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Abstract. Dynamic transient responses of rotating twisted plate under the air-blast
loading and step loading respectively considering the geometric nonlinear relation-
ships are investigated using classical shallow shell theory. By applying energy prin-
ciple, a novel high dimensional nonlinear dynamic system of the rotating cantilever
twisted plate is derived for the first time. The use of variable mode functions by poly-
nomial functions according to the twist angles and geometric of the plate makes it
more accurate to describe the dynamic system than that using the classic cantilever
beam functions and the free-free beam functions. The comparison researches are car-
ried out between the present results and other literatures to validate present model,
formulation and computer process. Equations of motion describing the transient high
dimensional nonlinear dynamic response are reduced to a four degree of freedom dy-
namic system which expressed by out-plane displacement. The effects of twisted an-
gle, stagger angle, rotation speed, load intensity and viscous damping on nonlinear
dynamic transient responses of the twisted plate have been investigated. It’s impor-
tant to note that although the homogeneous and isotropic material is applied here, it
might be helpful for laminated composite, functionally graded material as long as the
equivalent material parameters are obtained.
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1 Introduction

Rotating cantilever structures, such as blades, are the key components in aero engine,
turbomachine and so on. The studies of nonlinear dynamic properties of them becomes
more importance because they are always subjected to various external excitation in
harsh service environments which may cause severe vibration of them inevitably and
even result in the complex dynamics of overall unit. One of the threats to rotating can-
tilever structure is blast loads because blast loads not only may make a reduction in per-
formance and failure of the blades [1, 2] but are the major safety hazard for them. In the
past decade, the dynamics of the rotating cantilever structures were studied by several
researchers. And in these studies rotating cantilever beams, rectangular plates, twisted
plates or shallow shells were usually used.

Rosen [3] reviewed the dynamics of the pre-twisted beams and rods especially the
dynamic models and solution methods. Vyas and Rao [4] derived the governing equa-
tions of motion of rotating disk-blade system and free vibrations were analyzed. Here
the Coriolis forces, rotary inertia were taken into account. Lin [5] derived the governing
differential equations of rotating non-uniform beam by energy principle but the Coriolis
forces were not considered. To research the free vibration of pre-twisted blades, Yoo [6]
applied the beam theory to obtain the motion of equations of pre-twisted blades and
discussed the problem of loci veering and mode shapes variation. Chandiramani [7]
researched the vibration of the anisotropic composite box-beam structure which was a
simplified pre-twisted blade based on the extended Galerkin procedure. Librescu [8]
studied the free vibration of functionally graded material per-twisted blades. The per-
twisted blades were modeled as functionally graded material pre-twisted beams and the
beams were made of metal and ceramic. Carrera et al. [9] applied finite element method
and the Carrera unified formulation to rotating blades and free vibrations were analyzed.
Yao [10] treated the blade as a cantilever twisted beam with pre-index angle and nonlin-
ear dynamics of the twisted beam were studied. The chaotic dynamics were detected by
numerical simulation. By using modelling method which employed hybrid deformation
variables, Yoo [11] made modal analysis of the rotational pre-twisted blades by modelling
method. Chortis [12] investigated the modal frequencies and damping of the beams and
blades which were affected by stiffness and damping. Yang [13] established a shaft-disk-
blades model and the blades were simplified as beams. On the basis of Rayleigh-Ritz
technique, Chen [14] computed the free vibration of the blisk with NiCrAlY coating on
the blades and the system damping were also computed. Sina [15] used geometrical non-
linearities and Hamilton’s principle to analyzed the vibration of composite box beams.
Chen [16] employed the variational iteration to calculate the natural frequency of the ro-
tational tapered Timoshenko beams. In above studies, the dynamics of various simple
beam structures were studied.

It is reasonable for the spindling structures but if the length-width ratio of the rotating
cantilever structures is small the plate or shallow shell theories will be more appropriate
and the in-plane inertia should be included. Sinha [17] pointed out that Dokainish and
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Rawtani [18] solved the vibration of the rotational blade analytically by simplified them
as plates first time. Then, Leissa [19] studied the free vibration of rectangular cantilever
plate with certain twisted angles numerically and experimentally. Qatu [20] used the
Ritz method to calculate the mode shapes and the natural frequencies of the laminated
composite plates. Lim [21] presented the vibration characteristics of trapezoidal plate
with certain pre-twisted angle by Ritz procedure. It had been found that because of the
twisting curvature of the plate, the stretching and bending were coupled. And with the
increase of twist angle the twisting frequencies would also increase. Yoo [22] performed
the vibration analysis of the pre-twisted blade and there was a concentrated mass on it.
Hu [23] proposed a numerical simulation procedure in the interests of analyzing the free
vibrations of thin pre-twisted plate. Xiao [24] applied Hamilton’s variational principle
to derive a nonlinear dynamic equation of the thin plate and proved that there existed
the dynamic softening and stiffening of the plate. Farhadi [25] studied the nonlinear
dynamics of a rotating rectangular plate which was located at a rigid baffle in supersonic
flow. The vibration of rotational blade was investigated by Sun [26] with the aid of the
classical plate theory. Moreover, Li [27], Cao [28] and Fazelzadeh [29] researched the
cantilever functionally graded material rotating plate using the plate theory. Kazancı [30]
reviewed the response of the laminated composite plates under blast loads.

When the structures are shaped as a pre-twisted plate, it is more like a torsion shell.
Recently, Hu [31, 32] applied the shell theory to research the nonlinear vibration and
linear vibration of the pre-twisted conical shell. And they thought of the elastic helicoidal
shell as a twisted plate and the shell theory was used. By considering the influence of
warping and the thin shell theory, Sinha [33, 34] presented the motion of equation in
terms of transverse displacement. Qatu [35] reviewed the various laminated composite
shells theory and the dynamic behaviors of shells. Sun [36] developed a new dynamic
system of rotating plate with twisted angle using the shell theory.

Literature review shows that most of the studies on the dynamic of the rotating can-
tilever structures are focused on the free vibration and forced vibration of them subjected
to periodic external excitations. It should be mentioned that as a component of the tur-
bine, these rotating cantilever structures may be subjected to other several dynamic load-
ing additionally, such as air blast loading, step loading and sonic boom pulses. Moreover,
Nayak’s research, [37], showed that the plate with cantilever boundary condition had
more higher amplitude than those with SSSS (simply supported), CCCC (clamped) and
CFCF (clamped-free) boundary when the plate was subjected to the transient loadings.
So considering the transient dynamic response of the rotating cantilever structures sub-
jected to blast loading is a very important problem and must be considered when they
are designed.

In the present research, the transient nonlinear dynamic responses of a thin cantilever
twisted plate under the air-blast loading and step loading respectively are investigated
in detail. Compared with plate theory and beam theory, the shallow shell can better
describe the pre-twisted characteristics of the low length-width ratio model. It is because
that the cantilever twisted plate is essentially a developable ruled surface shell. One
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should present the curvature and twist curvature values of the developable ruled surface
shell. Thus the shallow shell theory is applied to model the twisted plate in present.
On the basis of classical shallow shell theory, the Rayleigh-Ritz method and polynomial
functions, the mode shapes of the system are obtained. The comparison researches are
carried out between the results presents and literatures. By using Lagrange equations and
geometric nonlinear theory, high dimensional nonlinear dynamic equations of motion of
the cantilever twisted plate are derived. The equations of motion describing the transient
nonlinear dynamic response are analyzed by out-plane displacement for the first time.
A comprehensive study about influences of twisted angle, stagger angle, rotation speed,
load intensity, viscous damping and other parameters have been carried out. Although
the homogeneous and isotropic material is applied in this study, it might be helpful for
laminated composite, functionally graded material or sandwich twisted shell structures
as long as the equivalent material parameters are obtained.

2 Theoretical formulation

A uniform twisted plate shown in Fig. 1 is analyzed. Four coordinates system are applied
in this paper.

(a) The origin of coordinate system OX1Y1Z1 is fixed in the space and the coordinate
origin is at the center of the rotary hub.

(b) Coordinate system O1XYZ, this coordinates system is obtained by shifting OX1Y1Z1
and the coordinate origin is at middle surface of the twisted plate.

(c) Body coordinate system O1xy0z0, this coordinates system is set to illustrate the twist
of the plate with unit vectors (~i,~j,~k) and the deformation of the twisted plate can be
described by this coordinate system. The stagger angle of the plate is ϕ.

(d) Kinetic coordinate system O1xyz, this coordinate is used to illustrate the twist of the
cross-section of the plate, see [35], where y-axis and y0-axis coincide at x=0, z-axis
is normal to x axes and y axes at the same time. A constant twist rate q is considered
and twisted angle at free edge of the twisted plate in x direction θ=qa.

It is assumed that the twisted plate characterized by span length a along x axes, chord
length b along y axes and thickness h, respectively, is fixed on a rigid hub with radius R
and rotation speed Ω. The twisted angle of the plate at fixed end and free end along O1x
axis are zero and θ, respectively. Thus, the position vector to an arbitrary point in middle
plane of the cantilever twisted plate at orthogonal coordinate system O1xyz in terms of
unit vectors (ĩ, j̃,k̃) can be expressed as

r0= xĩ+ycos(qx)j̃+ysin(qx)k̃. (2.1)
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Figure 1: The model of a cantilever twisted plate and the coordinate system.

The Lame parameters for the twisted plate can be given in the Eq. (2.2) in light of differ-
ential geometry theory. {

A= |r0,x|=
√

1+q2y2,
B=

∣∣r0,y
∣∣=1.

(2.2)

The unit vector (ã1,ã2,ã3) in O1x, O1y and O1z direction with respect to coordinate system
O1xy0z0 can be written asã1

ã2
ã3

= 1
A

 1 −yqsin(qx) yqcos(qx)
0 Acos(qx) Asin(qx)
−yq −sin(qx) cos(qx)

 ĩ
j̃
k̃

. (2.3)

From Eq. (2.2), one can see that the twisted plate is treated as a ruled surface shell. And
the second basic homogeneous coefficients of it can be given as, see [38]

L= ã3 ·r0,xx =0,

M= ã3 ·r0,xy =−
q√

1+q2y2
,

N= ã3 ·r0,yy =0.

(2.4)

Furthermore, the relations between radii of curvature, twist and the second fundamental
form can be written as 

1
Rx

=0,

1
Ry

=0,

1
Rxy

=
M
AB

=− q
1+q2y2 ,

(2.5)

note that radii of curvature Rx and Ry are infinite in xaxes and y axes, respectively, and
only Rxy is the finite radii of twist.
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2.1 Kinematic and stress-strain relations

Using the classical shallow shell theory, the displacement field of an arbitrary point in
three directions can be expressed as

u(x,y,z,t)=u0(x,y,t)−z
∂w0(x,y,t)

∂x
,

v(x,y,z,t)=v0(x,y,t)−z
∂w0(x,y,t)

∂y
,

w(x,y,z,t)=w0(x,y,t),

(2.6)

where u0, v0 and w0 are the displacement components of a point in the middle surface
in x, y and z direction, respectively. On the basis of Eq. (2.6) and classical shallow shell
theory, the nonlinear strain-displacement relations of twisted plate can be derived as

εxx =
∂u
∂x

+
w
Rx

+
1
2

(
∂w
∂x

)2

, (2.7a)

εyy =
∂v
∂y

+
w
Ry

+
1
2

(
∂w
∂y

)2

, (2.7b)

γxy =
∂u
∂y

+
∂v
∂x

+
2w
Rxy

+
∂w
∂x

∂w
∂y

, (2.7c)

and

εxx = ε0x+zkx, εyy = ε0y+zky, γxy =γ0xy+zkxy, (2.8)

where

ε0x =
∂u0

∂x
+

1
2

(
∂w0

∂x

)2

, ε0y =
∂v0

∂y
+

1
2

(
∂w0

∂y

)2

, (2.9a)

γ0xy =
∂u0

∂y
+

∂v0

∂x
− 2w0q

1+q2y2 +
∂w0

∂x
∂w0

∂y
, (2.9b)

kx =−
∂2w0

∂x2 , ky =−
∂2w0

∂y2 , kxy =−2
∂2w0

∂x∂y
. (2.9c)

With the help of Hooke’s law, the stress can be expressed in terms of strain and we have

σx =
E

1−µ2 (εxx+µεyy), σy =
E

1−µ2 (εyy+µεxx), τxy =
E

2(1+µ)
γxy. (2.10)

In above Eq. (2.10), E is elastic modulus of the twisted plate and µ is Poisson’s ratio.
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2.2 Energy functions

For elastic twisted plate, the strain energy can be given by

U=
∫∫∫

V

1
2
(
σxεxx+σyεyy+τxyγxy

)
dV

=
∫∫
s

1
2

(
Eh

1−µ2

(
ε2

0x+ε2
0y+2µε0xε0y

)

+
Eh3

12(1−µ2)
(k2

x+k2
y+2µkxky)+

Ehγ2
0xy

2(1+µ)
+

Eh3k2
xy

24(1+µ)

)
ds. (2.11)

Suppose that to consider the rotational speed of the cantilever twisted plate is also Ω the
same as the rigid hub since the plate is fixed on the hub. Thus, the speed of the twisted
plate can be decomposed into two parts, one is the speed Vs caused by rotation of the
plate and the other is the structural deformation speed Vd.

After deformation, the position vector r at any point in the twisted plate in body
coordinate system can be determined by

r=xĩ+ycos(qx)j̃+ysin(qx)k̃+uã1+vã2+(w+z) ã3

=
(

x− zyq
A

+
u
A
− yqw

A

)
ĩ+
(
− 1

A
(z+uyq+w)sin(qx)+(y+v)cos(qx)

)
j̃

+

(
1
A
(z+w+uyq)cos(qx)+(y+v)sin(qx)

)
k̃. (2.12)

In body coordinate system O1xy0z0, the vector Ω can be written as its components and
unit vectors as

Ω=Ωcos(ϕ)j̃−Ωsin(ϕ)k̃. (2.13)

The velocity component vector Vs caused by rotation of the plate can be presented in
terms of unit vectors (ĩ, j̃,k̃) as follows

Vs =Ω×r=Vx ĩ+Vy j̃+Vzk̃, (2.14)

where magnitude of vector components Vx, Vy and Vz can be written as

Vx =Ω
(
(y+v)sin(qx+ϕ)+

1
A
(z+yqu+w)cos(qx+ϕ)

)
, (2.15a)

Vy =−Ω
(

R+x− zyq
A

+
u
A
− yqw

A

)
sin(ϕ), (2.15b)

Vz =−Ω
(

R+x− zyq
A

+
u
A
− yqw

A

)
cos(ϕ), (2.15c)

where R is the dimension of the rigid hub.
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Deformation speed of the plate can be written as

Vd =
dr
dt

=
du
dt

ã1+
dv
dt

ã2+
dw
dt

ã3. (2.16)

The composed velocity VT at any point in the twisted plate is

VT =Vd+Vs. (2.17)

Substituting the Eqs. (2.14)-(2.16) into Eq. (2.17), the composed velocity can be given as
component form by

V1=VT · ã1= u̇+
Vx

A
− yqΩcos(qx+φ)

A

(
R+x− zyq

A
+

u
A
− yqw

A

)
,

V2=VT · ã2= v̇−Ωsin(qx+φ)
(

R+x− zyq
A

+
u
A
− yqw

A

)
,

V3=VT · ã3= ẇ− yqVx

A
−Ωsin(qx+φ)

A

(
R+x− zyq

A
+

u
A
− yqw

A

)
,

(2.18)

where a super dot implies the first-order derivation of time. Then the kinetic energy of
the cantilever twisted plate yields

T=
∫∫∫

V

1
2

ρV2
i dV

=
∫∫∫

v

1
2

ρ
(

u̇2+ v̇2+ẇ2+Ω2
(

ysin(qx+ϕ)+
zcos(qx+ϕ)

A
+

uyqcos(qx+ϕ)

A

+vsin(qx+ϕ)+
wcos(qx+ϕ)

A

)2
+Ω2

(
R+x− zyq

A
+

u
A
− yqw

A

)2
+

2Ωu̇
A

(
ysin(qx+ϕ)

+
zcos(qx+ϕ)

A

)
− 2Ωyqcos(qx+ϕ)u̇

A

(
R+x− zyq

A

)
−2Ωsin(qx+ϕ)v̇

(
R+x− zyq

A

)
− 2Ωyqẇ

A

(
ysin(qx+ϕ)+

zcos(qx+ϕ)

A

)
− 2Ωcos(qx+ϕ)ẇ

A

(
R+x− zyq

A

)
+Ω

(2u̇v
A

sin(qx+ϕ)− 2uv̇
A

sin(qx+ϕ)+2u̇wcos(qx+ϕ)−2uẇcos(qx+ϕ)

+
2yq
A

sin(qx+ϕ)wv̇− 2yq
A

sin(qx+ϕ)ẇv
))

dV. (2.19)

The centrifugal force along x, y and z axes can be expressed as:

Nc1=
∫ a

x
Fc · ã1Adx, (2.20a)

Nc2=
∫ ±b/2

y
Fc · ã2dy, (2.20b)

Nc3=Fc · ã3, (2.20c)
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where Fc is given as

Fc =−Ω×(Ω×r)=


Fcx =ρΩ2

(
R+x+

zyk
A

)
ĩ,

Fcy =ρΩ2
(

ysin(qx+ϕ)+
z
A

cos(qx+ϕ)
)

sin(ϕ)j̃,

Fcz =ρΩ2
(

ysin(qx+ϕ)+
z
A

cos(qx+ϕ)
)

cos(ϕ)k̃,

(2.21)

where ρ is the density of the twisted plate.
The potential energy resulting from centrifugal force is given by

Up =
∫∫∫

V

(Nc1u1+Nc2u2+Nc3u3)dV, (2.22)

where ui, (i= 1,2,3) are the displacements along centrifugal force and they can take the
form, see [26, 28]

u1=u0+
1
2

((
∂w0

∂x

)2

+

(
∂v0

∂x

)2
)

, (2.23a)

u2=v0+
1
2

((
∂w0

∂y

)2

+

(
∂u0

∂y

)2
)

, (2.23b)

u3=w0. (2.23c)

The work done by the external transverse force is given by

WF =
∫∫
s

pwds. (2.24)

2.3 Time-dependent dynamic loading

Now suppose that the cantilever twisted plate is exposed to two kinds of uniform dy-
namic loads. They are step loading and air-blast loading, respectively. The step loading
is represented by

p(t)=

{
p0, 0< t< rtp,
0, t<0, t> rtp,

(2.25)

where p0 denotes the peak pressure, r is shock pulse length factor, and tp indicates posi-
tive phase duration.

Exponential air blast loading considered here is written as, see [39]

p(t)= p0(1−t/tp)e
− αt

tp , (2.26)

where t is the time and αdenotes the waveform decay parameter. It includes the Fried-
lander exponential decay function.
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2.4 Mode shapes

To find the mode shapes of the cantilever twisted shell, the Rayleigh-Ritz method is em-
ployed in this section and a linear free vibration system can be obtained by ignoring the
work done by the external force and nonlinear terms. The free vibration can be expressed
in following form

u0(x,y,t)= Ũ(x,y)eiωt, (2.27a)

v0(x,y,t)= Ṽ(x,y)eiωt, (2.27b)

w0(x,y,t)=W̃(x,y)eiωt. (2.27c)

The non-dimensional algebraic polynomial functions will be applied since there are many
advantages of algebraic polynomial, see [40]. Thus, the displacement functions Ũ, Ṽ and
W̃ are given as

Ũ(ξ,η)=
I

∑
i=1

J

∑
j=1

Aijξ
iη j−1, (2.28a)

Ṽ(ξ,η)=
K

∑
k=1

L

∑
l=1

Bklξ
kηl−1, (2.28b)

W̃(ξ,η)=
M

∑
m=1

N

∑
n=1

Cmnξm+1ηn−1, (2.28c)

where ξ = x
a , η = 2y

b , Aij, Bkl and Cmn are coefficients that will to be determined. The
(I, J), (K,L) and (M,N) are the number of the approximate solution for each displacement
component and they should assure convergence of the approximate solution.

Substituting the Eqs. (2.27), (2.28) into Eqs. (2.11), (2.19) and Eq. (2.22), respectively,
then using the Rayleigh-Ritz method lead to

∂(Tmax−Umax−Upmax)

∂Aij
=0, (i=1,··· , I; j=1,··· , J), (2.29a)

∂(Tmax−Umax−Upmax)

∂Bkl
=0, (k=1,··· ,K; l=1,··· ,L), (2.29b)

∂(Tmax−Umax−Upmax)

∂Cmn
=0, (m=1,··· ,M; n=1,··· ,N). (2.29c)

With the aid of Eq. (2.29), we can have the algebraic equation as follows

(K−ω2M)X=0, (2.30)

where vector
X=

[
Ũ11 ···ŨI J ,Ṽ11 ···ṼKL,W̃11 ···W̃MN

]T,
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Table 1: Comparisons of the first four frequencies of cantilever twisted laminate plate with Hu and Lim [41]

(ω0 =ωb
√

ρ/E).

Twisted angle Mode No. 1 2 3 4
Present 0.00083449 0.0051764 0.0084883 0.014642

10◦ Hu and Lim 0.00085688 0.0052237 0.0086112 0.014962
Error -2.68% -0.91% -1.45% -2.19%

Present 0.00082396 0.0050470 0.013530 0.014567
20◦ Hu and Lim 0.00084039 0.0051040 0.013235 0.014906

Error -1.99% -1.13% 2.18% -2.33%

Table 2: Comparison of the first four non-dimensional frequencies obtained from [20] and present.

Lay-up Solution method 1 2 3 4
5*5*3 1.637 2.092 3.817 5.1599
error 1.03% 0.65% 2.76% 2.10%
6*6*3 1.6226 2.0903 3.7676 5.1266

30◦ error 0.15% 0.56% 1.49% 1.46%
7*7*3 1.6167 2.0781 3.7106 5.0552
error -0.22% -0.02% -0.02% 0.07%
Qatu 1.6202 2.0785 3.7115 5.0517
5*5*3 1.7092 2.2538 3.934 4.764
error 1.29% 0.68% 2.94% 1.88%
6*6*3 1.6919 2.2524 3.8806 4.7589

45◦ error 0.28% 0.62% 1.61% 1.77%
7*7*3 1.6865 2.2401 3.8232 4.6828
error -0.04% 0.07% 0.13% 0.18%
Qatu 1.6871 2.2385 3.8182 4.6745

K and M are stiffness and mass matrix, respectively. It is known that when the deter-
minant of coefficient is zero we can have nontrivial vector X. Then the mode shape and
natural frequency will be calculated.

To validate mode shapes obtained present, the first four dimensionless frequencies
(ω0=ωb

√
ρ/E) of the twisted laminate [45◦/−45◦/−45◦/45◦] plates with E11=60.7GPa,

E22=24.8GPa, G12=12.0GPa, ρ=2700kg/m3, µ=0.23, a
b =3, h

b =0.01 and θ=10◦/20◦ are
compared with those obtained by Hu and Lim [41], which is listed in Table 1. It is clearly
from Table 1 that a good agreement is shown with the maximum error −2.68%.

In Table 2 and Fig. 2, comparison of the first four dimensionless frequencies and mode
shapes obtained from Qatu and leissa [20] and present are shown. The comparison shows
that the maximum error is less than 2.76% when trial function are 5×5×3, 6×6×3, 7×
7×3, which prove that the eigenvalues are convergence and acceptable in present. The
present mode shapes using trial function of 7×7×3 are excellent agreement with the [20].
The material and geometric of the plate are Angle-ply plate (30◦/−30◦/30◦) with a=b=1,

b/h=100, E11=138GPa, E22=8.69GPa, G12=7.10GPa, ρ=1600kg/m3, ω=ω0
a2

h

√
ρ
E and
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µ=0.3.

2.5 Nonlinear dynamic equations

The first four frequencies and mode shapes of the system used in this article are given in
Table 3 and Fig. 3, respectively.
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(a) 1st mode shape (b) 2nd mode shape

(c) 3rd mode (d) 4th mode

Figure 3: The first four mode shapes of cantilever twisted plate witha/b=3.

Table 3: The first four frequencies of cantilever twisted plate.

Aspect ratios Frequencies (Hz)
1 2 3 4

3 (7×7×3) 26.3809 159.7723 256.6637 468.0655

Based on the mode shapes obtained above, the expansions of the middle surface dis-
placements can be given by

u0(ξ,η,t)=
S

∑
s=1

us (t)Ũs(ξ,η), (2.31a)

v0(ξ,η,t)=
S

∑
s=1

vs (t)Ṽs(ξ,η), (2.31b)

w0(ξ,η,t)=
S

∑
s=1

vs (t)W̃s(ξ,η), (2.31c)

where t is the time, us, vs and ws are time dependent, ξ and η have the same means
with Eq. (2.28). And Ũs, Ṽs and W̃s are the eigenvectors corresponding to the sth natural
frequency.

In order to get the nonlinear ordinary differential equations of motion Lagrange func-
tion is defined as

L=T−U−Up+WF. (2.32)

According to the Lagrange formulation, dynamic equations of the cantilever twisted shell
can be written as:

d
dt

(
∂L
∂q̇r

)
− ∂L

∂qr
=0, (2.33)
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where qr =[u1(t)···us (t),v1(t)···vs (t),w1(t)···ws (t)]
T.

Because the transverse displacement is mainly considered here, therefore we neglect
all of the in-plane inertia terms in Eq. (2.33) and in-plane displacements are expressed
in terms of transverse displacement by solving the algebraic equations, see [42, 43]. We
mainly take transverse nonlinear dynamic response of the cantilever twisted plate in the
first four modes into account. Consequently, the nonlinear dynamic equations of motion
of the cantilever twisted plate described by retaining four transverse modes are obtained
as follows

M̂ẅ+K̂w+N2(w)+N3(w)= ζ pe+fn, (2.34)

where M̂ and K̂ are the mass and linear stiffness matrix respectively, N2(w) is quadratic
nonlinear component, N3(w) gives cubic nonlinear terms. It is very interesting that there
are different linear and nonlinear stiffness with the changes of the geometric and rotation
speed of the plate. Vectors pe and fn are time-dependent dynamic load and centrifugal
force respectively. ζ is a coefficient which introduced in calculating the work done by the
external transverse force.

3 Nonlinear dynamic response

To analyze the nonlinear dynamic response of the cantilever twisted plate, the first four
mode shapes are selected and the double-precision variable-coefficient ordinary differen-
tial equation solver (DVODE) [44–47] is used with the aid of FORTRAN.

3.0.1 Validation and convergence

To validate present formulation, response results and compiled procedure, the transient
dynamic response curves of the plate which is loaded by step loading and air-blast load-
ing, respectively, are plotted in Fig. 4 and compared with [48, 49].
Comparison 1: The validation has been done firstly by comparing the central displace-
ment for a simply supported homogeneous isotropic aluminum plate (a= b= 0.2m, L=
0.01m) subjected to uniform step loading between present results and those given by
Reddy [48] in Fig. 4(a). The intensity of the step loading is−106N/m2. It can be seen that
there is excellent agreement with those calculated by Reddy.
Comparison 2: In this comparison, a composite laminated square plate (0◦/90◦/0◦) un-
der blast pressure (pmax = 3447kPa) with length 2.54m and highness 0.17m is selected.
The material properties are E1=132.4GPa, E2=10.8GPa, G12=5.6GPa, ρ=1443kg/m3 and
υ12=0.24, respectively. Parameters about blast loading are α=2.0, r=1.0 and tp=0.1s, re-
spectively. The results obtained by present method and Kazancı [49] is shown in Fig. 4(b)
and a good agreement can be observed.

Fig. 5 points out the convergence of the cantilever twisted plate subjected to step and
air blast loading, respectively. It is clearly that, in the case of zero rotation speed, the
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(a) (b)

Figure 4: (a) Comparison of transient response by center deflection of plate subjected to step loading; (b)
Comparison of transient response by center deflection of plate subjected to blast loading.

(a) under air-blast loading (Ω=0) (b) under air-blast loading (Ω=4000rpm)

(c) under step loading (Ω=0) (d) under step loading (Ω=4000rpm)

Figure 5: Convergence of the corner point deflection of cantilever twisted plate in free edge.

corner point deflection of cantilever twisted plate in free edge is nearly the same when
the first five modes are used respectively. But if the rotating cantilever twisted plate
is studied at least first two modes should be included based on the results plotted in
Figs. 5(c) and (d). In present study first four modes is enough to be used to analyze the
dynamic response of this system.
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3.1 Transient response

The transient nonlinear dynamic responses of the cantilever twisted plate subjected to
time-dependent loading are investigated numerically. Unless stated otherwise, the ma-
terial, geometrical and loading parameters considered in the analysis are given as E =
2×1011GPa, ρ = 7850kg/m3, µ = 0.3, p0 = 104Pa. Ω = 4000rpm, tp = 0.01s, a = 300mm,
b = 100mm, θ = 30◦, h = 3mm, ϕ = 45◦ and R = 200mm, respectively. The shock pulse
length factor is r = 1.0, The time process diagram of central displacements of the can-
tilever twisted plate are used to demonstrate the transient responses of the cantilever
twisted plate.

Fig. 6 depicts the effect of the stagger angle ϕ on time process diagram of central
point deflection of the plate and exposed to the uniform dynamic step loading and air-
blast loading. The geometric parameters are: a= 300mm, b= 100mm, θ = 30◦, h= 3mm,
ϕ=0◦/45◦/90◦, R=200mm, respectively. Figs. 6(a) and (b) represents the transient non-
linear dynamics of the center point of the plate under air-blast loading and step loading,
respectively.

It can be seen from Figs. 6(a) and (b) that in forced motion regimes the largest cen-
tral deflections are detected for stagger angle ϕ = 0o. But in free motion regimes the
largest central deflections are found for the plate with stagger angle ϕ=45◦. Both in free
and forced motion regions, one can obtain a lower central deflections for the plate with
ϕ= 90◦. It is clearly that the frequencies of the nonlinear dynamic response of the plate
exposed to step loading are larger than that of the plate subjected to air-blast loading. It
also appears that stagger angle can affect not only the deflection of the plate but also the
shapes of them.

The effects of the length-thickness ratio, when parameters a = 300mm, b = 100mm,
θ=30◦, ϕ=45◦ and R=200mm, a=300mm are fixed, on time-history of central deflection
of the twisted plate acted by the uniform time-dependent loading are plotted in Figs. 7(a)
and (b).

As expected, in these two cases which the plate is acted by air-blast loading and step
loading respectively, central displacement amplitude of the twisted plate increases with

(a) under air-blast loading (b) under step loading

Figure 6: Center displacements of the cantilever twisted plate with different stagger angles under air-blast
loading and step loading.
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(a) under air-blast loading (b) under step loading

Figure 7: Central displacements of the cantilever twisted plate with different length-thickness ratio under air-
blast loading and step loading.

(a) under air-blast loading (b) under step loading

Figure 8: Central displacements of the cantilever twisted plate with different twisted angles under air-blast
loading and step loading.

the decrease in length-thickness ratio either in forced motion region or in free motion
region. The frequencies and transverse deflection of the cantilever twisted plate have an
opposite variation tendency. These response results are due to the stiffness of the twisted
plate decreases as the thickness becoming thinner. And it also be seen that the difference
of the central deflection between a/h=100 and a/h=75 is far greater than that between
a/h=75 and a/h=50. It illustrates that as a nonlinear system the central deflection does
not increase linearly with the change of thickness.

Fig. 8 reveals the effect of twisted angle on time-history of central deflection of the
twisted plate (a= 300mm, b= 100mm, θ = 10◦/20◦/30◦, h= 3mm, ϕ= 45◦). It is worth
noting that in forced motion region the central deflection decreases with the increase of
twisted angle of the plate. And the amplitude for θ = 10◦ is almost twice as much as
that of θ=20◦ and θ=30◦. What’s more interesting, in free motion region the deflection
of the nonlinear dynamics response for θ=10◦ and θ=30◦ is larger than that for θ=20◦.
Compared Figs. 8(a) and (b), it can be noted that the amplitude of the response of air-blast
loading is a little higher than that of step loading for θ = 10◦ and θ = 20◦ in free motion
region. In forced region the step loading can make the plate cause higher response than
step loading. Additionally, the different shapes of the deflection curve are shown for
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(a) under air-blast loading (b) under step loading

Figure 9: Central displacements of the cantilever twisted plate with different aspect ratios under air-blast loading
and step loading.

(a) under air-blast loading (b) under step loading

Figure 10: Central displacements of the cantilever twisted plate with different rotation speed under air-blast
loading and step loading.

different twisted angles.
The nonlinear transient responses of the cantilever twisted plated for the cantilever

twisted plate (a=300mm, θ=30◦, h=3mm, ϕ=45◦, b=100mm/200mm/300mm) under
air-blast loading are researched in Fig. 9(a). The results of the plate under step loading are
given for direct comparison in Fig. 9(b). Obviously, the shapes of the nonlinear transient
dynamic response curve are different. The dynamic central deflection is maximum for
the twisted plate with aspect ratio is 3. It is interesting that the minimum of central
deflection is the plate with aspect ratio is 2 but not that with a/b= 1. The reason is that
in this dynamic system the nonlinearity is considered. For the plate subjected to step
loading, the response amplitude of it in forced motion region is slightly smaller than that
subjected to air-blast loading. But in free motion region the opposite case is true.

The influence of rotation speed on transient response of the twisted plate (a=300mm,
b=100mm, θ=30◦, h=3mm, ϕ=45◦ and Ω=0/4000/8000rpm) can be studied intuitively
by time process diagram of plate central deflection shown in Fig. 10. One can see that the
transient dynamic response of the plate under air-blasting loading and step loading is in
a similar manner. The amplitude is always quite small both in forced motion region and
free motion region as time grows in case Ω=8000rpm. It is clear that the rotation speed
can be considered as an important factor that make the system stiffening. The shape
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(a) under air-blast loading (b) under step loading

Figure 11: Central displacements of the cantilever twisted plate with different load intensity under air-blast
loading and step loading.

(a) under air-blast loading (b) under step loading

Figure 12: Comparison of central displacements damped and undamped plates under air-blast loading and step
loading (rotation speed=0).

responses are in same way for two kinds of loading.
Fig. 11 displays the effect of the load amplitude on the transient dynamic response

of the cantilever twisted plate (a = 300mm, b = 100mm, θ = 30◦, h = 3mm, ϕ = 45◦). It
illustrates that both loading show nearly the same deflection amplitudes for the plate.
Under the air-blast loading and step loading, the response frequencies of plate are nearly
same too. Furthermore, it indicates that the first four modes are enough for us to analyze
the nonlinear transient dynamic response of the system because the response frequencies
are in the region of the first four natural frequencies.

In order to consider the effect of transverse viscous damping on nonlinear transient
response of the system the viscous damping force are added in Eqs. (2.24) and (2.34) can
be rewritten as

WF =
∫∫
s

pwds−
∫∫
s

τẇwds, (3.1a)

M̂ẅ+Ĉẇ+K̂w+N2(w)+N3(w)= ζ pe+fn, (3.1b)

where Ĉ is the viscous damping matrix. Following the study by Alijani and Amabili [50],
the same damping ratio is applied to do numerical simulation. Figs. 12-14 shows the non-
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(a) under air-blast loading (b) under step loading

Figure 13: Comparison of central displacements damped and undamped plates under air-blast loading and step
loading (rotation speed=4000rpm).

(a) under air-blast loading (b) under step loading

Figure 14: Comparison of central displacements damped and undamped plates under air-blast loading and step
loading (rotation speed=8000rpm).

linear dynamics response of the undamped cantilever twisted late and those with viscous
damping ratio taking the value of 0.2, 0.4 and 0.6 when the rotation are 0rpm, 4000rpm
and 8000rpm, respectively. One can see that with the increasing of the rotation speed the
plate will be damped more quickly after the blast loading, the vibration frequencies of it
will be increased but the amplitude decrease greatly under the same damp.

4 Conclusions

The transient nonlinear dynamic responses of the cantilever twisted rectangular plate
under the air-blast loading and step loading respectively are investigated in detail. Al-
though the homogeneous and isotropic material is applied in this study, it might be help-
ful for composite twisted plates. The use of variable mode functions by polynomial func-
tions according to the twist angles and geometric of the plate makes it more accurate to
describe the dynamic system than that using the classic cantilever beam functions and
the free-free beam functions. The comparison researches are carried out between the re-
sults from ANSYS and presents. By using Lagrange equations and nonlinear geometric
theory, nonlinear dynamic equations of motion of the cantilever twisted plate are de-
rived. The equations of motion describing the transient nonlinear dynamic response are
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reduced to a four degree of freedom dynamic system which expressed by out-plane dis-
placement for the first time. The effects of twisted angle, stagger angle, rotation speed,
load intensity and other plate parameters have been investigated. It is observed that the
amplitude of the central deflection of the twisted plate is very close when it is exposed
to step loading in comparison to air blast loadings. It is also observed that the effect of
twisted angle, stagger angle and length-width ratio on the transient response of the plate
are more complex. Numerical results indicate that the first four modes are enough for us
to analyze the nonlinear transient dynamic response of the system. It is indicated that the
first four modes are enough for us to analyze the nonlinear transient dynamic response
of the system because the response frequencies are in the region of the first four natural
frequencies. Also, it can be concluded that with the increasing of the rotation speed the
plate will be damped more quickly after the blast loading, the vibration frequencies of it
will be increased but the amplitude decrease greatly under the same damp.
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