <6F, (247TBL30Z) <10C’1 +2C7pl'(1 — V)m%) A3,
n
n=0 -
The proof is completed. O

5. Numerical results

In this section, we present numerical experiments to verify the theoretical results
obtained in the previous sections.

Example 5.1. We consider the problem (1.1) with

Fd+v) 25

f(m,y(x)) = 6 ) y(O) =0,

where f is independent of y. It can be verified that the exact solution is y(z) = 231V,
The computation is carried out up to 7' = 1. In our tests, we choose v = 0.3,0.5,0.8,
0.99, and for all choices of v, we choose the step size to be Ax = %,l =3,...,10. The
error we will display is defined by

ear =, max [y(wr) = yxl
where 2N = %.

By this example, we would like to check the convergence order of the numerical
method with respect to the order of the fractional derivative v. The results are given in
Table 1, where the convergence order is computed by 10g2(662AAZ ). By Theorem 4.3, we
expect that this number is close to 3 — v. It is obvious that our numerical results are
consistent with the theoretical analysis.

Example 5.2. In this example, we add the dependence on y to the right-hand side
f(z,y). The following two functions are considered:

I'4
( g_y)x3+x3+u

I'(4
Lé+v) (?_ V)x3 4 25T (). (5.2)

flx,y(z)) =
fx,y(x) =
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This two right-hand sides correspond to linear and nonlinear dependencies on y. With
the initial condition y(0) = 0, the exact solution of both is y(z) = x3*7.

We take T = 1 again and repeat the calculation in Example 5.1. The numerical
error is provided in Tables 2 and 3. Due to the sufficient smoothness of the numerical
solution, we again observe a good agreement with the theoretical convergence order. In
particular, it is worth emphasizing that the non-linearity of f seems to have no impact
on the numerical order of the scheme.

Table 1: Maximum error ea, and convergence order for Example 5.1.

Ar v=03 order v=05 order v=08 order v=0.99 order
$ 1.6782e-3 5.8967e-3  —  2.3580e2 < —  4.743le2  —
%6 2.7683e-4 2.5998 1.1467e-3 2.3623 5.8213e-3 2.0181 1.3486e-2 1.8143
é 4.3876e-5 2.6575 2.1076e-4 2.4438 1.3329e-3 2.1267 3.5413e-3 1.9291
6—14 6.8430e-6 2.6807 3.7908e-5 2.4750 2.9674e-4 2.1673 9.0195e-4 1.9731

Fls 1.0596e-6 2.6910 6.7551e-6 2.4884 6.5272e-5 2.1846 2.2667e-4 1.9924

ﬁ 1.6356e-7 2.6957 1.1986e-6 2.4945 1.4278e-5 2.1926 5.6613e-5 2.0014

ﬁ 2.5195e-8 2.6986 2.1228e-7 2.4974 3.1153e-6 2.1963 1.4096e-5 2.0057

ﬁ 3.8778e-9 2.6998 3.7565e-8 2.4985 6.7888e-7 2.1981 3.5049e-6 2.0078

Table 2: Maximum error ea, and convergence order for the right-hand side (5.1).

Az v=03 order v=05 order v=08 order v=099 order

1 892424 3.4577e-3 ~ —  1.6357e-2  —  3.6070e-2  —
1= 1.437le-4 2.6345 6.5136e-4 2.4083 3.9150e-3 2.0628 1.0036e-2 1.8455
& 2.2556e-5 2.6715 1.1826e-4 2.4614 8.8578e-4 2.1439 2.6115e-3 1.9422
L 3.5029¢-6 2.6868 2.1163e-5 2.4824 1.962le-4 2.1744 6.625le-4 1.9788
o5 D.4140e-7 2.6937 3.7628¢-6 2.4916 4.3066e-5 2.1878 1.6619e-4 1.9950
== 8.3492e-8 2.6969 6.6703e-7 2.4959 9.4114e-6 2.1940 4.147le-5 2.0026
=5 1.2854e-8 2.6993 1.1806e-7 2.4981 2.0524e-6 2.1970 1.0322¢-5 2.0063
o1 1.9781e-9 27000 2.0887e-8 2.4989 4.4715e-7 2.1984 2.5659e-6 2.0081

Table 3: Maximum error ea, and convergence order for the right-hand side (5.2).

x v=03 order v=05 order v=0.8 order v=0.99 order
9.1405e-4 — 3.2126e-3 — 1.5357e-2 — 3.4906e-2 —

1.6188e-4 2.4972 6.4829¢-4 2.3090 3.8037e-3 2.0134 1.0094e-2 1.7898
2.6226e-5 2.6258 1.2091e-4 2.4226 8.7214e-4 2.1247 2.6623e-3 1.9228
4.1349e-6 2.6651 2.1873e-5 2.4667 1.9417e-4 2.1672 6.7852e¢-4 1.9722
6.4327e-7 2.6843 3.9072e-6 2.4849 4.2704e-5 2.1848 1.7050e-4 1.9925
9.9504e-8 2.6926 6.9413e-7 2.4928 9.3407e-6 2.1927 4.2578e-5 2.0016
1.5350e-8 2.6964 1.2299e-7 2.4965 2.0379e-6 2.1964 1.0600e-5 2.0059
2.3643e-9 2.6987 2.1774e-8 2.4978 4.4407e-7 2.1982 2.6356e-6 2.0079

2l g2l 5= o= | B

Ju
N |
oo

o w [
= 2 S
[ (=}

S
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Example 5.3. In this example, we consider the problem with right-hand side f(z,y) =
Ay(z), where A < 0 is a constant. The exact solution is y(x) = yoE,(Az"), and E,(-)
is the Mittag-Leffler function defined in (B.8). When v = 1, the fractional derivative
reduces to the ordinary derivative, and the exact solution turns out to be y(z) = yoe’*.

In our test, we set A = —1 and choose the initial value yy = 1. The choices of the
fractional order are now taken as v = 0.3,0.6,0.9,1.0. Other settings are the same as
previous two examples. When v = 1.0, our numerical method reduces to the second-
order backward differentiation formula (BDF2). Results are given in Table 4, from
which we can observe that when v < 1, the convergence order is close to v. The
reason lies in the singularity of the Mittag-Leffler function at = 0. When v = 1, the
singularity disappears, and the convergence order 3 — v is restored.

Table 4: Maximum error ea, and convergence order for Example 5.3.

Ar v=03 order v=06 order v=09 order v=1.0 order
$  3.2510e-3  —  8.835led  —  21988e-3  —  3.830de-4d  —
% 2.8864e-3 0.1716 6.6298e-4 0.4143 9.7373e-4 1.1751 2.9709e-4 0.3853

3—12 2.5263e-3 0.1922 4.6140e-4 0.5229 4.5730e-4 1.0903 9.7657e-5 1.6051
6—14 2.1840e-3 0.2100 3.1026e-4 0.5725 2.2952e-4 0.9945 2.7213e-5 1.8434

Fls 1.8684e-3 0.2252 2.0569e-4 0.5930 1.2005e-4 0.9350 7.1461e-6 1.9290

251)6 1.5842e-3 0.2380 1.3568e-4 0.6003 6.3888e-5 0.9100 1.8289%e-6 1.9661
1

1.3332e-3  0.2488 8.9370e-5 0.6023 3.4223e-5 0.9006 4.6252e-7 1.9834
1.1150e-3 0.2578 5.8861e-5 0.6025 1.8362e-5 0.8982 1.1628e-7 1.9918

Table 5: Maximum error and convergence order of the corrected method for Example 5.3.

Az v=20.3 order v=06 order v=209 order
$ 2.4932e-6 - 4.2141e-5 - 1.2940e-4 -
1—16 8.5679e-7  1.5409 1.7729e-5 1.2491 7.0189%-5 8.8254e-01
3—12 2.8365e-7  1.5947  5.0652e-6  1.8074 2.3691e-5 1.5668
6—14 9.0097e-8  1.6546 1.2249e-6  2.0479  6.6215e-6 1.8391
Els 2.7462e-8  1.7140 2.7037e-7  2.1796  1.6940e-6 1.9667
ﬁ 8.0536e-9  1.7697 5.6509e-8 2.2583  4.1466e-7 2.0304
5% 2.2805e-9  1.8202 1.1354e-8 2.3152  9.9291e-8 2.0622
le4 6.2613e-10  1.8648 2.5311e-9 2.1654 2.3508e-8 2.0785

The convergence order can be improved by Lubich’s method [29] to include singular
terms in the ansatz of the solution. This is achieved by choosing a finite sequence of
positive real numbers oy < ... < 0y,,+1, and assume that

m

y(@) —y(0) =Y ;a7 + a7+ i(x), (5.3)
j=1
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where () is a bounded function, and we assume that the term z+1§(x) is sufficiently
smooth to retain our convergence order. The sum of ¢;2°/ captures the less smooth part,
for which the discretization of the fractional derivative needs to be altered to get better
accuracy. Here we omit the detailed derivation, and refer the readers to [29,41,42] for
more discussions on the correction method. The final numerical scheme discretizes the
fractional derivative by

m
0DRI Y = 0DAgYn + Az Woi(ys — vo), (5.4)
j=1

where W), ; are the starting weights that are chosen such that

m
0DALGk(n) + Az Wy jai(x;)
j=1
F(l + Uk) o —
= 7 Y forall k=1,... 5.5
I’(l—l/—i-ak)w" ora SRR (5-5)
where g (z) = .

In this example, we choose o, = kv. Then W, ;, 1 < j < m can be solved from
(5.5), and the values of W), ; are independent of Az. Since the series expansion of the
exact solution includes terms such as z and z2", Lubich’s correction method is suitable
for such a problem. The results of the corrected method are given in Table 5, which
shows remarkable improvement compared with Table 4.

6. Conclusion

An efficient high-order approximate numerical scheme for fractional ordinary dif-
ferential equations with the Caputo derivative has been introduced in this paper. The
scheme is unconditionally stable and has uniform accuracy for all time steps. The proof
of stability shows the technical details on how to deal with the special initial steps.
The sharp numerical order 3 — v is proven for sufficiently smooth solutions and general
nonlinear equations, and this order is verified by our numerical experiments. For so-
lutions with initial singularity, our scheme can couple with Lubich’s method seamlessly
to improve the numerical order. Future works include the construction and analysis of
the scheme for graded meshes to resolve the initial layer.
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Appendix A: Proof of some inequalities

In this appendix, we provide the proofs of two lemmas used in the stability analysis,
which include a number of technical inequalities.

Lemma A.1. For any k > 2, it holds that

0 () (o) e )]

) (1 _ %)H _ <1 + %)H > (2 — 1/)% 4 3—]13(2 — )=,

(5) 6—y—(2+%

2 12
(6) —2v3 +120% — 560 — 48+ 3 <§> (3v° + 40 4+ 20v + 16) < 0,

(7) 2"V A—v—(2+v)2'7] < 17(2y -3)(2-v)(1 —v)y,

27
(8) 12— — (1248 +1%)27" > %6(2 +v)(2 - )1 —v)r.

Proof. (1) This inequality is equivalent to
filt) =1 -+ 1+t) —2(1— At?) >0 (A1)

fort =+ and A = 2(1 —v)[2” — (3)"]. Since k > 2, the range of ¢ is (0, 3]. To show
(A.1), we take the derivative of fi(¢) to get

filt) == —=v) [(1 =)V = (L4+1)7"] + 4At = —4t[fo(t) — A], (A.2)
where
v (-t =140
fa(t) = 1 ;
1 &2 1 Y
= ;(23'—#1)!”( +v)...(2j+v)tY.

The series expansion of f, clearly shows that f, is an increasing function, which yields
fo(t) < fo(3) = A. Thus by (A.2), we have f{(t) > 0, indicating that

f1(t) > f1(0) = 0.
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(2) This inequality can be similarly proven by defining
Fo(t) = (1= 07 — (L4 67 4 22— 1)t — 5(2 = 1)1 — )i,

whose series expansion is

+oo

fs(t) = ZQ (2%1)!(—2 +u)(—1+ vl +v).. . (2 = 24 )t

Since all the terms in the sum are monotonically increasing, we have f5(¢) > f3(0) = 0.
The proof is completed by setting ¢ = %

(3) Let

2—v 2—v 2—v
fi(k, V) = <1 — %) + 2 (1 + i) . fa(k, V) = <1 — %) . (A.3)

Then the desired inequality is equivalent to

Sk v) o= (1 - 22k_+yl> Silk,v) + [4(2k__y1) * 221<:_+V1] falk,v) +

Since k > 2, we can apply binomial expansion to f; to obtain

filk,v) = +ZOO <2 ; ”) [(—2)7 +2] (%)J .

J=0

3(2—v)

-3>0.

It can be observed that when j > 2, the summand in the above sum is positive. There-
fore

Filk,v) > 23: (2 . ”) (—2) +2] (%)J

j=0

32-v)(1—-v) n 2-v)(1—-v)v

=3+ 02 8k (a4)
By similar means, we get
2—v (2-v)1-v) (2-v(1-vV
faok,v) 21— — 552 + e (A.5)
Plugging (A.4) and (A.5) into the expression of the f(k,v), we get
2-v)(1—-v)v
f(kyv) > A= D2E+ 1) [3k+(k—1)2k—-14+v)+ (2k—1)(2 —v)]
2-v)(1—-v)v
SRk = 1)(2k + 1) [-3k+ (E—1)3+v)+3(2—v)]
2-v)(1—-v)v

= S 1)@k 1 1) [(k—1)v+3(1-v)]>0,
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which completes the proof.

(4) Let

2 v
h(v) = —1v?—12+3 <§> (V* +2v +4).
Then its first-order derivative is
=, 2\" 5 2
h(v)=—-2v+3 3 2v+2+ (v +21/—|—4)log§ .
When v € (0,1), by the property of quadratic functions, one can show that
5 2
21/+2+(V +2l/+4)10g 3 > 0.

Therefore

2
h(v) > —2v+2 [2y+2 + (V¥ +2v + 4) log g}

_ 2 2
—2[V+2+(V +2l/+4)log3]

Again it can be shown by the property of quadratic functions that »/(v) > 0 for all
€ (0,1). Thus

h(v) > h(0) = 0.

(5) Let
_ 14 vol—v
g(u)—ﬁ—y—(2+§)23 .

We want to prove g(v) < 0. The first-order and second-order derivatives of g are

2\ ! 3 A
"W)y=-1-(2 — 2 Z) logZ
2\ V1 16 2 2

")y =— |2 24+ 1log — +vlog = ) log =.
g (v) <3> < +og81+uog3> og3

It is clear that ¢” () changes from positive to negative as v varies from 0 to 1. Therefore
¢ (v) first increases and then decreases. By straightforward calculation, we see that
¢'(0) < 0and ¢'(1) > 0, meaning that g(v) first decreases and then increases. Therefore

9(v) < max(g(0), (1)) = 0.
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(6) Let g(v) be the left-hand side. Then the fourth-order derivative of g(v) is

2\” 2
=(4) _ Z) 1og 2
gV (v)=3 <3> 0g

2 2\
72 +6(18v + 8) log 3 + 4(9v% + 8v + 20) <log §>

9\ 3
+ (303 + 4% 4 20v + 16) <10g §> ]

3 2 Vl 2
< <3> og 3
Therefore ¢ (v) is monotonically decreasing for v € (0, 1). Straightforward calculation
yields ¢”(0) > 0 and g"”(1) < 0, which indicates that §”(v) first increases and then
decreases. Since g”(0) > 0 and §”(1) > 0, we know that §’(v) increases monotonically.
Finally, using ¢’(0) < 0 and (1) > 0, one sees that g(v) first decreases and then

increases, which implies

2 2\ 2 2\?
72+15610g§—|—80 logg + 43 logg < 0.

g9(v) < max(g(0),g(1)) = 0.
This completes the proof.
(7) This inequality can be proven using the same method as (6).

(8) Define

() = 1—]‘6(2 L@ vy — 12— 0 — (12 1+ 80+ 17)27] |

The third-order derivative of ¢ satisfies
9B (v) = 27377 [2¥ (120 — 3) — 48log 2 + (192 + 48v)(log 2)*
— (8v% + 64v + 96) (log 2)°]
> 27377 — 3 — 48log 2 + 192(log 2)* — 168(log 2)*] > 0,

which means ¢”(v) is monotonically increasing. Using ¢” (1) < 0, we know that ¢'(v) is
an decreasing function. Finally, using ¢’(0) < 0, we know that ¢/(v) is negative for all
€ (0,1). Thus g(v) < g(0) = 0. O

Lemma A.2. Suppose 0 < b < 2m. Let
fv)y=02-v) [a1(2m)17” + az(2m + b)lf”] + as [(2m)27" - (2m+ b)27”].
Then we have

1. If‘%’g%andag<0, then

fv) < (2—v)(2m)'™

2
1—v asb b
wemme 32 (17) (0 25)

k=1
< (2-v)2m) V(a1 + az — asb). (A.6)
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2. If asb = 2a3 > 0, then

f) < (2= v)(2m)~ =) = L

(A.7)

ay + az — asb — as <i>2w<1—”+1i>]

Proof. Since b < 2m, we can apply binomial expansion to get

b 1—v
a1 + as <1+—>
2m
+oo k
1—-v asb b
e+ (07) (- 55) gy
k=1 m

When 0 < b < 2m and %b < 2, then the above series is an alternating series. Denote
the above series by >/ Si. Then by b < 2m, we see that

)= = o) as(om

= (2 v)(2m)"

(k+v—1)(k+2—asb/asz)

<
Skl = (k+2)(k + 1 — agb/az)

|Sk|-

We want to show that the factor in front of | S| is less than one, meaning that {|Sk|}
decreases monotonically. To show this, we take the difference between the numerator
and the denominator:

(k+v—1) <k+2—“—3b> —(k+2) <k+1—“—3b>
as a2
agb
:(2+/<:)(u—2)+a—(3—y). (A.9)
2
Now we consider the two cases separately:
Case 1: If ‘%’ < 3 and ay < 0, then
b 3 3
(2+k)(y—2)+‘;i(3—u) <3w-2)+56-v)=5r-1) <0,
2

Therefore |Si+1| < |Sk|, indicating that the sign of the alternating series is determined
by the sign of the first term. Using

51:(1—y)<a2—%b>i:(1_y)a2<1_“ib>i<o,

2@2 2m

we conclude that the series in (A.8) is negative. Therefore

f(v) < (2=v)2m)" (a1 + a3 — asb + S1 + Ss).
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Case 2: If azb = 2a9 > 0, we have S; = 0. We only need to study the sign of (A.9)
when k > 2:

(2+k)(y—2)—|—ai2b(3—1/)§4(y—2)—|—2(3—y):2(y—1)<0.

Therefore we also have |Si1| < |Sk|. Now the first term in the series is

b \*(1-v)
SQ——<%> Ta2<0.

Thus the whole series is also negative. In this case, we have
f(l/) < (2 — V)(2m)17”(a1 +ag —asb+ Sy + Sg)

The Eq. (A.7) can be obtained by inserting the expressions of S5 and Ss.

Appendix B: Some results in the proof of Lemma 4.5

Now we provide the proof of some results used in the proof of Lemma 4.5. The
proof is generally in accordance with the corresponding results in [25]. The difference
is that according to our definition of Pj’?, the Egs. (4.20) and (4.21) are not equalities.
Consequently, the results in [25] cannot be directly applied to our case. Below we
divide the proof into three lemmas.

Lemma B.1. The discrete kernels P} defined in (4.18) satisfy
0< PP <mpl(2—v)Az”, 3<j<n<2N, (B.1)

Z _wi—u(zs) < T8, 3 <n<2N. (B.2)

Proof. According [25, Lemma 2.1], we can directly obtain (B.1). We mainly focus
on (B.2). Takingn = j and k = j — 1 in (4.6), we have

_ . 1 Ay ) . 1 A—v (4 1 1-v
1712 []1 —(j—l)l ] _ J (] )
J mpAxl'(2 —v) mpAxl'(1 —v) 1—v
1 1z’ 1
> R B S B.3
- WBA.%'VF(l—V)j B F(l—l/) 7'('BW1 (wj)7 ( )

which indicates wi_, (z;) < 77335;1. By (4.17) and Lemma 4.1, we obtain

Z Wi V.%'] <7TBZPn ]B§1<7TBZ 3—7TB

as completes the proof. O
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Lemma B.2. Let v : [0,7] — R be a continuous and piecewise C* function whose deriva-
tive v'(x) is nonnegative for all z: € [0,T). Then
(I) If v is monotonically decreasing, we have

Z iloDyv)(x5) < 7p /rn V' (s)ds = mglv(z,) —v(0)], 3<n<2N. (B.4)
0

(ID) If v’ is monotonic, then

n—1

Z Py_ij(oDyv(z;)) < 7p /ﬂﬁn V' (s)ds = mglv(z,) —v(0)], 3<n<2N. (B.5)
j=3 0

Proof. (I) The proof requires the Chebyshev’s sorting inequality [9, P.168, item
236]: if f is monotone increasing and ¢ is monotone decreasing on the interval [a, b],
and both functions are integrable, we have

oo [ " F(a(s)ds < / " f(s)ds / " g(s)ds

In this inequality, we set [a, b] = [zi_1, zk], f(s) = wi—a(zj—s) and g(s) = v'(s) > 0.
Using Lemma 4.1, we see that when j > 3,

zj
(0 D7v)(z;) = / w1—o (7, s5)ds = Z/ wi—a(Tj — 8)V'(s)ds
0 Tk—1
j 1 Tk T ,
< Z E/x wi—qa(z; — s)ds/m v'(s)ds
k=1 k=1 k-1
j _ Tk ‘7 .
< Z?TB g]k/ ds—WBZB; / s)ds (B.6)
k=1 Tk-1 k=1 k—1
Thus, from the (4.17), (4.20) and (4.21), we conclude that
Tk
Z i (0Dzv) (xj) < Z Z —k/ V' (s)ds
k=1 Tk—1
n Tk In
=Tp Z/ v'(s)ds ZPZZ_ B!, < 713/ V' (s)ds
k=1 Tk-1 j=k 0
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Therefore if ©" is monotonically decreasing, then (B.5) is a simple corollary of (B.4). If
v’ is increasing, we can use Lemma 4.1 and (4.19) to obtain

By i(oDyv)(xj) = ' Z/ wi—_a(x; — 8)v'(s)ds
j=3 Tr—1
n—1 7 Tk n—1 J -
< Py Z V' (zg) / wi—a(z; — s)ds < mpAx Z Py Z V' (xy) B
j=3 k=1 Th—1 Jj=3 k=1
n—1 J ) n—1 n—1
= mpAx Z Py Z Ul(xk)B;,k =npAx Z v/ (xg) Z P;f_jB; %
_]71 k=1 k=1 j=k
Th41 Tn
< mpAx Z (x) < 7p Z/ s)ds < 71'3/ v'(s)ds
k=1 0
This proves (B.5). O

Lemma B.3. For the discrete kernels P defined in (4.18), it holds for any p > 0 that

n—1 .
> BBy (uaf) <
j=3

BB, (ua¥) — 1], 3<n<2N, (B.7)
7!

where E, (-) is the Mittag-Leffler function defined by

400 k
z
Proof. Define
( )_ xk;u
Vp\X) = 711(1 —l—kl/).

Then
Zr 1+ kv) Z“ us( (B-9)

The function v (x) satisfies

kv—1 kv —1 kv—2
lf(ku) = wiy (), vg(m) = %, (B.10)

vo(z) =1, wv(z)=

(0Dyvk)(z) = / wi—a (25 — $)wpy(s)ds = w1y (k-1),(2) = vp—1(z), Vk=1. (B.11)
0

Therefore for all z > 0, v}/(z) < 0if kv —1 < 0 and v} (z) > 0if kv —1 > 0. Thus, v} (z)
is non-negative and monotonic, so we can apply (B.5) to get

Z 1 (0D%vi) (x) < mglog(an) — ve(0)] = Tpvg(zn), Vk > 1. (B.12)
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The Egs. (B.11) and (B.12) yield

Z JZ’U or—1(2;) <7TBZM Vg (Tn). (B.13)

Now we take the limit as m — +oo. The right-hand side of the above inequality
approaches to mp(E, (uxk) — 1), and the limit of the left-hand side is

n—1

ZPZZ jZM vk-1(x;) ZP,? ]MZM vk () ZPT? B, (uh).

This completes the proof. O
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