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Abstract. In this paper, we study a new finite element method for poroelasticity prob-
lem with homogeneous boundary conditions. The finite element discretization method
is based on a three-variable weak form with mixed finite element for the linear elas-
ticity, i.e., the stress tensor, displacement and pressure are unknown variables in the
weak form. For the linear elasticity formula, we use a conforming finite element pro-
posed in [11] for the mixed form of the linear elasticity and piecewise continuous finite
element for the pressure of the fluid flow. We will show that the newly proposed finite
element method maintains optimal convergence order.
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1 Introduction

General theory describing the consolidation of a porous elastic soil is very important in
application, for example, predicting the behavior of foundation resting on a saturated
clay is an important problem in foundation engineering. The foundation allows for the
occurrence of finite geometry changes and finite elastic strains during the consolidation
process. This theory of poroelasticity addresses the time-dependent coupled process be-
tween the deformation of porous materials and the fluid flow inside. The governing
equations have been cast in a rate form and laws which determine deformation and pore
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fluid flow are Hookes’s law and Darcy’s law. The theoretical basis of consolidation was
established by Terzaghi [27], then, Biot generalized the theory to three dimensional tran-
sient consolidation [5, 6]. Since then, poroelastic theory has been used in a diverse range
of science and engineering application, for instance, CO2 sequestration in environmen-
tal engineering [15, 16] are important applications of poroelasticity. Recently, research in
poroelasticity has been a surge in activity, not only because of the application described
above, but also due to emerging applications in biomechanics engineering such as bio-
logical soft tissue modeling including arterial walls, skin, cardiac muscle and articular
cartilage [13, 17, 25, 28].

There is an extensive literature on numerical methods for poroelasticity. The most
commonly used numerical discretization are based on the two-fields model problem,
i.e., displacement u and fluid pressure p as its unknown variables. Standard centered
finite difference methods are studied for both one and two dimensional of the model
problem [8, 9]. Also, continuous finite element methods, such as Taylor Hood element
and Mini element are employed for the displacement and pressure, see [14, 18] as exam-
ples. However, it is well known that the approximation by centered difference method
and some Galerkin finite element method often exhibit nonphysical oscillation in the
pressure of the fluid flow. Therefore, for the two-field model problem, finite difference
based on staggered grids [9], cell-centered finite volumn discretization [3, 19] are stud-
ied and proved to be the stable discretization. For the two-field model problem with
classical stable finite element methods (such as Mini, stabilized P1−P1 element etc.), the
approximate pressure variable still appears nonphysical oscillation under the condition
of low permeability or small time step size. Authors in [23] claim that the well known
inf-sup stable pair spaces does not necessary provide oscillation-free solution and sta-
bilized term is added to guarantee the monotonicity of the solution to eliminate oscil-
lation. Finite element methods based on classical three-fields model problem, i.e., dis-
placement, fluid flux, pore pressure, are also studied trying to solve the nonphysical
oscillations of the fluid pressure. Based on the analysis of locking reason in pure linear
elasticity problem, Phillips and Wheeler make arguments that under certain conditions,
nonphysical oscillation of fluid pressure may be produced by locking in the solid elas-
ticity. Therefore, nonconforming finite element methods with couple continuous and
discontinuous Galerkin (DG) methods for the displacement and a mixed finite element
method for the flow variables are investigated, see [20–22]. Stabilized term with face
bubble is added in [24] for the finite element (with linear P1 element for u and lowest
Raviart Thomas element for fluid flux and pressure) to guarantee uniform error bounds.
Other three-field based finite element methods are also studied, we refer [26, 30] as well
as the references therein for further investigation. Four fields formulations for the poroe-
lasticity problem are also investigated. Least squares mixed finite element methods for
the stress tensor/displacement/fluid velocity/fluid pressure four-field formulation have
been proposed by Korsawe and Starke [12] and Tchonkova et al. [26]. Yi [29] devel-
oped a four-field discretization method with displacement, stress tensor in solid subprob-
lem satisfying Hellinger-Reissner variational principle (using Arnold-Winther element)
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and using mixed form for the pressure and flux in flow subproblem (using Raviart-
Thomas element). Theoretical analysis in [29] shows the optimal convergence for the
Arnold-Winther and Raviart-Thomas element pairs but numerical experiment shows lose
of some convergence order in stress tensor, pressure and flux variables. In recent stud-
ies [4, 10], the authors also use the Hellinger-Reissner variation for the elasticity of the
system and impose weakly the symmetry of the stress tensor resulting in a saddle point
problem with stress tensor, displacement, pressure and Lagrange multiplier. The authors
prove that the parameter-robust stability of this resulting four-field formulation. The dif-
ficulty of the four-field problem is that the solid subproblem does not lend itself trivially
to mixed finite element.

Motivated by the finite element exterior calculus theory developed by Douglas
Arnold [1, 2] and thanks for the distinguished work for linear elasticity by Hu [11], in
this paper, we will investigate the finite element method for the poroelasticity with dis-
placement and stress tensor variables satisfy the subcomplex of the elasticity complex
in [2]. We mainly consider the Biot consolidation model problem in two dimensional
(2D) spaces with homogeneous boundary condition and solving the Biot consolidation
problem with the total stress tensor σ̃, the displacement u and the pore pressure p as its
unknown variables. We choose the finite element for σ̃, u that by solving the classical
Helliger-Reissner mixed problem of the elasticity equations with conforming finite ele-
ment discretization proposed in [11]. Piecewise continuous finite element method are
used for the pore pressure of the model problem. We proved the existence and unique-
ness of the solution of this weak form and also make a convergence analysis to the finite
discretization of the all the pore pressure, displacement and the tenor stress variables.
Theoretical analysis show that the finite element methods maintain optimal convergence
order. Several numerical experiments are implemented and verify theoretical analysis.

The outline of the paper is as follows. In Section 2, we will introduce the model prob-
lem as well as the weak form and the finite element method. Convergence analysis will
be given for the model problem in Section 3. In Section 4, we implement two examples
and show the performance of the finite element method numerically.

2 Model problem and finite element method

Mechanical processes in poroelasticity mainly contain two basic elements: fluid flow and
deformation of elasticity body. Mathematical model for the poroelasticity are derived
from physical principles, i.e., the mass conservation and momentum balance for both
fluid flow and elasticity body. The momentum balance for the solid phase is given as the
following well known equilibrium conditions for the total stress tensor field σ̃:

divσ̃=− f , (2.1)
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where f is the body force per unit volume of the bulk material. From the poroelasticity
theory, the effective stress σ is defined as

σ= σ̃+cup pI, (2.2)

with cup being a positive coefficient and assumption of incompressible fluid implies cup=
1. p is a fluid pressure and I is the identity matrix. Let u denote the displacement variable
and ε(u) be the strain tensor, the classical strain-displacement relation is defined as

ε(u)=
1
2
(∇u+(∇u)T). (2.3)

One of the constitutive relationship of the model system is presented as follows

σ̃=2µε(u)+λtr(ε(u))I−cup pI, (2.4)

with λ, µ being Láme coefficients and tr being the trace operator.
Let θ denote the increment of fluid volume per unit volume of soil, another con-

stituent equation of the system is presented as:

θ= cpu divu+cpp p, (2.5)

with physical parameter cpu measuring the ratio of fluid volume that squeezed out to the
volume of soil change and cpp measures the amount of fluid that can be forced into the
soil under pressure while the volume of the soil is kept constant.

The momentum balance of fluid flow satisfies the Darcy law

q=−K∇p, (2.6)

with q being specific discharge and K being the permeability coefficient. The mass con-
servative law of the incompressible fluid is presented as following continuity equation

∂θ

∂t
=−divq+S f , (2.7)

where S f representing the rate of injected volume due to the external fluid source.
From (2.5)-(2.7), we have the following equation

∂(cpu divu)
∂t

+
∂(cpp p)

∂t
+div(−K∇p)=S f . (2.8)

Since

div(p· I)=gradp, tr(ε(u))=divu,

div[(divu)· I]=graddivu, div(gradu)T =graddivu,
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and suppose all the physical parameters λ, µ, cup, cpu, cpp, K are constants, then, we have

divσ̃=− f⇔div(σ−cup p· I)=− f
⇔−div(2µε+λtrε· I)+cup gradp= f
⇔−2µdivε−λdiv(tr(ε)· I)+cup gradp= f

⇔−µdivgradu−µdiv(gradu)T−λgraddivu+cup gradp= f
⇔−µdivgradu−(λ+µ)graddivu+cup gradp= f .

Together with the mass conservative of fluid, poroelasticity model problem can be also
described as following system with displacenent u and pore pressure p as its unknowns,

−µdivgradu−(λ+µ)graddivu+cup gradp=− f ,
∂(cpu divu)

∂t
+

∂(cpp p)
∂t

+div(−K∇p)=S f .
(2.9)

For simplicity, we concern the following homogeneous boundary condition

p=0, uuu=0 on ∂Ω×{t>0},

and initial condition
p(0)= p0, uuu(0)=u0 in Ω.

In this paper, we just study the case with physical parameters cup = cpu = cpp = 1 in the
model problem.

We first introduce some notations and spaces that used in this study. We denote (·,·)
as the inner product in L2(Ω) and Wm,p as standard Sobolev space with norm ‖·‖m,p
given by

‖v‖p
m,p =∑|α|≤m‖D

αv‖p
Lp(Ω)

.

For p=2, we let Hm(Ω) = Wm,2(Ω), ‖·‖m = ‖·‖m,2 and ‖·‖= ‖·‖0,2. We denote C as a
constant that may take different values in different places.

In this paper, we mainly study the Biot consolidation model problem with total stress
tensor σ̃, displacement u and pore pressure of fluid p as the unknown variables. Notice
that

σ̃=2µε(u)+λtr(ε(u))· I−p· I

⇒ 1
2µ

[
σ̃− λ

2(λ+µ)
tr(σ̃)· I

]
=ε(u)− 1

2(λ+µ)
p· I,

divu=
1

2(λ+µ)
tr(σ̃)+

1
λ+µ

p· I.
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Then, the system can be represented as

1
2µ

[
σ̃− λ

2(λ+µ)
tr(σ̃)· I

]
−ε(u)+

1
2(λ+µ)

p· I=0, (2.10a)

divσ̃=− f , (2.10b)
1

2(λ+µ)
(tr(σ̃))t+

(
1

λ+µ
+1
)

pt−div(K∇p)=S f . (2.10c)

Let

H(div,Ω,S) :=
{(

σ11 σ12
σ21 σ22

)
∈H(div,Ω)|σ12=σ21

}
,

L2(Ω,R2) :=
{
(u1,u2)

T|ui∈L2( Ω), i=1,2
}

,

H1
0(Ω,R) :={p∈L2(Ω)|∇p∈ [L2(Ω)]2, p|∂Ω =0},

and suppose the domain Ω is subdivided by a family of quasi-uniform triangular grids
Th and T ∈ Th denotes any element with three edges {Ei}2

i=0. Let {ni}2
i=0 be the corre-

sponding unit normal vectors of {Ei}2
i=0. Finite element spaces for stress tensor σ̃ and

displacement u are denotes as Σh, Vh which are chosen as in [11] with polynomial order
denoting as k1(k1≥3), i.e., the displacement space is the full C−1−Pk1−1 space

Vh ={v∈L2(Ω,R2)| v|T∈Pk1−1(T,R2), for all T∈Th},

where Pk1 is used as the space of polynomials with degree no more than k1. The stress
approximate space Σh is the full C0−Pk1 space enriched by (k1−1)H(div) edge bubble
functions on each edge

Σh ={τ∈H(div,Ω,S), τ=τc+τb, τc∈H1(Ω,S),
τc|T∈Pk1(T,S),τb|T∈Σ∂T,b, ∀T∈Th},

where

Σ∂T,b =span{τEi ,j, i=0,1,2, j=1,··· ,k1−1},

with τEi ,j = φEi ,jTEi , (i = 0,1,2, j = 1,··· ,k1−1), and φEi ,j ∈ Pk1(T,R) being its associated

nodal basis function of the Lagrange element of order k1 and TEi =n⊥i n⊥i
T.

The finite element space of pressure p is defined as

Ph ={q∈H1
0 |q|T∈Pk2(T), k2≥1},

where Pk2(T) representing the space of polynomials with degree less or equal to k2.
Since ∀τ∈H(div,Ω,S), the following equations hold,

(tr(σ̃)· I,τ)=(tr(σ̃),tr(τ)), (pI,τ)=(p,tr(τ)),
(ε(u),τ)=−(u,divτ)+(u,τ ·n)∂Ω,
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then, the weak form of the system is to find (σ̃(t),u(t),p(t))∈H(div,Ω,S)×(L2(Ω))2×
H1

0(Ω) for t>0 such that the following relation holds(
1

2(λ+µ)
(tr(σ̃))t,q

)
+

(( 1
λ+µ

+1
)

pt,q
)

+(K∇p,∇q)=(S f ,q), ∀q∈H1
0(Ω), (2.11a)

1
2µ

(σ̃,τ)− λ

4µ(λ+µ)
(tr(σ̃),tr(τ))+(u,divτ)

+

(
1

2(λ+µ)
p,tr(τ)

)
=0, ∀τ∈H(div,Ω,S), (2.11b)

(divσ̃,v)=−( f ,v), ∀v∈ (L2(Ω))2. (2.11c)

The semidiscrete weak formula of the system is to find (σ̃h(t),uh(t),ph(t))∈Σh×Vh×Ph
with t>0 such that the following system holds(

1
2(λ+µ)

(tr(σ̃h))t,q
)
+

(( 1
λ+µ

+1
)

ph,t,q
)

+(K∇ph,∇q)=(S f ,q), ∀q∈Ph, (2.12a)
1

2µ
(σ̃h,τ)− λ

4µ(λ+µ)
(tr(σ̃h),tr(τ))+(uh,divτ)

+

(
1

2(λ+µ)
ph,tr(τ)

)
=0, ∀τ∈Σh, (2.12b)

(divσ̃h,v)=−( f ,v), ∀v∈Vh. (2.12c)

In the following, we will analyze the existence and uniqueness of the semidiscrete prob-
lems.

Let
σ̃h =∑

j=1
σ̃j(t)φ

j
σ̃(x), uh =∑

j=1
uj(t)φ

j
u(x), ph =∑

j=1
pj(t)φ

j
p(x),

then, the system can be written as

Cpp
∂

∂t
p̄+Kpp p̄+CT

σ̃p
∂

∂t
¯̃σ= S̄ f ,

Cσ̃p p̄+Cσ̃σ̃ ¯̃σ+CT
σ̃uū=0,

Cσ̃u ¯̃σ= f̄ ,

which can be written as the differential algebraic equations (DAEs) as follows

E
∂X(t)

∂t
+HX(t)=L(t), (2.13)
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where

E=

Cpp CT
σ̃p 0

0 0 0
0 0 0

, H=

Kpp 0 0
Cσ̃p Cσ̃σ̃ CT

σ̃u
0 Cσ̃u 0

,

X(t)=

 p̄(t)
¯̃σ(t)
ū(t)

, L(t)=

S̄ f
0
f̄

.

From the theory of DAEs [7], if the matrix kE+H is nonsingular for some k 6= 0, then,
system (2.13) has a solution. For the case when k=1, we have

E+H=

Cpp+Kpp CT
σ̃p 0

Cσ̃p Cσ̃σ̃ CT
σ̃u

0 Cσ̃u 0

=

(
A BT

B 0

)
.

From theory of [31], if kerkerker(A)∩kerkerker(B)= {0} and kerkerker(Bt)= {0}, E+H is nonsingular. To
verify these relations, we first define the following linear functional

ψA((ph,σ̃h),(q,τ))

=

(
1

2(λ+µ)
tr(σ̃h),q

)
+

(( 1
λ+µ

+1
)

ph,q
)
+(K∇ph,∇q)

+
1

2µ
(σ̃h : τ)− λ

4µ(λ+µ)
(tr(σ̃h),tr(τ))+

(
1

2(λ+µ)
ph,tr(τ)

)
, (2.14)

and

ψB((ph,σ̃h),v)=(divσ̃h,v).

Then, we have the following results.

Lemma 2.1. For ψA, we have

ψA((ph,σ̃h),(ph,σ̃h))≥C‖ph‖2
1+

1
µ
‖(σ̃h)12‖2,

where C is determined by permeability coefficient K and

σ̃h =

(
(σ̃h)11 (σ̃h)12
(σ̃h)12 (σ̃h)22

)
.

Proof. Let q= ph, τ= σ̃h in (2.14), then, we have

ψA((ph,σ̃h),(ph,σ̃h))

=

(
1

2(λ+µ)
trσ̃h,ph

)
+

(( 1
λ+µ

+1
)

ph,ph

)
+(K∇ph,∇ph)

+
1

2µ
(σ̃h,σ̃h)−

λ

4µ(λ+µ)
(trσ̃h,trσ̃h)+

(
1

2(λ+µ)
ph,trσ̃h

)
.
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Notice that
1

2µ
(σ̃h,σ̃h)−

λ

4µ(λ+µ)
(trσ̃h,trσ̃h)≥

1
2(λ+µ)

(‖(σ̃h)11‖2+‖(σ̃h)22‖2)+
1
µ
‖(σ̃h)12‖2,

1
λ+µ

(tr(σ̃h),ph)≥−
1

λ+µ

[
1
2
‖ph‖2+

1
2
(‖(σ̃h)11‖2+‖(σ̃h)22‖2)

]
.

Then, we have the following estimation

ψA((ph,σ̃h),(ph,σ̃h))≥
(

1
2(λ+µ)

+1
)
‖ph‖2+‖K1/2∇ph‖2+

1
µ
‖(σ̃h)12‖2

≥C‖ph‖2
1+

1
µ
‖(σ̃h)12‖.

Thus, we complete the proof.

Then, we have
kerkerker(ψA)=0⇒kerkerker(ψA)∩kerkerker(ψB)=0.

For kerkerker(ψBT ), we need to find vh such that ∀τ∈Σh,(vh,divτ)=0. Because of the choice
of Σh,Vh, we have for vh∈Vh, there exists τ∗∈Σh, such that divτ∗=vh, which results in
(vh,divτ∗)=(vh,vh)=0⇒vh =0. Then, we get kerkerker(ψBT )=0.

Next, we will discuss the uniqueness of the equation. Suppose (p1
h,σ̃1

h ,u1
h), (p2

h,σ̃2
h ,u2

h)
are two solutions satisfying Eqs. (2.12). Let (ep,eσ̃ ,eu)=(p1

h−p2
h,σ̃1

h−σ̃2
h ,u1

h−u2
h), then, we

have the following system(( 1
λ+µ

+1
)∂ep

∂t
,q
)
+(K∇ep,∇q)+

(
1

2(λ+µ)
tr

∂eσ̃

∂t
,q
)
=0, (2.15a)

−
(

1
2(λ+µ)

ep,trτ

)
−(Aeσ̃ ,τ)−(eu,divτ)=0, (2.15b)

(diveσ̃ ,v)=0, (2.15c)

where

Aτ=
1

2µ

[
τ− λ

2(λ+µ)
trτI

]
.

First, we have the following results

Lemma 2.2.
‖eσ̃‖2

A=: (Aeσ̃ ,eσ̃)≤
1

λ+µ
‖ep‖2.

Proof. Let τ= eσ̃ , v= eu in (2.15b), (2.15c) and add the two equations together to get(
1

2(λ+µ)
ep,treσ̃

)
+(Aeσ̃ ,eσ̃)=0

⇒(Aeσ̃ ,eσ̃)=−
1

2(λ+µ)
(ep,treσ̃).
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Notice (Aτ,τ)=‖τ‖2
A, then, from definition of Aτ, it is easy to verify

1
2(λ+µ)

‖τ‖2≤‖τ‖2
A≤

1
2µ
‖τ‖2.

Since ‖tr(τ)‖2≤2‖τ‖2, we have

‖eσ̃‖2
A≤

1
2(λ+µ)

‖ep‖2+
1

8(λ+µ)
‖tr(eσ̃)‖2

≤ 1
2(λ+µ)

‖ep‖2+
1

4(λ+µ)
‖eσ̃‖2

≤ 1
2(λ+µ)

‖ep‖2+
1
2
‖eσ̃‖2

A,

which results in the conclusion in Lemma 2.2.

Now, for the uniqueness of the system, we have the following results

Lemma 2.3. ep(t), eσ̃(t), eu(t) satisfying Eq. (2.15), then,

ep(t)=0, eσ̃(t)=0, eu(t)=0.

Proof. Let

q= ep, τ=
∂eσ̃

∂t
, v= eu,

in (2.15a), (2.15b), (2.15c) and add them together to get the following results( 1
λ+µ

+1
)( ∂

∂t
ep,ep

)
+‖K∇ep‖2−

(
Aeσ̃ ,

∂

∂t
eσ̃

)
=0.

Notice that (
∂

∂t
ep,ep

)
=

∂

2∂t
∥∥ep
∥∥2 ,(

Aeσ̃ ,
∂

∂t
eσ̃

)
=

∂

2∂t
‖eσ̃‖2

A ,

which results in the following relation

1
2

(
1

λ+µ
+1
)

∂

∂t
‖ep(t)‖2+‖K∇ep(t)‖2=

1
2

∂

∂t
‖eσ̃‖2

A,

integrate on both side of the last equation on (0,t) and because of ep(0)=0, eσ̃(0)=0, we
finally get (

1
2(λ+µ)

+
1
2

)
‖ep(t)‖2+

∫ t

0
‖K∇p‖2ds=

1
2
‖eσ̃(t)‖2

A

⇔1
2
‖ep(t)‖2+

∫ t

0
‖K∇ep(t)‖2ds≤0

⇔ep(t)=0,
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then, from Lemma 2.2, we get

eσ̃(t)=0.

Then, from (2.15b), we have

(eu(t),divτ)=0, ∀τ∈Σh.

Fixed t, because of the choice of Σh,Vh, there exists τ̄ such that divτ̄=eu, which results in
eu(t)=0 and we get the results in Lemma 2.3.

For the existence and uniqueness of the fully discretization formula(
1

2(λ+µ)
tr(σ̃)n

h ,q
)
+

(( 1
λ+µ

+1
)

pn
h ,q
)
+∆t(K∇pn

h ,∇q)

=

(
1

2(λ+µ)
tr(σ̃)n−1

h ,q
)
+

(( 1
λ+µ

+1
)

pn−1
h ,q

)
+(S f ,q), ∀q∈Ph, (2.16a)

1
2µ

(σ̃n
h ,τ)− λ

4µ(λ+µ)
(tr(σ̃n

h ),tr(τ))+(un
h ,divτ)

+

(
1

2(λ+µ)
pn

h ,tr(τ)
)
=0, ∀τ∈Σh, (2.16b)

(divσ̃n
h ,v)=−( f ,v), ∀v∈Vh, (2.16c)

we have the matrix form as follows

CXn =Ln(t), (2.17)

where

C=

Cpp+∆tKpp CT
σ̃p 0

Cσ̃p Cσ̃σ̃ CT
σ̃u

0 Cσ̃u 0

,

Xn =

 p̄n
h

σ̄n
h

ūn
h

, Ln(t)=

S̄n
f +Cpp pn−1

h +Cσ̃pσ̃n−1

0
f̄ n

.

At each time step, the existence and uniqueness of the system is equivalent to the invert-
ibility of the matrix C which can be proved in the similar way as for the semidiscrete
case.

3 Convergence analysis

In this section, we will make a convergence analysis of the finite element methods for
Biot consolidation problems. In order to make a theoretical analysis of the finite element
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method, we first define the projection operators Rp
h :H1

0(Ω,R)→Ph, Rσ̃
h :H(div,Ω,S)→Σh,

Ru
h : L2(Ω,R2)→Vh for any t>0 such that the following equations hold

(K∇Rp
h p,∇q)=

(
S f−

( 1
λ+µ

+1
)

pt−
1

2(λ+µ)
trσ̃t,q

)
, ∀q∈Ph,(

1
2(λ+µ)

Rp
h p,trτ

)
+(ARσ̃

h σ̃,τ)+(Ru
hu,divτ)=0, ∀τ∈Σh,

(div(Rσ̃
h σ̃),v)=( f ,v), ∀v∈Vh,

then, we have

(K∇(p−Rp
h p),∇q)=0, ∀q∈Ph, (3.1a)(

1
2(λ+µ)

(p−Rp
h p),trτ

)
+(A(σ̃−Rσ̃

h σ̃),τ)+(u−Ru
hu,divτ)=0, ∀τ∈Σh, (3.1b)

(div(σ̃−Rσ̃
h σ̃),v)=0, ∀v∈Vh. (3.1c)

From (3.1a) and (3.1c), we can easily have the following results for the projection

‖p−Rp
h p‖≤Chk2+1‖p‖k2+1,

‖σ̃−Rσ̃
h σ̃‖≤Chk1+1(‖σ̃‖k1+1+‖∇·σ̃‖k1+1).

In order to get the error estimation of u−Ru
hu, we need to define the L2 projection of u as

follows

(u−Qhu,v)=0, ∀v∈Vh.

Then, since divτ∈Vh, from (3.1b), we have(
1

2(λ+µ)
(p−Rp

h p),trτ

)
+(A(σ̃−Rσ̃

h σ̃),τ)+(Qhu−Ru
hu,divτ)=0, ∀τ∈Σh.

There exists τ∗ ∈Σh, such that divτ∗= Qhu−Ru
hu and ‖τ∗‖1≤‖Qhu−Ru

hu‖. Then, we
have the following results

‖Qhu−Ru
hu‖2=(Qhu−Ru

hu,divτ∗)

=−
(

1
2(λ+µ)

(p−Rp
h p),trτ∗

)
−(A(σ̃−Rσ̃

h σ̃),τ∗)

≤C(‖p−Rp
h p‖+‖σ̃−Rσ̃

h σ̃)‖)‖τ∗‖1

≤C(‖p−Rp
h p‖+‖σ̃−Rσ̃

h σ̃)‖)‖Qhu−Ru
hu‖,

which results in

‖Qhu−Ru
hu‖≤C(‖p−Rp

h p‖+‖σ̃−Rσ̃
h σ̃)‖).
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Therefore, we have

‖u−Ru
hu‖≤‖u−Qhu‖+‖Qhu−Ru

hu‖≤C(hk1+1+hk2+1).

It is also easy to get the following results

‖pt−Rp
h pt‖≤Chk2+1,

‖σ̃t−Rσ̃
h σ̃t‖≤Chk1+1,

‖ut−Ru
hut‖≤C(hk1+1+hk2+1).

3.1 Convergence analysis of semidiscrete problem

We have the following results for the semidiscrete solution.

Theorem 3.1. Let ph, σ̃h, uh be the semidiscrete numerical solutions satisfying (2.12) and p, σ̃,
u be the exact solutions, then, we have the following results

‖p−ph‖2+
∫ t

0
‖K1/2∇(p−ph)‖2ds≤C(h2(k1+1)+h2(k2+1)),

with C depends on Láme constants λ, µ and the regularity of the solutions p, σ̃ of the problem but
independent of discretization parameters.

Proof. We have the following error equations(( 1
λ+µ

+1
)
(pt−pht),q

)
+(K∇(p−ph),∇q)+

( 1
2(λ+µ)

(trσ̃t−trσ̃ht),q
)
=0, (3.2a)

−
( 1

2(λ+µ)
(p−ph),trτ

)
−(A(σ̃−σ̃h),τ)−(u−uh,divτ)=0, (3.2b)

(div(σ̃−σ̃h),v)=0. (3.2c)

By using the definition of the projection Rp
h , Rσ̃

h , Ru
h , denote ξp(t) = Rp

h p−ph, ξσ̃(t) =
Rσ̃

h σ̃−σ̃h, ξu(t)=Ru
hu−uh with t>0, then, we have the following relation(( 1

λ+µ
+1
)∂(p−Rp

h p+ξp)

∂t
,q

)
+(K∇ξp,∇q)

+

(
1

2(λ+µ)
tr

∂(σ̃−Rσ̃
h σ̃+ξσ̃)

∂t
,q

)
=0, (3.3a)

−
( 1

2(λ+µ)
ξp,trτ

)
−(Aξσ̃ ,τ)−(ξu,divτ)=0, (3.3b)

(divξσ̃ ,v)=0. (3.3c)
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Choose q= ξp, τ = ξσ̃ t, v= ξu in the equations and add the equations together to get the
following results (

1
2(λ+µ)

+
1
2

)
∂

∂t
‖ξp‖2+‖K1/2∇ξp‖2

=−
( 1

2(λ+µ)
(σ̃t−Rσ̃

h σ̃t),ξp

)
+(Aξσ̃ ,(ξσ̃)t)

−
(( 1

λ+µ
+1
)
(pt−Rp

h pt),ξp

)
.

Notice

(Aξσ̃ ,(ξσ̃)t)=
1
2

∂

∂t
‖ξσ̃‖2

A,

and by choosing τ= ξσ̃ ,v= ξu in (3.3b), we can get the following estimation

‖ξσ̃‖2
A≤

1
λ+µ

‖ξp‖2. (3.4)

Then, integrate on (0,t) on both side of the equation, and since ξp(0)= 0, ξσ̃(0)= 0 and
also the property of the projection, by using the Young’s inequality, we finally get the
following estimation

‖ξp(t)‖2+
∫ t

0
‖K1/2∇ξp‖2ds

≤C(h2(k1+1)+h2(k2+1))(‖σ̃t‖2
k1+1+‖∇·σ̃t‖2

k1+1+‖pt‖2
k2+1).

Together with property of projection Rp
h , we finally get the results.

From (3.4) and the relation

1
2(λ+µ)

‖τ‖2≤‖τ‖2
A≤

1
2µ
‖τ‖2,

we can also derive the error estimation of ‖σ̃−σ̃h‖A, i.e.,

‖σ̃−σ̃h‖A≤‖σ̃−Rσ̃
h σ̃‖A+

1
λ+µ

‖ξp‖≤C(hk1+1+hk2+1), (3.5)

where C depends on λ,µ and regularity of exact solutions but independent of h.
For the estimation of displacement u, we first need to introduce the projection opera-

tor Πh : H(div,Ω,S)→Σh that defined as follows

(div(τ−Πhτ),v)=0, ∀v∈Vh,
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and the stability

‖Πhτ‖1≤‖τ‖1.

We first estimate ξu=Ru
hu−uh. Recall that there exist τ∗∈H(div,Ω,S) such that−divτ∗=

ξu and ‖τ∗‖1≤C‖ξu‖, then, from (3.3b), we have

‖ξu‖2=(−ξu,divτ∗)=−(ξu,divΠhτ∗)

=(A(σ̃−σ̃h),Πhτ∗)+
( 1

2(λ+µ)
(p−ph),tr(Πhτ∗)

)
≤C(‖σ̃−σ̃h‖+‖p−ph‖)‖Πhτ∗‖
≤C(‖σ̃−σ̃h‖+‖p−ph‖)‖ξu‖,

then, we have

‖u−uh‖≤C(hk1+1+hk2+1).

3.2 Convergence analysis of fully discrete problems

In this subsection, we will make a convergence analysis of the fully discrete formula of
the Biot consolidation problems. We have the following main results.

Theorem 3.2. Let pn, σ̃n, un be the solution satisfying Eq. (2.11) at t= tn and pn
h , σ̃n

h , un
h are the

fully discrete solution satisfying Eq. (2.16), if λ+µ>1, then, for m≥1, we have

‖pm−pm
h ‖2+C

m

∑
n=1

∆t‖K1/2∇pn‖2. (∆t)2+h2(k1+1)+h2(k2+1).

Proof. Subtract Eqs. (2.16) from (2.11) at t= tn to get the following relation(
1

2(λ+µ)
tr(σ̃n

t −∂tσ̃
n
h ),q

)
+

(( 1
λ+µ

+1
)
(pn

t −∂t pn
h),q

)
+(K∇(pn−pn

h),∇q)=0,(
1

2(λ+µ)
(pn−pn

h),trτ

)
+(A(σ̃n−σ̃n

h ),τ)+(un−un
h ,divτ)=0,

(div(σ̃−σ̃n
h ),v)=0.

By using the definition of projectors Rp
h , Rσ̃

h , Ru
h , and denote ξn

p=Rp
h pn−pn

h , ξn
σ̃=Rσ̃

h σ̃n−σ̃n
h ,

ξn
u =Ru

hun−un
h , then, we have the following results(

1
2(λ+µ)

∂t tr(ξn
σ̃),q

)
+

(( 1
λ+µ

+1
)

∂tξ
n
p,q
)
+(K∇ξn

p,∇q)

=(tr(∂tσ̃
n−σ̃n

t −∂t(σ̃
n−Rσ̃

h σ̃n)),q)+(∂t pn−pn
t −∂t(pn−Rp

h pn),q), (3.6a)

−
(

1
2(λ+µ)

ξn
p,trτ

)
−(Aξn

σ̃ ,τ)−(ξn
u,divτ)=0, (3.6b)

(divξn
σ̃ ,v)=0. (3.6c)
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First, by choosing τ=ξn
σ̃ , v=ξn

u in (3.6b) and (3.6c), it is easy to verify the following result

‖ξn
σ̃‖A≤

1
λ+µ

‖ξn
p‖2. (3.7)

Notice that (3.6c) also holds at t=tn−1, then, choose τ=ξn−1
σ̃ in (3.6b) and v=ξn

u, we have
the following relation

(Aξn
σ̃ ,tr(ξn−1

σ̃ ))=− 1
2(λ+µ)

(ξn
p,tr(ξn−1

σ̃ )).

By Young’s inequality and (3.7), we have the following estimation

(ξn
p,tr(ξn−1

σ̃ ))≤ ε

2
‖ξn

p‖2+
1
2ε
‖tr(ξn−1

σ̃ )‖2

≤ε

2
‖ξn

p‖2+
λ+µ

ε
‖ξn−1

σ̃ ‖2
A≤

ε

2
‖ξn

p‖2+
1
ε
‖ξn−1

p ‖2,

then, we have the following estimation

(Aξn
σ̃ ,ξn−1

σ̃ )≥− ε

4(λ+µ)
‖ξn

p‖2− 1
ε(λ+µ)

‖ξn−1
p ‖2. (3.8)

Now, choose q=ξn
p, τ=∂tξ

n
σ̃ , v=ξn

u in (3.6a), (3.6b), (3.6c), respectively and add the three
equations together to get the following relation(

1
λ+µ

+1
)
(∂tξ

n
p,ξn

p)+(K∇ξn
p,∇ξn

p)−(Aξn
σ̃ ,∂tξ

n
σ̃)

=(tr(∂tσ̃
n−σ̃n

t −∂t(σ̃
n−Rσ̃

h σ̃n)),ξn
p)+(∂t pn−pn

t −∂t(pn−Rp
h pn),ξn

p).

Notice that (
1

λ+µ
+1
)
(∂tξ

n
p,ξn

p)≥
1

2∆t

(
1

λ+µ
+1
)
(‖ξn

p‖2+‖ξn−1
p ‖2), (3.9)

and by using the relation (3.8), (3.9), we finally have the following relation(
1

λ+µ
+1
)
(∂tξ

n
p,ξn

p)+(K∇ξn
p,∇ξn

p)−(Aξn
σ̃ ,∂tξ

n
σ̃)

≥2(λ+µ−1)−ε

4∆t(λ+µ)
‖ξn

p‖2− ε(λ+µ+1)+1
2ε∆t(λ+µ)

‖ξn−1
p ‖2+‖K 1

2∇ξn
p‖2. (3.10)

For the right hand side, we have the following estimation

(tr(∂tσ̃
n−σ̃n

t ),ξ
n
p)≤2‖∂tσ̃−σ̃n

t ‖2+ε1‖ξn
p‖2

≤C
∥∥∥∥ 1

∆t

∫ tn

tn−1

(tn−1−t)σ̃ttdt
∥∥∥∥2

+ε1‖ξn
p‖2≤C(∆t)2+ε1‖ξn

p‖2,

(tr(∂t(σ̃
n−Rσ̃

h σ̃n)),ξn
p)≤C‖∂t(σ̃

n−Rσ̃
h σ̃n)‖2+ε2‖ξn

p‖2

≤Ch2(k1+1)‖σ̃t‖2
k1+1+ε2‖ξn

p‖2.
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Similarly, we can also bound term related to p as follows

|(pn
t −∂t pn,ξn

p)|≤C(∆t)2+ε3‖ξn
p‖2,

|(∂t(pn−Rp
h pn),ξn

p)|≤Ch2(k2+1)‖pt‖2
k2+1+ε4‖ξn

p‖2.

From all the estimation on the left and right hand side, we multiply ∆t on both side of the
inequality, choose ε1+ε2+ε3+ε4 < ε and sum from n=1 to m. Notice ξ0

p =0, we finally
get the following estimation

‖ξm
p ‖2+C

m

∑
k=1

∆t‖K1/2∇pk‖. (∆t)2+h2(k1+1)+h2(k2+1).

Together with the property of projection Rp
h , we finally get the results in the theorem.

Similar as the convergence analysis of semidiscrete case, we can also prove the con-
vergence of ‖σ̃n−σ̃n

h ‖ and ‖un−un
h‖.

4 Numerical experiments

In this section, we will implement the finite element method proposed in Section 2 for the
Biot consolidation problem. We test two examples with homogeneous Dirichlet bound-
ary conditions and mixed boundary conditions respectively. We will consider the follow-
ing system:

1
2µ

[
σ̃− λ

2(λ+µ)
tr(σ̃)· I

]
−ε(u)+

1
2(λ+µ)

p· I=0 in {t>0}×Ω, (4.1a)

divσ̃= f in {t>0}×Ω, (4.1b)
1

2(λ+µ)
(tr(σ̃))t+

(
1

λ+µ
+1
)

pt−div(K∇p)=S f in {t>0}×Ω, (4.1c)

with Ω = [0,1]2 and physical parameters in the implement are chosen as: λ = 1, K = 1,
µ=0.5. The initial condition are chosen as p0=0, u0=0.

In order to see the convergence order in the physical space, we fixed time step size
∆t such that errors in physical space dominate. In the numerical experiments, we mainly
show the convergence order of σ̃n, un, pn in relative error to different mesh sizes and
different degrees of polynomial order at n∆t (we choose the data of n=3 in the tables).

Example 4.1. In the first example, we verify the convergence order of finite element
method for the poroelasticity problem with homogenous Dirichlet boundary conditions,
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Table 1: k1 =3, k2 =2, ∆t=0.001.

1
h

‖σ̃−σ̃h‖0
‖σ̃‖0

‖div(σ̃−σ̃h)‖0
‖divσ̃‖0

‖u−uh‖0
‖u‖0

‖p−ph‖1
‖p‖1

error order error order error order error order
2 2.2229e-2 – 2.7304e-2 – 3.4461e-2 – 2.0699e-2 –
4 2.8644e-3 2.95 3.6303e-3 2.91 4.2007e-3 3.04 5.7468e-2 1.85
8 3.4950e-4 3.04 4.6085e-4 2.98 4.9245e-4 3.09 1.4908e-3 1.95

Table 2: k1 =3, k2 =3, ∆t=0.001.

1
h

‖σ̃−σ̃h‖0
‖σ̃‖0

‖div(σ̃−σ̃h)‖0
‖divσ̃‖0

‖u−uh‖0
‖u‖0

‖p−ph‖1
‖p‖1

error order error order error order error order
2 1.5977e-2 – 2.7304e-2 – 2.9628e-2 – 4.6950e-2 –
4 7.9767e-3 3.79 3.6303e-3 2.91 3.7283e-3 2.94 6.1560e-3 2.93
8 5.0558e-5 3.98 4.6085e-4 2.98 4.76160e-4 2.98 8.4300e-4 2.87

i.e., the exact solutions uuu, p satisfies p=0, uuu=0 on ∂Ω. Explicit data are chosen as follows:

u=
(

u1
u2

)
=

(
tx(1−x)y(1−y)
tx(1−x)y(1−y)

)
, p= tsin(πx)sin(πy),

σ=

(λ+2µ)
∂u1

∂x
+λ

∂u2

∂y
µ
(∂u1

∂y
+

∂u2

∂x

)
µ
(∂u1

∂y
+

∂u2

∂x

)
(λ+2µ)

∂u2

∂y
+λ

∂u1

∂x

, σ̃=

(
σ11−cup p σ12,

σ12 σ22−cup p

)
,

f =−∇·σ̃=

(
f1
f2

)
=


∂σ̃11

∂x
+

∂σ̃12

∂y
∂σ̃12

∂x
+

∂σ̃22

∂y

, S f =
∂

∂t
(cup∇·u)+

∂

∂t
(cpp p)−∇·(K∇p).

In the numerical experiments, we utilize two different kinds of finite elements. We first
use p3 (polynomials with degree less or equal to 3) finite elements for variable σ̃ and
piecewise discontinuous quadratic element for displacement u. For pressure p, we use
the piecewise continuous quadratic finite element which corresponding to k1 = 3, k2 = 2
in the main result of Theorem 3.2. From the numerical results in Table 1, we can see
pressure variable p has optimal convergence order in both L2 and energy norm and σ̃, u
has one order lower, which is consistent with the theoretical results in Theorem 3.2 since
the convergence order of σ̃ is constrained by polynomial degree k2 of pressure variable
p. We also test the example with k1 =3 for σ̃ and k2 =3 for the pressure p and numerical
results are shown in Table 2 in which the both σ̃, u, p have the optimal convergence order
and the numerical implementation is consistent with the theoretical results.

Example 4.2. In this second experiment, we will test the finite element method for the
poroelasticity problem with mixed boundary condition. We choose the function fff (t,x),
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Table 3: Example 4.2: k1 =3, k2 =2, ∆t=10−6.

1
h

‖σ̃−σ̃h‖0
‖σ̃‖0

‖div(σ̃−σ̃h)‖0
‖divσ̃‖0

‖u−uh‖0
‖u‖0

‖p−ph‖1
‖p‖1

error order error order error order error order
2 0.0265 – 0.0917 – 0.0527 – 0.2198 –
4 0.0031 3.09 0.0128 2.84 0.0067 2.97 0.0598 1.88
8 4.1743e-4 2.90 0.0017 2.95 8.5900e-4 2.97 0.0153 1.97

Table 4: Example 4.2: k1 =3, k2 =3, ∆t=10−6.

1
h

‖σ̃−σ̃h‖0
‖σ̃‖0

‖div(σ̃−σ̃h)‖0
‖divσ̃‖0

‖u−uh‖0
‖u‖0

‖p−ph‖1
‖p‖1

error order error order error order error order
2 0.0023 – 0.0917 – 0.0509 – 0.0599 –
4 0.0017 3.77 0.0728 2.84 0.0067 2.93 0.0082 2.88
8 1.0640e-4 3.98 0.0017 2.95 8.5700e-4 2.96 0.0011 2.95

S f (t,x) such that the exact solutions of the model problem are

u=
(

u1
u2

)
=

(
tsinπxsin2 πy
tsinπxsinπy

)
, p=π(λ+2µ)tsinπxcosπy,

σ̃=

(
(λ+2µ)πtcosπxsin2 πy−2µπtsinπxcosπy µπt(sinπxsin2πy+cosπxsinπy)

µπt(sinπxsin2πy+cosπxsinπy) λπtcosπxsin2 πy

)
,

which satisfy the following mixed boundary conditions

p=0 on {x=0, x=1}, k∇p·n=0 on {y=0, y=1},
u=0 on {x=0, x=1}, σ̃ ·n=0 on {y=0, y=1}.

Then, the closed form of fff , S f is

f =∇·σ̃=

(
−(λ+2µ)π2tsinπxsin2 πy

(λ+2µ)π2tcosπxsin2πy−µπ2tsinπxsinπy

)
,

S f =
∂

∂t
(cup∇·u)+

∂

∂t
(cpp p)−∇·(K∇p).

We use finite elements with k1 = 3, k2 = 2 as well as k1 = k2 = 3 for this mixed boundary
model problem. We fixed ∆t= 10−6 and choose h= 1/2,1/4,1/8 to see the convergence
order of h. From Tables 3 and 4, we can see that all the variables σ̃n, un, pn have optimal
convergence order with respect to mesh size h.

5 Conclusions

In this paper, we mainly study using the finite element methods for the poroelasticity
problem. Mixed finite element method with three variables: total stress tensor, displace-
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ment and pore pressure of the model problem are studied. Conforming finite element
method with strong symmetric element for the stress tensor and piecewise discontinu-
ous finite element for the displacement [11] are used for the linear elasticity subproblem.
For the pore pressure of the fluid, we use the piecewise continuous Lagrange finite el-
ement method. Theoretical analysis shows that the finite element method has optimal
convergence order. Numerical experiments are implemented to verify the theoretical re-
sults. In our future work, we will consider the fast solver for the discrete linear algebraic
system based on this finite element methods.
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