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Abstract. This paper presents a new concept called Unified and Integrated Method for
a shear deformable beam element. In this method, Timoshenko beam theory is unified
and integrated in such a way that takes into account the effect of transverse shear
and maintains the shear locking free condition at the same time to generate proper
behavior in the analysis of thin to thick beams. The unified and integrated method is
applied to finite element analysis (FEA) and isogeometric analysis (IGA) on two-node
beam element. This method will be used to analyze uniformly loaded beams with
various boundary conditions. A shear influence factor of ¢, which is a function of beam
thickness ratio (L/h), is expressed explicitly as control of the transverse shear strain
effect. The analysis gives interesting results showing that applying the unified and
integrated method in FEA and IGA will yield exact values of DOF’s and displacement
function even when using only a single element. Numerical examples demonstrate the
validity and efficiency of the unified and integrated methods.
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1 Introduction

Bernoulli-Euler beam theory, also known as classical beam theory, was introduced by
Daniel Bernoulli and Leonhard Euler around 1750. It has been widely used to analyze
the behavior of the bending element because of its simplicity. The theory assumes that
after deformation cross-sections remain plane and orthogonal to the beam axis and that
deformation slopes are small. It suggests that shear deformation - is neglected and ro-
tation 0 is equal to the derivative of deflection. Hence, it is more suitable for a slender
beam. Vertical deflection v is the only unknown variable is this theory. The curvature in
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the Principal of Virtual Work (PVW) is expressed by the second derivatives of v(x) as the
only deformation. This theory requires C! continuity to ensure a smooth deflection field.

Timoshenko beam theory [1,2] developed later in the early 20th century offers an im-
provement. Unlike the classical theory, it takes into account of shear deformation and
rotational bending effects so that the previously perpendicular plane sections will not
necessarily remain perpendicular to the beam axis after deformation. In this theory, de-
flection (v) and rotation (6) are independent of each other. The development of Timo-
shenko beam element is simpler than of Bernoulli-Euler beam element as it requires C°
continuity for the deflection and rotation fields. However, the 2-noded Timoshenko beam
element suffers from a phenomenon called shear locking when analyzing thin beams.
They only provide reasonable solutions in the cases of a thick beam, but give unrealisti-
cally stiffer results for thin beams (L/h>20). This phenomenon disqualifies Timoshenko
beam elements for the analysis of slender beams.

A popular method to alleviate shear locking in Timoshenko beam elements is by
under-integrating the terms in shear stiffness using a quadrature of one order less than
needed for exact integration. This method reduces the effect of the transverse shear stiff-
ness and yields constant transverse shear strains along the beam. The terms in bending
stiffness are still integrated exactly. This method is known as Selective Reduced Integra-
tion (SRI).

There are many methods to eliminate shear locking, one of which is the Assumed
Natural Strain (ANS). A number of Timoshenko beam elements have adopted the ANS to
deal with the shear locking problem. By applying the ANS, the transverse shear strain in
a beam element with two nodes and two degrees of freedom per node becomes constant
along with the element [3]. The two-node element with linear interpolation demonstrates
satisfactory outcomes over a wide variety of length to thickness ratio. Yet, in the matter
of convergence speed, it cannot be compared with the Bernoulli-Euler element, which
neglects the shear deformation.

While developing Discrete Shear Gap (DSG) method to overcome shear locking, Blet-
zinger et al. [4] also applied the ANS concept. DSG beam element satisfies the kinematic
equation for the shear strains at discrete nodes and significantly reduces the shear strains.
The key of the DSG method is calculating the discrete shear gap at nodes and interpolat-
ing them across the element domain. Just like reduced integration, the application of the
DSG concept in the beam element with 2 nodes gives a constant shear along the beam.

It is well known that it is possible to derive a 2 nodes beam element that gives exact
results (at least at nodes) based on mixed formulation [5]. Exact here means that the
results are valid for thick to thin beams, without the occurrence of shear locking.

Another beam element that adopts the ANS concept is Discrete Shear Beam (DSB).
DSB element [6] uses cubic interpolations to calculate total vertical displacement (v) and
quadratic interpolations to calculate rotation (#). In this element, the transverse shear
strain is defined as constant along the beam by using the discrete shear method. DSB
element has been the basis of the development of triangular DKMT and quadrilateral
DKMQ plate and shell elements [7-17]. However, besides the good performance over
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thin to thick beam problemes, it only provides exact solutions at nodes.

Recently, a new approach to deal with the shear locking phenomenon in beam and
bending plate problems has been proposed [6,18-24,26]. By modifying the Timoshenko
beam and the Reissner-Mindlin plate theory, this approach has created a strong inter-
dependence between the bending displacement and rotation which prevents the shear
locking from occurring to occur in beam and plate problems, respectively.

Kiendl et al. [21] developed a unified approach in an isogeometric analysis for shear
deformable beams. In this approach, the vertical displacement (v) is divided into two
parts, i.e., the bending part (v;) and shear part (vs). The approach shows a strong corre-
lation between the two parts, allowing that all derived variables to be expressed in terms
of the bending displacement (v},) as the only variable. Actually, the same idea of divid-
ing the vertical displacement equation was suggested quite a long time ago in the early
days of finite beam elements by Kapur [22], Li [23] and Falsone et al. [24] with a similar
approach.

Recently Katili et al. [26] published the application of a 2-node beam element using
a unified and integrated approach in functionally graded materials and considering a
coupling axial-bending effect due to unsymmetrical material layer.

This article compares the results of applying the unified and integrated method into
isogeometric and finite element analysis on two-node beam element problems. The or-
ganization of the article is as follows. First, it presents the limitation of the classical and
Timoshenko beam theory. It is followed by the explanation of several elements that used
ANS to cope with the shear locking phenomenon and a brief introduction of the unified
approach that can eliminate the shear locking. In Section 2, the development of a unified
and integrated method is described. It shows how to integrate and unify all equations
in Timoshenko beam theory, resulting in similar equations with Bernoulli theory. Sec-
tion 3 will present the formulation of the Unified and Integrated (UI) beam element. The
formulation of IGA Galerkin for Timoshenko beam will be presented in Section 4. The
performance of the UI beam and IGA Galerkin will be compared in Section 5. Conclu-
sions, acknowledgements, and references are given in Section 6.

2 Unified and integrated method

To establish notation and convention, the equations for Timoshenko beams are first sum-
marized below. Consider a Timoshenko beam [1, 2] with the beam axis x of the local
Cartesian coordinate orientated in the axial direction coinciding with the neutral axis.
The positive beam axis y orientated up orthogonal to the x-axis.

Assuming that displacement is small, and shear deformation 7 is uniform at any
cross-section and only dependent on x, the curvature and shear deformation at any point
x along the beam is given by:

X=—5-, Y=--—0h (2.1)
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Where v(x) = vertical displacement in y direction, 6, (x) = bending rotation, x(x) = cur-
vature, and -y (x) = transverse shear deformation.
The constitutive laws for axial stresses is:

c=yEx. (2.2)
The relation between shear stress and shear strain is:
=G, (2.3)

where E is the Young modulus of elasticity, G is the shear modulus where G=E/2(1+v),
v is the Poisson’s ratio.
The stress resultants M and T are integral of the stress component ¢ and 7, respec-

tively, as follows:
M= // yodA, T= // dA. (2.4)
A Ja

The constitutive equations for the bending moments and shear forces are obtained from
(2.1)-(2.4) and given as follows:

M=EIlx, T=«GAy, (2.5)

where EI is the bending rigidity, kGA is the shear rigidity, « is the shear correction factor.
The equilibrium equations for Timoshenko beam:

dM
=T (2.6a)
dT
== (2.6b)

Where f is the uniform load per unit length.
By substituting Eq. (2.1) and (2.5) into Eq. (2.6a) and (2.6b), we get the differential
equations for the exact solution of Timoshenko beam in term of v and 6;:

2
EI%M{GA (jz—eb> =0, (2.7a)
dZT) dgb
L 2.
kGA <de dx) f (2.7b)

As can be seen in [21,22], these last two differential equations can be combined into a
single equation with 6 as the only unknown variable

2o, _

~ElZ3=f.

2.8)
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By integrating Eq. (2.7a), we find the vertical displacement v as follows:

x EI 46,
= [ Opdx—————+c. 2.9
¢ /0 bix KGAdX+C @9)
Where c is an integration constant.
In Eq. (2.9) the total vertical displacement is divided into two parts: first v, as a bend-
ing displacement and second v; as a shear displacement as follows:

0="0p+0s, (2.10a)
x EI d6,
'Ub—/o dex+c, vs——K(;iAE. (210b)
Differentiating Eq. (2.10a) yields:
dv dv, dos
—=—4— 2.11
dx dx + dx’ (2.11a)
dl}b
—= 2.11b
7 b ( )
dUS 4 EI dZQb . El d3l)b
dx bs=— kGA dx2 ~  kGA dx3" 2.11c)
Substituting (2.11b) into curvature in Eq. (2.1) yields:
dzvb
—_ " 12
X=—72 (2.12)

Substituting (2.10b)-(2.11b) into shear deformation in Eq. (2.1) and from (2.11c), we ob-
tain:

dUs EI d29b_ EI d3vb

WZGSZE:_KGA dx2 ~ kGA dx3" (213)
By integrating (2.13) we obtain:
EI d*v, EI
T TKGA dx? T kGAN @19
Finally, Eq. (2.10a) can be expressed in terms of v, only:
EI dzvb
v_vb_mﬁ' (215)
Substituting Eq. (2.11b) into (2.8) we obtain:
4
B (2.16)

dxt
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These differential equations (2.12)-(2.16) are similar to the ones for a Bernoulli-Euler beam
theory with v replacing v, but have accounted shear deformation. In fact, for very slen-
der beams, where % —0, the equations will show that vs—0 and v, —v, confirming that
Egs. (2.12)-(2.16) are identical to the Bernoulli-Euler equations. Four boundary conditions
are needed to complete the fourth order differential equation (2.16).

The beam boundaries are denoted by I'={0} U{L}, with L is the length of the beam.
Furthermore, I'y,I'g,I'p1,I'T indicate the boundaries with prescribed v,6, M and T, respec-
tively. The boundary condition are formulated as follows,

EI dZZ)b

A g L (2.17a)
_dv
by=—" T, 2.17b)
- dzvb
M=+—El -5 Ty, (2.17¢)
_ d3v
T= —EIW;’ —Tr. (2.17d)

The barred symbols designate the imposed boundary values.

Take notice that a zero-vertical displacement at boundary condition means that the
sum of v}, and v; is zero, i.e., v, +vs =0— v, #0, v5 #0, not that both v, and v; are zero at
the boundary.

The classical of the principle of virtual work (PVW) takes the form:

L L L
/0 X*Elxdx+/0 fy*KGAfydx:f/O v*dx+(0;) Ir,M + () |r, T. (2.18)

The internal virtual work, consisting of bending and shear parts is on the left side of the
equation. The external virtual work is on the right side. As a convention, concentrated
point load T and distributed loads f, acting in the direction of the global y-axis are taken
as positive. Consistent with the definition of the rotation, the concentrated moments
acting at beam points are taken as positive if they act anticlockwise.

3 Ul element based on unified and integrated method

The 2-node Ul element is formulated based on an unified and integrated method (2.12)-
(2.18). The element has six degrees of freedom (DOFs), e.g., Up,,Us;,0; at each node i as
shown in Fig. 1. The only unknown variable in the UI element equation is bending dis-
placement v}, which is approximated by using a 5th-degree polynomial expansion. To
ensure a smooth bending displacement, slopes and curvatures have to be continuous
across adjacent elements. Therefore, C?> Hermite shape functions are required. The PVW
in this element involves the second derivatives of vj(x). The 5th-degree polynomial for
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Figure 1: Degree of freedom of Ul beam element.

bending displacement is:
vp=(P){a,}=(1 x x* x® x* x°){a,}.
From (2.11b) the rotational function is:
_dvy _
dx

From (2.14) the shear displacement function is:

0y (P){an}=(0 1 2x 3x* 4x*® 5x*){a,}.

EIl

EI
o= =g P {ant == 17 (0 0 2 6x 12¢% 200°){an}.

We introduce shear influence factor:

_ B 12
¢_KGA L
And (3.3) become:
2 2
o= p =220 0 2 6x 1222 200 {a).
12 12
Where

T
{“n}:<”n>T=< ay a4z 4asz dg 4as a6>.

By substituting the conditions of each node:

m) [1O 0 0 0 0 ¢ a
vs, 00 —222 0 0 0 a
o O 0 0 0 a3
o, (|1 L L? L3 L* L° ay
vs, 0 0 220 —eflr —122012 _p0f13| | a5
62) o1 2L 312 413 504 | U a6

1571

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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Figure 2: Shape functions of Ul beam element.

or
{un} =[Pu] {an} = {an} = [Pa] ™ {un}.
Then, by substituting (3.7)-(3.8) into (3.1), we get

vp=(N){un},
(N)=(No,  No, Np No  No Np),

{un}:<un>T:<’Z}bl Us, 91 Up, Usy 92>

(3.8)

(3.9a)
(3.9b)
(3.90)

Where {u,} is the nodal displacement v, ,vs,,61 and v},,vs,,0, are the bending displace-
ment, shear displacement and the rotation of nodes 1 and 2, respectively. (N) are the C?

Hermite shape functions

Node 1 Node 2 ,
1 3 _x 2 2
Na, :ﬁ(L_x) (L2+3Lx+6x2) Ny, = & (10L? —15Lx+6x?)
stl :—ﬁ6x (L_x> NvSZZ_E(L_x)
1 3 x3
) :Fx(L+3x)(L—x) Ne, =73 (—4L%+7Lx—3x?)

(3.10)

The shape functions (3.10) shows that N;,, and Nvj, take a unit value at a node and zero
at the other node (see Fig. 2), and their first derivatives are zero at both nodes, while the

opposite occurs with Ng, and Np, .
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Using Eq. (2.12), the curvature at a point within the element is obtained in terms of
the nodal DOFs by

. dzvb -
X——W—<Bb>{un}, (3.11)
where
(By)=—(No, wx Nogax Nyax Nojax Nojwe Noysr). (3.12)

Using Eq. (2.13), the shear deformation at a point within the element is obtained in terms
of the nodal DOFs by

El dv,
- _ Y% _ (B 1
kGA dx3 (Bs) {un}, (313)
where
LZ
<BS>:—%<val,xxx stl,xxx Ngl,xxx vaz,xxx NvSZ,xxx Nez,xxx>. (314)

By substituting (3.11)-(3.14) into (2.18), the PVW for an individual element can be written
as

W= (uy) ([ {n} —{fn})- (3.15)

After simplifying the virtual displacements, the total element stiffness matrix:

L L
k=[] + [ks], [ks] =EI /0 (By) (By)dx, [ks]=KGA /0 (Bs} (Bs)dx. (3.16)

Where [k, [ks] and {f,,} are the bending stiffness matrix, the shear stiffness matrix and
the equivalent nodal force vector for the element, respectively. Splitting the element stiff-
ness matrix as in (3.16) is more convenient as it allows us to identify the bending and
shear contributions.

The bending stiffness for Ul element is expressed by:

" 120E1 _ 3xGA 60EI _ 120EI 3kGA 60EI ]

703 7L, 712 713 7L, 712
_3kGA B3(xGA)’L _ 11kGA  3xGA (kGA)'L  _ 4xkGA
7L 35EL 35 7L 70E] 35
60E]  _ 11xGA 192E] _ 60EI 4kGA 108E]
— | 7 35 35L 2 35 350
kel=| Ther  3xCaA woer 126E1  sca eokn |- (3.17)
703 7L, 712 7L3 7L, 712
3xkGA (xkGA)'L 4kGA  _3kGA 3(kGA)'L  11xGA
7L 70E] 35 7L, 35E1 35
60EI _IxGA 108E1 _ 60EI 1TxGA 192E]
L 712 35 350 712 35 350
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The shear stiffness for Ul element is expressed by:

6EI  _ 5xGA 30EI _ 60EI 5kGA 30EI T
3 L 2 I L 2
5¢GA  3(kGA)’L 3 5kGA (kGA)’L
— —3kGA — —2kGA
T 4ET T 4ET
o 0EL _3xGA 16EL _ 30EI kGA 41
ksl=¢ |  obEs 5¢GA _ 30EI 6bEI _ 5xGA _ 30EI |- (3.18)
[E I 2 3 I 12
2 2
SKEA _ (Ki’?} L 2xGA _SKEA 3(’2?5}) L 3kGA
30EI 14E1 30EI 16EI

The UI element stiffness matrix is obtained from the sum of the bending and shear stiff-
ness matrix:

[k] = [kp) =+ [ks] - (3.19)

Shear influence factor ¢ depends on the geometry and the material properties of the
transverse cross-section. A small value of ¢ indicates that shear strain effects can be ne-
glected. Transverse shear effect is negligible for a slender beam. For slender beams ¢—0,
v and shear stiffness [ks] in (3.18) should disappear, meaning that for slender beams, the
2-node Ul element can deliver the same solution as given by the Euler-Bernoulli beam
theory.

For a uniform load fy, the external energy is given as follows:

[y = /0 Cfo(x)dx= fo /0 (00 () 05 (x)) dx
—h [ (v —f”i?)dxzw{fn}- (320)
Where equivalent nodal force vector can be written as:
i =Un)"=fon fou foo fon fou fo)', (3.21a)

4 IGA Galerkin based on unified and integrated beam method

In isogeometric analysis, the B-spline functions are not only used to describe the geo-
metric entities but also to approximate the solution in an isoparametric fashion. Control
point variables function as degrees of freedom and the knot spans represent elements.

4.1 B-Spline basis functions

In one-dimensional case, B-Spline basis functions are determined using the Cox-de Boor [?]
recursion formulas. The construction of the B-Spline basis functions are generated from
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Figure 3: Cubic B-spline basis functions generated from the open knot vector .Eg: [0,0,0,0,1,1,1,1].

the so-called knot vectors E; and are defined in a parametric space ¢ € [0,1] into a set of
intervals as follows:

E“Lj = [gl =0,82, I¢H+P+1 = 1] . (4.1)

Where p represents the polynomial degree order, while n represents the number of basis
functions. The interval [;,¢;1] is called a knot span, and the interval [@1,§n+p+1] is called
a patch. The knot vector E¢ is called open if the first and the last knots are repeated (p+1)
times. We start with piecewise constants

. — 1, if Ci§§<gi+1/ _
Nio(§)= { 0, otherwise, for p=0. (4.2)
Linear, quadratic and higher order functions are defined by
—Gi Gitpr1—C
N;,(8) = iNi,p—l (¢)+ LNH—LP—l (¢) for p>1, (4.3)
Civp—Gi Citp+1—Cit1

¢; are coordinates of the knots in the parametric space, collected in a knot vector Eg.
Basis functions for p=3 and NELT =1, knot vectors &z =[0,0,0,0,1,1,1,1],
Ni(§)=Ni5(@)=(1-¢)", N (&) =Na5(§) =38 (1-¢)”, (44a)
N3(§) =N33(6) =36%(1-¢), Ni(8)=Ny3(8) =2 (4.4b)

An example of a set of cubic B-Spline functions generated from an open knot vector is
illustrated in Fig. 3.

Basis functions for p=5and NELT =1, knot vectors Z¢ =[0,0,0,0,0,0,1,1,1,1,1,1]
Ni(§)=MNi5(8)=(1-¢)’, N (8) =Na5(8) =5¢(1-8)", (4.52)
No(@)=N3s(8)=106%(1=¢)",  Na()=Nas(¢)=108°(1=¢)°,  (45b)
Ns(§) =Ns5(¢) =5¢*(1-¢), Ne(§) =Nes(§) =¢". (4.50)
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Figure 4: Quintic B-spline basis functions generated from the open knot vector Be= [0,0,0,0,0,0,1,1,1,1,1,1].

Fig. 4 shows an example of a set of quintic B-Spline functions generated from an open
knot vector. We can see that only the basis functions at both ends of the parametric space
are interpolatory.

4.2 Displacement function

Bending displacement variables v;, and geometric function are approximated by
n
v(§) =)_Ni(§)ow, x(5)=¢L, (4.6)
i=1

Oy; as a control variable in the isogeometric analysis are equivalent to a degree of freedom
in finite element analysis.

4.3 Curvature and shear strain

Substituting (4.6) into (2.12), we get

n

X&) ==Y Ni,x(©)0i=(Bp){0s}, (Bo)=—(Nixx - Nuxx)ro, (4.7)
i=1

Substituting (4.6) into (2.13) we get

(PLZ n

16)=—"7
i=1

Ni,xxx(g)’@bi=<35>{l3n}, <BS>:_6<N1/xxx Nn/xxx>1xn' (4.8)

Where curvature is second derivatives of bending displacement function v;, and the trans-
verse shear strain is third derivatives of bending displacement function vy,
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4.4 Bending and shear stiffness

1577

From (3.16), we obtain the bending stiffness [k;] and shear stiffness [k;], respectively: For

p=3:
4 -6 0 2
[k]_g 6 12 -6 0
=T33 0 -6 12 —6
2 0 -6 4

, [ks]

_ 3EI
T

1 -3
-3 9
3 -9 9
-1 3

3
-9 3

-1

> (4.9)

-3 1

From the sum of bending and shear stiffness matrix we obtain the element stiffness matrix

[K]:
((4+q>)) z(6+3¢))
B _3EI'| —(6+3¢) (12+9¢
(2—9¢) 3¢
For p=5:
T 20 —-30 4
-30 52 -13
& ]_20151 4 -13 12
b7 713 3 -8 2
2 -3 -8
1 2 3
T 6 —15 10
—-15 40 -30
10EI 10 —-30 30
ks = 13 1 o 0 -10
0 5 0
. -1 0 0

3¢
—(649¢)
(124+9¢)
—(6+3¢)
3 2
-8 -3
2 -8
12 —13
-13 52
4 30
0 0
0 5
-10 0
30 —30
—30 40
10 -—15

(2—

3¢
—(6+3¢)

¢)
(4.10)

(4+¢)

LN -

4
—30

20 |
_1_

0
0
10
—15
6

) (4.11a)

(4.11b)

The element stiffness matrix [k] is obtained from the sum of the bending and shear stiff-

ness matrix:

(40+42¢)  —(60+105¢)
—(60+105¢)  (104-+280¢)
L= 10EI (8+70¢) —(26+210¢)
k= 713 6 —16
4 (—6+35¢)
(2—7¢) 4

(8+70¢)

—(264210¢)
(24+210¢)

(4—70¢)

—16

6

6

—16

(4—70¢)
(24+210¢)

—(26+210¢)

(8+70¢)

4 2-7¢)
(—6-+35¢) 4
~16 6
—(264210¢)  (8+704)
(104+280¢) —(60+105¢)
—(60+105¢)  (40+42¢)

4.12)
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Figure 5: Fixed-Free supported beam.

Where equivalent nodal force vector

{fn}: ]‘ci s /f(N 4)L2 zrxx>dx_M(Ni/x)+T<Nl 4)1L22Ni/xx>r (4~13)
1n

For uniform distributed load fy, the nodal force vector:

U= =1 HLI-0) () (1+9) (1-9)), (p=3), (414a)
U=l = RL(2-50) (245p) 2 2 (245¢) (2-5¢))", (p=5). (@.14b)

5 Numerical examination

In this section examples with various boundary conditions for a beam under a uniform
load fj are presented to demonstrate the performance of the Ul element in static analysis.
The results from Isogeometric Analysis (IGA) [21] are presented with two different order
of polynomial degree (p =3 and p=5).

5.1 Fixed-free supported beam

Boundary conditions: v =0, 6; =0.
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Table 1: Results from Ul and IGA for fixed-free supported beam with 1 element.
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Ul (p=5) IGA (p=3) IGA (p=5)

Oy, = —0s;, 01 =0, 05, =0, Oy, =0p, = % Ops O, =%p, = % Obs
'Ubl L2(P ﬁbl 5¢)
vs, —L2¢ Bp, 5¢ By, 5¢
01 _ L2 0 Op, _ h? 5¢ Op, _ AL 3+4-5¢
0y, 4ET\ 2 (3+¢) Ops THET | 104-5¢ o, 120ET 745¢
Vs, 0 ZAJh4 18+4-5¢ ﬁb5 11+5¢
6, 41, Op, 15+5¢

Table 2: Displacement functions of fixed-free supported beam with 1 element.
Element Displacement functions
vp(x) = %x (L®—2Lx>+x3)
= fol?
UL (p=5) vs(x) = 24EI‘Px(L—x)
0(x) = 1% x (63 —4Lx2 + 61 2x + pL2 (2L —x))
IGA (p=3) [21] | v(x) = £2% x (5SLx—2x2+ 1)
IGA (p=5) [21] | 0(x) = oo x (x®—4Lx*+612x+pL* (2L—x))
EXACT [21] | v(x) = J%x (x® —4Lx2+612x+pL* (2L —x))
Table 3: Results from Ul and IGA for Simply-Simply Supported beam with 1 element.
Ul (p=5) IGA (P 3)4) Il(gf (P=5)5¢
Uy = —0s; =0 Op, = ? = 2-50bs Op, = s Oy, = 357 Obs
Up, = —0s, =0 Z3174:4)?4)ﬁbs:%ﬁbz Db, — 5p— 36195_74)4)64
Ubl 0 ﬁbl 0
Vs, 0 ﬁbl ¢ ﬁbz 1
0 | _pLd 1 ?bz __ fol? —2+¢ Zfba _ fol* ) 2
va 24E1 0 Zib3 144E1 _2+¢ zib4 120E1 4
Us, 0 Op, ¢ Ops 2
0> -1 Op, 0

5.2 Simply-simply supported beam

Boundary conditions: v; =0, v, =0.

5.3 Fixed-simply supported beam

Boundary conditions: v; =0, §; =0, v, =0.
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Figure 6: Simple-Simple Supported beam.

Table 4: Displacement functions of Simply-Simply supported beam with 1 element.

Element Displacement functions
op(x) = m(qﬁ%ﬁ 2— (10L+2¢L)x3+ (4+¢)x*)
UL(p=5) 05 (%) = mgriray 51}4+¢ ¢L?(L—x) (4x—L+¢x)
v(x):zi%lx( S _2Lx®+L3+L2%p(L—x))
IGA (p=3) [21] | o(x)= L5 x(L—x)
IGA (p=5) [21] | v(x) = plx (x* —2Lx?+ 13+ 12 (L—x))
EXACT [21] | 0(x) = 1% x (¥ 2L+ 3+ 12¢(L—x))

Table 5: Results from Ul and IGA for Fixed-Simply Supported beam with 1 element.

UI (p=5) IGA (p:32) IGA (p 55)
vblz—vslglzo, UAbl :Z}b f+¢ 0 zﬁblzvb 3+gg¢7)b3
N 4+ N 10¢p A 5
Uy, = —05, =0 Obs = Targ)p Vs U = 54>ip3 Ubs = 37@¢ Uby
Uby ngb N (=2+¢)¢ z?bl 10¢
Vs, —L%¢ Op, (é:ﬁ)(p 11;,2 10¢
01 fol? 0 ﬁhz _ folt e Op, fol* 6+10¢
o, ( 2AEIEF) 0 O (T WET) (i) On, T MOEIETH) | 8+8¢
s, 0 By, 4+¢ Dy 4+4¢
0, —2L(1+¢) ¢ 0y, 0
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Figure 7: Fixed-Simply Supported beam.

Table 6: Displacement functions of Fixed -Simple Supported beam with 1 element.

Element Displacement functions
0y (X) = sgEigay 4+4> 7 (9L —10Lx" +¢x* +4x* +6L2x% —2¢Lx%)
UL(p=5) | 4y(x)= g P12 (L—x) (4x—L+9x)
U(x)—m X(L—x) (Lx(6+¢) —x>(4+¢) +L2p(5+¢))
IGA (p=3)[21] | v(x)= 24E14+¢ x(L—x)(2x+L¢)
IGA (p=5) [21] | v(x) = 24EI4+¢)x(L x) (Lx(64¢) —x?(4+¢)+L2p(5+¢))
EXACT [21] v(x):24EI 4+¢)x(L x) (Lx(6+¢) —x*(4+¢) +L*p(5+¢))

5.4 Simply-fixed roll supported beam

Boundary conditions: v =0, g, =0.

5.5 Fixed-fixed roll supported beam

Boundary conditions: v; =0, §; =0, 8, =0.

5.6 Fixed-fixed supported beam

Boundary conditions: v1 =0, 1 =0, v =0, 9, =0.

1581
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Figure 8: Simple-Fixed Roll supported beam.

Table 7: Results from Ul and IGA for Simply-Fixed Roll Supported beam with 1 element.

Ul (p=5) IGA (p=3) IGA (p=5)
N 2¢ A N N N N 10§ 5¢ 4 ~ ~
051:—051:0,92:0 Z)b1:¢¢ szzﬁvbyvbgzvbz; vblz%vbzzﬁvbyv%zv%
Op, 0 ﬁbl 0
Us, 0 ﬁbl ¢ ﬁbz 8
01 _ fl? 8L 0Op, __ fort —-16+¢ 0p, _ foL* 16
Up, 24ET \ 512 Zjba 144E1 f30+¢ ﬁb4 120EI1 \ 22
Us, (I)L2 73194 —30+¢ va5 25
0 0 B, 25

Table 8: Displacement functions of Simply-Fixed Roll supported beam with 1 element.

Element Displacement functions
0p(x) = A (2pL4+121222 — 12123+ 3x%)
Ul (p=5) vs(x) —%chz (2L*—6Lx+3x?)

S
0(x) = ol x (X —4Lx?+ 813+ L2 (2L — 1))
IGA (p=3) [21] | v(x) = 425 x (812 — Lx —2x2 + [2¢)
IGA (p=5) [21] | 0(x) = p%x (x* —4Lx>+ 813+ 129 (2L —x))
EXACT [21] | 0(x) = 5% x (x®—4Lx? 813+ [2p(2L—x))

Only UI (p=5) and IGA (p=5) give an exact displacement function.
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Figure 9: Fixed-Fixed Roll supported beam.

Table 9: Results from Ul and IGA for Fixed-Fixed Roll Supported beam with 1 element.

Ul (p=5) IGA (p=3) IGAS(p:5)
Uy, =—s,, 1 =0 Op, =0p, = % Opy, Op, =0p, | Op, =0p, = %%S, Ops = O,
Vp, 21%¢ Bp, 10¢
vs, —212¢ By, ¢ By, 10¢
01 _ fLLz 0 ﬁbz _ fLL4 ¢ 6b3 _ fol* 6—|—10(P
op, ( 72ET) L2(3+2¢) Dy, [ 4BET ) 942 dp, [~ 369ET ) 12+10¢
Vs, L?¢ by, P+2 O 15+10¢
6, 0 O, 15+10¢

Table 10: Displacement functions of Fixed-Fixed Roll supported beam with 1 element.

Element Displacement functions
0p(x) = AL (29144121222 —12Lx3 4 3x4)

UL(p=5) | v(x)=— 0 ¢pL2 (202 —6Lx+3x2)
0(x) = % x (13 —4Lx2 +412x + L2 (2L —x))
IGA (p=3) [21] | v(x) = — 4L x (3Lx—2x2+ L 2¢)
IGA (p=5) [21] | 0(x) = o x (x®—4Lx?>+412x+[2p(2L—x))
EXACT [21] | v(x) = J2x (x® —4Lx2+412x+ [2p (2L —x))

6 Conclusions

In this paper, the performance of Ul and IGA Galerkin elements based on the unified
and integrated method are compared. In the unified and integrated method, the total
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Figure 10: Fixed-fixed supported beam.

Table 11: Results from Ul and IGA for Fixed-Fixed Supported beam with 1 element.

Ul (p=5) IGA (p=3) IGA (p=5)
~ ~ ~ ~ ~ ~ 5¢ ~ ~ 5¢
Up, = —Usy, Up, = —Us, Oy, = 0p, =0p, =0y, =0 Ubl:%:%Uhy?%:vbé:%%;
p, L%¢ Bp, 10¢
vs, —L2¢ By, 0 by, 10¢
01 | _ fr2 0 ﬁbz )0 ﬁb3 _ folt ) 6+10¢
vy, [ THET L2 o [ )0 by, [ THOET ) 6+104
Us, —L24) ﬁb4 0 ﬁbs 10¢
02 0 By, 10¢

Table 12: Displacement functions of Fixed -Fixed supported beam with 1 element.

Element Displacement functions
0p(x) = 1% (6L2x2 —12Lx3 +6x4 + 9 L4)
Ul(p=5) | o5(x) 714{4{’E1¢L2(L276Lx+6x2)
{%Ix (x®—2Lx*4 L*x+L*¢(L—x))

IGA (p=5)[21] | v
EXACT[21] | o

Mo x (3 —2Lx? 4 [2x+12¢(L—x))
= %x(ﬁ—Zsz—l—sz—l-chp(L—x))

(
IGA (p=3) [21] | v(x

(

(

displacement is split into bending displacement and shear displacement, which is the
key to combine Bernoulli and Timoshenko theory. The weak form differential equation or
principal virtual work (PVW), that is the symmetric form of the second-order derivative
for the bending part and the third order derivative for the shear part, gives completely
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locking-free results.
Conclusions drawn from the results of the numerical examination are:

1. The formulation of the shear deformable Ul element and IGA Galerkin (p=5) can
give exact solutions not only at nodes but also along the beam, proving that it is
free from shear locking, which is due to the strong relationship between shear dis-
placement, rotation, curvature, transverse shear.

2. IGA Galerkin (p =3) element only give exact DOFs values at nodes.

3. Since fy is constant, the analytical solution is of fourth order in all cases. Therefore,
all results presented by only one element indicate that UI (p=5) and IGA Galerkin
(p=>5) are able to give exact DOFs values and displacement functions.

4. When this element is applied to the thin beam case, i.e., ¢ =0, all equations will
automatically be transformed into Bernoulli theory in which the total displacement
is equal to bending displacement.
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