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Abstract. In this article, we derive the a posteriori error estimators for a class of steady-
state Poisson-Nernst-Planck equations. Using the gradient recovery operator, the up-
per and lower bounds of the a posteriori error estimators are established both for the
electrostatic potential and concentrations. It is shown by theory and numerical exper-
iments that the error estimators are reliable and the associated adaptive computation
is efficient for the steady-state PNP systems.
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1 Introduction

Poisson-Nernst-Planck (PNP) equations are a coupled system of nonlinear partial differ-
ential equations consisting of the Nernst-Planck equation and the electrostatic Poisson
equation. They describe the electrodiffusion of ions and are applied in many systems
such as the solvated biomolecular system [1-3], the semiconductors devices [4-6], elec-
trochemical systems [7-9] and biological membrane channel [2,10-12]. In this paper, we
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consider the following steady-state Poisson-Nernst-Planck equations

~V-(Vp'+4'p'Ve)=F in Q, i=1.2,

2 1.1
—Ap—) 4P =F in Q, (1)
i=1
forxe QCRY, (d=2,3) with the homogeneous Dirichlet boundary conditions
¢=0 on 90},
{ p'=0 on 30, (12)

where p’(x) is the concentration of the i-th species particles carrying charge q', ¢(x) is the
electrostatic potential and F;, (i=1,2,3) are the reaction source terms.

Because of the nonlinearity and strong coupling, in general, PNP equations are almost
impossible to find the analytic solutions. The numerical methods including the finite
element method, the boundary element method, the finite difference method and finite
volume method are widely used to solve PNP systems (cf. [2,3,13, 14]). In practical
problems such as the ion channel [11,12,15], since there are many charges on the interface
of membranes which lead to the singularity of the solution, the numerical methods such
as the finite element method can not be effectively applied to the PNP equations if the
discrete mesh is not good. Note that for many problems with local singularities, adaptive
finite element method is one of the most effective finite element methods and plays an
important role in the numerical solution of partial differential equations. The adaptive
finite element method was originally proposed by Babuska et al. [16,17], which offers a
systematic approach. The adaptive calculation mainly includes the following loop:

Solve — Estimate — Mark — Refine.

In the adaptive computing the “Estimate” is one of the most important steps and gener-
ally achieved by using the a posteriori error estimator. In 1987, Zienkiewicz and Zhu [18]
put forward the gradient recovery type a posterior error estimator that based on the
postprocessing technology. Since the calculation is simple and easy to understand, it
is widely welcomed. The calculation is effective and the gradient recovery type a pos-
teriori error estimator is asymptotically exact if the data of the underlying problem is
smooth [19,20]. Latter, this method has been widely used in many finite element compu-
tations, see [21-24].

Note that the adaptive finite element method is used to solve PNP systems in appli-
cation (cf. [2,25-27]). A novel hybrid finite-difference/finite-volume method based on
the adaptive Cartesian grids is presented in [25], in which the mesh refinement criteria
is according to a level-set function instead of any error estimators for PNP calculations.
In order to describe the electrodiffusion processes, the literature [2] proposed a hybrid
of adaptive finite element and boundary element methods to solve PNP equations. The
grid generation and refinement are just by a biomolecular mesh generation tool rather
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than indicated by a error estimator. In [26,27], Tu and Xie et al. proposed a parallel
adaptive finite element algorithm for solving PNP equations. However, the a posteriori
error estimator used is not designed for the PNP equations itself, but only for Poisson
equations (one of the two parts of PNP equations). Hence, the effect of another part for
the NP equation is neglected in [26] and [27], which leads to somewhat inaccuracy and
incompleteness of the a posteriori error estimator they used.

In this paper, we present a posteriori error analysis for steady-state PNP equations.
Since PNP equations are a coupled nonlinear system, the analysis can not directly follow
the related work for Poisson-Boltzmann equation (cf. [28]). By using the gradient recov-
ery operator, the upper bounds and lower bounds of the a posteriori error estimators are
presented both for the electrostatic potential and concentrations. Based on the a poste-
riori error estimators, the corresponding adaptive finite element method is provided for
the PNP system. In contrast to the existing related work such as [26,27], our adaptive
algorithm is based on the posteriori error analysis for the PNP system and hence the
estimator we applied is more accurate and complete in adaptive computing.

The rest of this paper is organized as follows. In Section 2, some notations and error
estimates for the finite element approximation are introduced. The Clément interpola-
tions and gradient recovery type operator are also presented in this section. The upper
and lower bounds of the a posteriori error estimators are derived in Section 3. In Section
4, the adaptive finite element algorithm is introduced and some numerical experiments
are reported to support our theory. Finally, in Section 5, some conclusions are presented.

2 Preliminaries

In this section, we shall describe some basic notations and assumptions. Let Q C R? (d =
2,3) be a bounded domain with a Lipschitz-continuous boundary 0Q). We shall adopt
the standard notations for Sobolev spaces W*?(Q)) and their associated norms and semi-
norms, see, e.g., [29,30]. For p =2, we denote H*(Q)) = W**(Q)) and H§(Q) = {v|v €
H*(Q) :v [5n=0}, where v [5n=0 is in the sense of trace, ||-|[sp0 = |- [lwsr) and (-,-)
is the standard L?-inner product. Throughout this paper, C denotes a positive constant
independent of &, and may denote a different value at its different places.

Let T"= {7} be a shape-regular mesh of Q) with mesh size h=max, .7 {h.}, where h,
is the diameter of the elements. Denote 9T" the set of all edges or surfaces of simplices,
02T" the set of all vertices of T" and A =0>T"\0(). We define the linear finite element
space

S"={veHY(Q):v|. € P(7), VT T"}, SEQ)=S"(Q)nH(Q), (2.1)

where P1(7) is the space of linear polynomial on 7.
The weak formulation of (1.1)-(1.2) reads: find p' € H}(Q), i=1,2 and ¢ € H}(Q)) such
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that
(Vp',Vo)+ ( ‘p'V$,Vv)=(F,v), Vo€ H} (Q), (2.2a)

(Vop,Vw) Zq p'w) = (F,w), Ywe Hy(Q). (2.2b)

Assume there exists a unique solution (¢,p') (i=1,2) satisfying (1.1). The corresponding
standard finite element approximation to (2.2a)-(2.2b) is to find (p},p?¢u) € [Si]® such
that

(Vp};,Vvh) + (qipZV%,Vvh) = (F,vp), Vo, € 56’, (2.3a)

2 . .
(Vo Vwy) = Y_q'(pjwn) = (Fs,wy), Vuwy, €Sg. (2.3b)
i=1

In order to construct a posteriori error estimator, in the following, we will describe the
useful Clément interpolations and gradient recovery type operator, we must point out

that they are important in our latter analysis.
Let {¢,:z2€9*T"} C S" be the standard nodal basis functions of 5", namely,

(le (Zz) :52122/ vzl,ZZ € azTh,

where 6 is the Kronecker symbol. For given z¢ 92T" 1€9T" and T T", denote w,= Uzez T,
Wi =Ujer T, Wr =Urnz20T , and introduce two Clément-type interpolation operators 7,
and IT;,: L2(Q)) — S} (Q), which are defined respectively by (cf. [21,31])

o=y ¢z, U, = (v,92) YveL?(Q),
zEA (qu' )

=) v¢, v —sz o] ( o YoeL?(Q),
z€d2Th

where U = ws, 2]]?:1 océ =1, and oc]Z' >0. For instance, (x]Z. ]1 or odZ = “:f“ It should be
pointed out that here v| ; is understood in the sense of trace in 7. Forve H}(Q), there

hold (see e.g., [21,32-34])

||lv— 0|0, < Che||VUl0w,, vreT!, (2.4a)
v —710]0s < Ch /2| VU 0.0/ vieT", (2.4b)
|tv)1r <Clv|iw,, vreTh. (2.4¢)

And it is seen that for ve W?(Q) (p >d), there holds

ITTyv—vllo < Chel|Vollopw., ¥TET".
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We also need a gradient recovery type operator Gy, : Si(Q) — [S"(Q)]¢, which is defined
by
Go=I1,(Vv), YveSkQ). (2.5)

According to the definition of the operator Gj, and the properties of the basis function,
we have the following estimates.

Lemma 2.1.
|Grwpllo < C||Vwylo, Vwy, € Sk, (2.6a)
1Grtoy|o,00 < CI VW[ 0,00, Yy, € Sp. (2.6b)
Proof. For
2\
’thhHO— Z[XZ th) ( ))qoz dV) .

aZTh j=

Denote the number of vertice z satisfying ¢, #0 on the element T € T" by m.. From the
property of the basis function ¢, m is bounded and we can suppose m, <Cy. Then, we
have

1

1Grwnllo <CCo Z/|th|2dV 2

TETH

<C[[Vawnllo,
where we have used the property of basis function |¢.| <1 and J, is bounded. Thus, we

get (2.6a).
Similarly, by using the property of basis function, for any xo € (2, we have

Gron(xo) | <| 1 ():az V) (2) ) @:(x0)|

z€RTh j=
<Cl[Vwylloeel Y, ¢(x0)]
z€92Th
<C[|Vw[o,c0-

Hence, ||Gywp 0,00 < C||Vwy|lo,0. The estimate (2.6b) is established. This completes the

proof. O

3 A posteriori error control

In this section, we will derive the upper and lower bounds of the gradient recovery type
a posteriori error estimates for PNP equations (1.1).



1358 R. G. Shen, S. Shuy, Y. Yang and M. J. Fang / Adv. Appl. Math. Mech., 12 (2020), pp. 1353-1383

First, we define the a posteriori error estimators on element 7 for ¢ and p' respectively
as follows:

120 (Phn) =he || Run (Pl dn) lloc+ | D (n) oz, TeTh,
Ne,pi (Prpn) = he (| Run (Pl ) lloe+ | Ron (P 1) llo2)
+ 11Dy (i o) loc+ | Di () o, TeTh,

where

Ruy(ply, 1) Zq W+ EB+div(Gugn),  Du(gn)=Vén—GCudn,
Ron (P} 1) =Fz‘+d1V(GhPZ) +div(q'pj,Gun),
Dy (ph,®1) =4q' P (Grpn— Vo) +Gup,— Vpj,.

In the following, we will derive the global upper bounds and the local lower bounds for
Neg(PhPn) and 11, i (P}, Pn), respectively.

3.1 Upper bound

In this subsection, we shall derive upper bounds of the a posteriori error estimators. First
we need the following estimates.

Lemma 3.1. Let uj be the nodal linear Lagrange interpolant of u € H*(Q)NHE(Q). Then we
have [35]

(V(u—ur),Vw,) = O (1) |uls||[Vwsllo, Vuwy €S5(€), (3.1)
and the standard interpolation error estimate [30]
lu—urllo-+hlju—urlls < Ch?|[ul|2. (3:2)

Lemma 3.2. Let (p',¢) and (pi,¢y) be the solutions of (2.2a)-(2.2b) and (2.3a)-(2.3b), respec-
tively. If € H(QY), and ¢y is the nodal linear Lagrange interpolation of ¢, then we have

2 . .
g =91l <C(Hlglla+Y_Ilp ~pillo ). (33)
i=1

Proof. By (2.2a)-(2.2b) and (2.3a)-(2.3b), for any w), € St we get
(V(pn—¢1), Vwy) =(V(pn— ), Vwy) +(V(¢—¢1), Vwy)

—Zq —p'wp)+(V(p—¢1), V)

2 . .
c(2sz—pl||o||wh|ro+h2||¢us||wh||o),

i1
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where we have used (3.1). Taking wy, = ¢, —¢r, so the estimate (3.3) can be easily com-
pleted. O

Lemma 3.3. Suppose (p',¢) and (p,¢y) are the solutions of (2.2a)-(2.2b) and (2.3a)-(2.3b),
respectively. If ¢ € H>(Q)) NW2*(Q), then we have

2
-4 i i
IVulloe <C(I9lls+172 Y17 = pillo+hlgllze) + I Vellow, d=23.  (34)
i=1

Proof. By the inverse inequality and interpolation error estimate, we have

IV@nlloco <V (Pn—¢1) [lo,c0+ V(1 =) 0,00+ [ V0,00
_d
<C(h 2|V (n—¢D)lloa+hlPll2e) + [Vl
2
_d _d i i
<C(HHglls+h L lIp'=pillo+hlglze ) + Vo,
i=1

where we have used (3.3) in the last inequality. Choosing & sufficiently small such that
Ch21% < 1, we get

2
1Vull00 < C(I9lla+1=2 Y- l1p = pllo+hl¢ 200 ) + 1V plloo:
i=1

This completes the proof. O

Now, we present the upper bounds for || V(¢—¢n) |0 and |V (p'—p})|lo0 in the
following.

Theorem 3.1. Let (p',¢) and (p!,,¢y) e the solutions of (2.2a)-(2.2b) and (2.3a)-(2.3b), respec-
tively. There holds

19 =¢n)lo < C (i) + LI —Filo), (35)

i=1

where

19 (Phon) =Y (el Run (P ) o+ 1D () oo ).

T

. 2 . .
Run(pldn) =) _q'pp+F+div(Gun), Dy(pn) =V — Gy
i

Proof. For any w € H}(Q), it follows from (2.2b) that

(V(¢—¢h),Vw)
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— (iqipi—i—lﬁ,w— nhw> + (iqipi—i—l:sﬂhw)
i= 1=

—(Vén, Vmw)+ (Ve V(mw—w))

2. 2

= (qupl—FFg,w—ﬂhw) (Zq nhw) (quph—l-"g,nhw)
i=1 i=1
—(V(Ph,VTL'hw)—i—(V(Ph, (nhw—w)). (3.6)

Further, according to (2.3b), we have

(V(¢—¢n),Vw)

2 . . 2
:(gqlpl—i—F3,w—7Thw> (Z;qlp ) ﬂhw) (Vo V(mw—w))
i=

:(iqip2+F3,w—7rhw) (iq (p' =1L, ) (Vo V(mw—w)). (3.7)

By Green’s formula, we rewrite the third term on the right-hand side of (3.7) as follows
(Vo V(mw—w))
=(Vn—Gupn, V(1m0 —w)) — (Gupn, =V (myw —w))
(V‘Ph_Gh(l’hxv(ﬂhw_w))+Z</Tdiv(ch¢h)(w_nhw> _/a Gh¢h'n(w—ﬂhw))
T T

=(Vn—Gpep, V(mw—w)) +Z/TdiV(Gh4’h)<w_ W), (3.8)
T
where we have used the fact that
Z/ Gngp-n(w—m,w) =0,
T JoT

since Gy, € [S"(Q)]? and (w—muw) € HY (QY).
Substituting (3.8) into (3.7) and using Clément interpolation (2.4a) and (2.4¢), it yields

(V=) V) SC;((HéquZ+F3+div(Gh¢h)HolThr

2 . .
+V¢1=Gigulloc) w10, + Y- lIp' = Phlollw]o)-
i=1

Taking w = ¢ — ¢y, in the above equality, we can easily obtain the desired result (3.5). This
completes the proof of Theorem 3.1. O

Now we turn to present the upper bound of ||V (p'—p!)|lo.q as follows.
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Theorem 3.2. Let (p',¢) and (pl,,¢y) be the solutions of (2.2a)-(2.2b) and (2.3a)-(2.3b), respec-
tively. There holds

. . . 2 . . . .
IV (' =i llo <C (s (Bho) + X Ip = phllo+ 1P = phllo Vullows ). (39)

i=1

where

1y (Pl ) = 5 ( (IR (Phg) o+ 1 Ran () o) e

T

+uﬁh<p;;,4>h>||o,T+||Dh<¢h>uo,r),

th Ph,47h Zq +F3+diV(Gh4)h),

Ron(phpn) = Fi+dIV(th2) +div(q'p),Gun),
Dy (p,91) =q' P (Grpn— Vo) +Gup,— Vo,
Dy, (¢n) =V ¢ — Gy

Proof. For any ve H}(Q)), from (2.2a), we get

(V(p'=pi), Vo)

(Vp', Vo) = (Vpj, Vo)

(Fi0)=(4'p'V ¢, Vo) = (Vpj, Vo)
(F,o—my0)—(q'p'Vp—q'p, V ey, Vo) — (Vp!, Vo)

—(4'p}, Vou, Vo) + (Fi, 7ty0). (3.10)

By using (2.3a), the last two terms on the right-hand side of (3.10) becomes

(Fi,7tn0) — (9'p}, Vi, Vo)
=(F;, my0) — (9'p}, V o, Vrtyo) — (4'p}, V i, V (v — 710) )
=(Vp,, V) —(q' p,Vén V(v—mo)). (3.11)

Substituting (3.11) into (3.10), it yields

(V(p'=p},), Vo)
=(Fo—m,0)—(q'p'Vo—q'p Vi, V0)
— (VP V(0—m40)) = (4'p, Vb, V (0= 1040))
=(F,0—m0) = (q'p'V (p—¢1), Vo) — (' (p' = pi,) Vb, V0)
—(Vp;, YV (0—=1,0)) = (4'Py, Vi, V (0= 7540)). (3.12)
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Now we rewrite the last two terms on the right-hand side of (3.12) as follows.
In fact, by Green’s formula, we get

~ (Vi V (v—m0)) = (4P, Vb,V (0—110))
—(Vph—Gupj,, V (v—110)) = (4 Ph (Vb — Gugpn), V (0 — 7,0
—(Gupiy V(0= 7140)) = (4'P},Gupn, V (0— 7040
=(Gupl— Vi,V (0—7130)) + (q'p}y (Gupn — Vi), V (v — 7140))

+E /diV(GhPZ)(U—ﬂhv)—/ thz-n(v—nhv))
+Z /dl" q'p},Gun) (0 —1,0) / q'pi,.Grpn-n(v— nhv)>

:(GhPh—VPh/V(U—ﬂhv)) (9'P},(Gupn— Vo),V (0—110))
+E/T (div(Gypl,) +div(q'pl,Gugn)) (v—110). (3.13)

Inserting (3.13) into (3.12) and applying the Clément interpolation (2.4a) and (2.4c), we
have

(V(p'—p}), Vo)
=% [ (B+div(Guph)+div (g Gun)) (0 m30) — (4 ¥ (9= ), )

— (g (p' = P},) Vo, Vo) + (7' Py (Gu — V) + Gply — V p}p, V (v—110))
SCZ(HFﬁrdiV(GhPD+diV(qlPLGh¢h)Ho,rhr+||V(4>—<Ph)\|o,r

+11" = Pillo IV ullocor + 19" P (Grpn — Vi) + Guply— Vi lloc) 1010, (3.14)

Finally, taking v = pi— PZ and substituting (3.5) into (3.14), then the desired result (3.9) is
completed. O

Remark 3.1. If ¢ € H3(Q)NW2>*(Q), p' € H*(Q) and ||p' — p}, |lo.o < Ch?||p*||2 holds, then
from Lemma 3.3, Theorems 3.1 and 3.2, we have

IV (@ =)o < Crrp(phpn) +Cik?,

IV (p' = pi) o < C11yi (Pl 1) +C i g,

where C,; is a constant dependent on p' and Ci 4 is related to p' and ¢.

Note that the assumption ||p' —p [|o < Ch? is used in Remark 3.1. For time-dependent
PNP equations, it is shown in [36] that this L? norm error estimate for pi hold for a lin-
earized backward Euler scheme. For the steady-state PNP equations discussed in this
paper, it is difficult to derive the L?> norm error estimate for p' by using the traditional
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duality arguments. Although we can not present the theoretical proof for this assump-
tion, many numerical examples including PNP for practical biological problems show the
error in L? norm for pi could achieve second order (see Fig. 3 and Fig. 5 in our work [1],
where Fig. 5 is the results of a practical biological problem).

3.2 Lower bound

In this subsection, we discuss the lower bounds of the a posteriori error estimators.
Denote [g]; the jump of g across the surface I €97", I # 9Q), for example,

[Vo-n] zsli)r(l)n+ (Vo) (x+sn;)— (Vo) (x—sny)] -ny,

where 7 is the unit normal vector to  and v € H} (Q).
For any u;, € S, denote the jump of u;, across the edge or surface I €9T", I ¢ 9Q by

Jni (u) = [Vuy-ny].
In order to present the lower bounds of the a posteriori error estimators, first, we need
the following lemma, which was shown in [33,34].

Lemma 3.4 (cf. [33,34]). Let T€ T" and 1 €9T". Then there exists pr: P (T) — H} (T) such that

C Y uevl[§ - < NvlI5 e <C(v,prv)x, YoePl(1), (3.15)
[2v]1,e <ChZ [ v]lo,c, voe P (7). (3.15b)

And there exists vi: P (1) — H} (wy) such that Vv e PY(1),

CHvl§; <llvll§; < Clv,vv);, (3.16a)
1

[vivllow < Chéyllvlo,, (3.16b)
_1

[viv]1,6, < Che/ [[0]]0,1- (3.16¢)

In addition, the following result was proved in [21], which shall be used in our anal-
ysis.

Lemma 3.5 ([21]). Forany v, € SH(Q), T€T", 1€ T",1 ¢ 90}, we have

1
Vo, —Gyopllo<C Y. Bl ni(on)llos-
1C(w+\owr)

Lemma 3.6. Foranyle oT", 1 £ 00, Yy, € SS’(Q), there holds

1
W 1 Tt () Mo < Cllp— Pl 1,0, + 7wy (3.17)
where

2 .
Ini(Pn) = [V 1], rwzSChZ};(HFBHsz+ZHPZH1,&JZ)'

i=1
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Proof. For any w € H}(Q), by (2.2b) and Green’s formula, we get
(V (4>—<Ph) Vw)

F3—|—Zq V(,bh,Vw)

=) <P3+Zq ) - ) /I[Vs‘bh'nl]w

TETH T leathigon

=(M"(¢n),w /]hz $n)w (3.18)

zeaTh 1790

where

2 . .
M'(¢n)=F+Y_ a0, Jui(¢n)=[Vn-n).
i=1
Hence, from (3.18), for w € H} (wy),

(]h,l(‘l’h)rw)l:/][V‘Ph'”l]w: Y /T[V(Ph'”f]w

Teaw,
=(M" (1), w)w, — (V(p—n), V),
<[IM" (1) oo |0l 0,0r |V (@ — 1) 001 || V00,0 (3.19)

where w) represents the set of all the elements including I and denote by dw; =y, I.
Then, let w=v;]J;,;(¢y) in (3.19), and from (3.16a)-(3.16¢), we have

i (D) 1151 < CUna (b)) Vit (n) )i
<CUIM" (i) llo.on [[vi Tt (D1) lo.or 1V (@ = i) oo [V Tt (1) 11,00

gc(hi, M (1) llo.cor 1 Tt (1) Ho,lJrhj ¢ —bnll1,cop 1 Tn,1 (Pr) Ho,l)-

From the above inequality, it easily yields

B 1 (@) 101 < CUIO =@l + P 1M (1) ) (3.20)

Now we turn to estimate || M"(¢y)||0,.«,- Define
v 1 IS
M (¢h)=m/TF3+,T‘/TZ;q p
It is easy to see that M"(¢;,) € P'(1) and

| M (1) = 8" (1) loe < Che (B3l e+ Yl e ) (321)

i=1
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For any w € H}(7), according to (3.18), we obtain

(M" (), w) = (V(p—pn), Vo) — (M" () — M" (), w), (3.22)

where we have used (Jj,(¢1),w)- =0, for w e H} (7).
Next, in order to estimate | M"(¢y,) |0, let w=pu.M"(¢) in (3.22), then by (3.15a) and
(3.15b), there holds

1" () llo,e < C (M Ip— 12+ 1" () — M (@) [l o,0)- (3.23)
Combining (3.21) and (3.23), we get

1M (@n) llow <1V () oo+ | M" () — M" (¢ [0,

2 .
<C Iz lp=gulhe+he 1B+ Yl le ) )- (3.24)
i=1
Substituting (3.24) into (3.20), then the desired result is obtained. O

Lemma 3.7. For any 1€0T", 1 ¢ 9Q), Vpi € Sh(Q), i=1,2, there holds

1 . . . -
oy T (1) o < CIlp" = Phllvor+ 116 = Pnllw) +7ers (3.25)

where
Tni(Ph) =V p}-mil,

2
Py 2, (1Bl + o+ o 1P T+ 1P om0 )
i=1

Proof. In what follows, we use the similar arguments as Lemma 3.6 to derive the estimate
(3.25).
First of all, for any v € H}(Q), by Green’s formula, it is from (2.2a) that

(V(p'=p}), Vo) =(F0)— (7'p'V$,Vo)— Y /lfh,z(pmv, (3.26)
1€aTh,I¢a0

where Jj,,(pl) =[Vpi -n).
For the second term on the right-hand side of (3.26), we have
(7'P'V$, Vo) =(q'p' Ve, Vo) —(q'p'V 1, Vo) +(q'p' Ve, Vo)
—(@'P'Gupn) +(q'P'Gupn)
=(q'p'((Vo—=Vn)+Du(n)), Vo) +(q'p'Gun, Vo), (3.27)
where Dy (¢) =V ¢, — Gy
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Denote by @ € Sl a linear interpolation of w. It is easy to know that
| =] 0,00t < ChZ||w]]2,00,7- (3.28)
By Green’s formula, we rewrite the second term on the right-hand side of (3.27) as follows
(7P G, Vo) =(q' (p' =) Gupr, VO) + (' p' G, V'0)
(' (p'=p") G, V0) —qi; (/TdiV(r;iGhsbh)UJr/aTﬁiGh(l’h n U)

=(q'(p' = p') Guepn, Vo) — (q'div(pGugpy), 0), (3.29)

where we have used the fact that g’ is a constant.

By the similar arguments as in (3.19), for v € H(l) (wy), inserting (3.27) and (3.29) into
(3.26), we obtain

(P o= [[Vphemlo= X [[Vpnlo

Teaw,
:(Rh(Pé;_),v_)w,_— (qip"((V4>—V4>h)+Dh(<{>h)),Vv)wz
—(q'(p' =1 G, V0) o, — (V (P’ = 11,), V) oy, (3.30)

where ' ‘ .
R"(p},) = Fi+q'div (p'Gugn),
w represents the set of all the elements including / and denote by dw; =U,,, I.
Note that by (2.6a) and (3.28), we have

(q'(p' = p') Gupn, V0)
<Cllp' = P'lloeollGrnllol| Vollo
Sczh"zL’leHZ,OO,T||V¢I’!||0,T||UH1,T' (3.31)

Then, for any v € H}(w;), let v =1,],;(p}), the following estimate can be obtained by
(3.16a)-(3.16c) and (3.31) that

it (PG < C Ui (Ph) vi T (Pi)s
SC(HRh(PZ) o, V1T (Ph) 0.0y + (110 = @il 1.000 + 1D () 0,00
2, 1P 2.0 1 il + 1P = Pl IV V1T () o)
<C (R IR (P oo+ (19~ 120+ 1 Da() o

12 19 s 1 Bl )+ 119 = Pl ) s (i) o
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Hence, from Lemma 3.5 and 3.6, we get

1 . . . .
B2 T (P o SC (B IR (D) 0,0, + 10— P ll1,c0,+ | P = Pl 11,0,
+ 7w+, 1P 2,000 | Vullowr)- (3.32)

where

i <O (1B + L )
i=
Now, our task is to derive the error estimate of ||[R" (p?) [|0,w,- In order to do this, we define
R"(p},) :qidiV(lgiGh%)ﬂ;/TPi'
Since p' is the linear interpolation of p/, it is easy to see that R"(pi) € P'(t) and
IR (i) = R" (pi) lo,c < Che | Eill . (3.33)

For any v € H} (1), from (3.30), we get

(R"(p},),0) =(V(p' = p},), Vo) — (R*(p},) —R"(p},) v)
+(q'p' (V=N i) +Dy(¢n)), Vo) +(q' (p' = p) Gup, V),  (3.34)

where we have used (Jy,(p},),v)r =0, forve H} (7).

Next, we turn to estimate ||1§h(plh) llo,r- Let v= yfﬁh(pil) in (3.34), then we get the
following estimate from(3.15a), (3.15b), (3.17) and (3.31) that

IR (pi)lloe <C (1" (Ip' = Phlle+ 19— dnlle+ 19—l
ey HHE P 200 (1Y (01 = @) o+ 1 Vb llor)
+IR"(pi,) = R" (pi)llo.e)- (3.35)

Hence, combining (3.33) and (3.35), it yields

IR (53 o < IR (2} o+ IR (1) = R (p}) o
<C (I (11" = Phll s+ 1=l + 12, 1P 2000 +7) +hao [ il ) (336)

Inserting (3.36) into (3.32), we obtain the desired estimate (3.25). Thus, this completes the
proof. O

Apply the above results, we can prove
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Theorem 3.3. For any T € T", there holds

. 2 ) ]
Mg (Phn) <C (IIqJ—th 1,0 +he Y_lIP'—p), ||0,T) F e,
i=1
where
T (Pl i) = | Run (Pl @n) llo e + 1 Di (@) lo.e,

. 2 . .
Rup(pj,¢n) =div(Gugn) +Y_4'pj,+F3,
i=1

2
Di(@) = V=G, 1o, SCHE (I Fslloi+ L 1P 10 )-
i=1

Proof. From Lemma 3.5 and 3.6, we have
1
| Du(n) llo,c < Chéy || Tni (@n) llog < Cllp—Prll1,c0, + ey (3.37)
where

2 .
P SCH2, (1B 1o+ L 1P N )
i=1

Next, we only need to estimate || Ry, (p,¢n)[|o,r- Define
2
B (i : iy 1
Rup(phpn) =div(Gugn) +)_q Ph+|T|/TF3-
i=1

Obviously, Ry, (pi,¢1) € P1(t) and

IR (P ) — Run (Pl i) llo,r < Che || F3|1r- (3.38)

On the other hand, according to (2.2b), for any w € Hé (Q)), by using Green’s formula, we
get

2 . .
(V=) Vo) = (civ(Gign) + 1 q'pi + Faw)
i=1
2

— (Ve —Gugn, Vo) + Y_q'(p' —pl,w).

i=1

Thus

N

(Run (P i), w) = (V (p—n), Vw)+(Dy(n), V) = Y g (p' = pjw), (3.39)

i=1
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where

Ry (Pl pn) = div(Gupn) +iquZ+F3,
b
Dy(¢n) =V ¢ — G-
Let w=pRy; (¢, p},) in (3.39), by using (3.15a) and (3.15b), we obtain
(Run (i), e Ran (P 1)) |
<IV(@=@u)llo+Dn(@n)llo) | Ve Rin (P ) llo

2 . . ~ .
+CY_lIp' = phlloz e Run (P i) lloc
i=1

<C (" IV (@ =) o+ 1Da(@) loe) + Y1 = phllo ) | Run(phudi)llor- - (3:40)
i=1

According to (3.15a), we have the following estimate

Hﬁlh(iﬂir%) 15,2 <C(Run (Pl ) e Run (P i)
SC((Run(phtn) e Run () + (Run (Pl i) — Run (Pl on) e Run (Pl )
<C(I(Ruu(Phopn) <R (Pl ) |+ | Run (bl ) = Rus (P ) o | Run (o) o ) (3:41)

Substituting (3.40) into (3.41), it follows that

~ . 2 . .
IR (P ) llox SC(hf(H4>—4>hHl,r+ 1w () llo0)+ Y- MIP' = Pilloc
i=1

+|Run (P 1) — Run (Pl 1) Ho,r) : (3.42)
Therefore, by (3.37), (3.38) and (3.42), we get
IR (Pl i) lo,e <N Run (Pl n) o+ 11 Run (P ) — Run (Pl i) oo

2 . .
<C(h o= ulhe+ L' = pilloc+hz o +hel Bl ),
i=1

which leads to

. 2 . .
el Ru(Phon) o < C (¢ —nlle+he Yl = pillo )+ (3.43)
i=1

Combining (3.37) and (3.43), we obtain the desired result. O
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Theorem 3.4. For any T € T", there holds

i i i d . ;
e, (i) SCUIP = Phllw. + 10— Pnll1o +172 19— dullw 1P = pillo.
+le_p;zHO,THV(PhHO,oo,T)+7’ZUT, d=2,3,

where

N,pi (Piufl’h) =h ||R2h(P§zr¢h) lloc+ ||Dh(P;u4’h) llozs
Roy(pj, 1) = Fi+div(Gupj,) +div(q'p},Guen),
Di(ph¢n) =9' P (Gupn— V) +Gup),— Vpj,,

/

Ty, <Ch%, (1B |10 + 1 F 1o + 1P 2,000 +1 211 = Phlloe | Fs 1,0, ) -

Proof. First, according to Lemma 3.5 and 3.7, it is known that

. . 1 .
1GLp =V Phlloe < Chéy [ Tni (i) llog
<C(Ilp' = pilliw + ¢ —dnll1,w) +Fwp (3.44)

where

2 .
P SCH, (1B 1. 1B 0+ Lo 1+ 1P 2o )-
i=1

On the other hand, we rewrite Dy, ( pz,gbh) as
Du(ph 1) = —q'Pi (Vo — Gupn) + Gp), — V),
=—q'(pr—P")(Von—Gupn) —q'0" (Vo — Gupn) + Gnpj, — V pi-
Therefore, from (3.37), (3.44), we get
IDw (i) lloe < CUIPL— P lloco+ 110,00 1D (n) [0+ 1 Grpl = VP lloe
<C(Ip' =pillocos+1PT = Phllocor+ 1P llo00 ) | Di (@) [loc + [ Grpi — Vpillox
. _d . . . . .
SCIN P 200+ b2 2 P71 =Pilloe 4P lo,00,) 1D (1) [0+ | Grpl, — VP lloe
. . _d . .
Cll¢—=nllvw. +11P" = Phllw. +he 2 1P = Phllo o= Pullw.) +7e. (3.45)

IN

where

. _d , .
iy < Chgy (1 Bsllveo, + I Fill o, 1P 200000+ 2 17 = Phllo | Bsll10,)-

Now, we turn to estimate || Ry, (p},¢1) |0, Define

- ) ; . 1
R (ph ) = iv (Gapy)+ v (g9} Gop) + 7 | B
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It is easy to see that Ry, (pl,¢1) € P (1) and

1 Ro (Phopr) = Ron(phopi) o,z < Chie | B 1,z (3.46)
On the other hand, for any v € H}(Q)), we have
(V(p'=pi), Vo) =(Vp', Vo) = (Vp}, Vo)
= (F;,0) = (q'p'V,V0) = (V i, Vo) +(4'py, Vou, Vo) — (4'p}, Vi, V0)
+(Gp}, Vo) = (Gupj, Vo)
=(F,0) = (q'p'Vo—4'py,V u, Vo) — (Y}, Vo) = (q'p), Vi, V0)
+(q'p1,.Gupn, V 0) — (' Pi,Gupn, Vo) + (G, Vo) = (G, V).

Then, the Green’s formula is applied to the sixth and eighth terms on the right-hand side
in the above equation, we get

(V(p'=pi), Vo) =(Fi+div(Gypj,) +div(q'pjGugn),0) — (7' 'V (¢ — 1), V)
—(q' (P = Pi) V1, VO) = (4 Py (Vb — Gupr) +V pj, = Gup}, V0)
= (Ron(piypn),0) = (4'0'V (9= 1), Vo) — (4 (0 — p},) Vb, V0)
—(4'PiDu(@n) +Du(p},), Vo),
where Dy,(p) =V pi, —Gyp.. Thus

(Ran(piypn) ) =(V(p' = p},), VO)+ (' p'V (9= 1), Vo) + (4 (p' = p},) Vpu, Vo)
+(q'p},Du(¢n) +Du(p},), Vo).

Let v= iRy (p},¢n) in the above equality and using (3.15b), we obtain

(R (Piyn) 1 Ron (Pl 1))
<Ch U (1P =Pl e+ g PV (9 =) o+ 119" (P = Pi) o[V il 0,00,
+11Dn (Pl ) l0,0) 1 Ron (Pl ) N0, (3.47)

According to (3.15a) we have the following estimate

1R (p1P) 15,2 < C (R (P ), e Ron (P P))
<C((Ron(Pi )t Ran (P dn) ) + (Ron (Pl b)) — Ron (Pl 1) e Ron (P 1))
<C(I(Ran (P dn) e Ron (pis ) )|+ | Ron (P P1) — Ron (i P) o | Ron (P ) o) - (3.48)
Substituting (3.47) into (3.48), it follows that

1 Ron (Pjy 1) llox
<C(h' (P =Pl e+ 1PV (@) loc+ g (P = i) o< [V P llo,00x
+ 11D (pi @) llo,c) + | Ron (Pl ) — Ron (Pl i) llo,2) - (3.49)
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Combining (3.46) and (3.49), we have

I Ron (Pio i) lloc <N Ran (P i) lloe + | Ron (P 1) — Ron (Pl i) lloe
<C(h (P =Pillue+ e —dnllue+ 1P = Pillocl Ve llo,ox
+11Dn (Pl n) lloc) +he | Fill1,7)

. . _d . .
<C(h (1P = Phllnw: 10— bullnw. +he * 17" = Phllocw: 19— PnllLew. + 7
' = Pullox IV nllocor+heoe 1 Fill 1)

where we have used (3.4) and (3.45). Hence
. . . _d . .
hel|Ron (Pl @) llowoe SCUIP' = Phllio. + 1@ = nllne. +he 2 17" = Phllow: 10— Pall1.o-
P =pilloxlIVulloeor) +7e,- (3.50)

Combing (3.45) and (3.50), we obtain the desired result. The proof is completed. O

Similar as Remark 3.1, we have the following results.

Remark 3.2. If € H3(Q)NW?*(Q), p' e W>*(w-) and ||p' — pi, |0, <CH2||p ||« hold, for
any T € T", then from Lemma 3.3, Theorems 3.3 and 3.4, we have

T (On,P) < Cllp—@nll1,or +Cpiil, s

Ne i (Ph®n) <CUIP' = Pilliwo. 0= dulliw.) +Cpiphi,

where épi is a constant dependent on p' and épi/¢ is related to p’ and ¢.

4 Numerical results

In this section, we will apply the standard refinement strategies for automatic mesh re-
finement based on the a posteriori error estimates derived above and report the numerical
results to verify our theoretical analysis. Let T" = {7} be a shape-regular mesh of Q) with
mesh size i >0 and the element 7. To implement the numerical experiment, the code is
written in Fortran 90 and all the computations are carried out on a microcomputer.

4.1 Refinement strategies

In this subsection, we shall describe a typical adaptive algorithm based on the a posteriori
error indicators derived above.
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For 1€ T", define

Nty = he

2 . .
Y 4'p+E+div(Gugn) HO Tt IV on—Gronllo,e (4.1a)
iz )

e s = e (1 Fi+-div (Guph) +liv(a'p}, G o+ Hi_Zlq’PHFsﬂLdiV(Gh%) HO,T)

+ IV —Gupullo+ 14 P (Grpr— Vou) + Grply— V iyl o,r- (4.1b)

Given an initial conforming mesh T", an associated finite element space S}(Q)) and a
tolerance TOL, the typical adaptive algorithm is then designed as follows:

Algorithm 4.1 Adaptive Computing for Steady-state PNP.

e Step 1: Finite element solution computing
Find the finite element solution (p},¢;,) € [Si]°.

e Step 2: Error estimation
Compute the error indicators 77, 11, by (4.1a) and (4.1b) for all T€ Th.

e Step 3: Local refinement

If
( )3 ’7%4,)% >TOL or (Tghn%,p,-) >TOL,

TETh

N =

then refine those elements which satisfy 7 (7, or

(e pj,) = OO«

with a given refinement parameter 6 € (0,1) and generate a new mesh T", a space
Si(Q) and return to Step 1. Otherwise, the computation is terminated.

In our computations, we follow the refining strategies in [37] to obtain a new con-
forming mesh and choose the refinement parameter 6 =0.5.

4.2 Example

In this subsection, we denote 7 and 7, the a posteriori error estimator to ¢, p' respec-
tively, where ¢ is the electrostatic potential and p' (i=1,2) is the concentration of positive
ion or negative ion. In order to verify the validity and efficiency of the a posteriori er-
ror estimators obtained in this paper, we first consider a steady-state PNP system with a
smooth solution, and then a example with a singular solution.
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Example 4.1. Consider the steady-state PNP equations with a smooth solution as follows:
—V-(Vp'+q'p'Vo)=f in Q, i=1.2,
2

i=1

Here the computational domain Q= [0,1]> C R? and 4! =1, g = —1. The boundary con-
dition and the right-hand side functions are chosen such that the exact solution (¢,p!,p?)
is given by

¢ =sinmxsinrmy,
p! =sin2mxsin27my,
p? =sin37xsin37y.

This example is mainly used to verify the validity of our error estimators. The a
posteriori error estimators and true error ||u—1uy||; of the electrostatic potential ¢ and
concentrations p!, p? under the uniform meshes and adaptive meshes are presented in
Figs. 1,2 and 3, respectively. It is apparent from Fig. 1 that the a posterior error estimator
of the electrostatic potential ¢ approximates the true error as the increase of the degrees
of freedom. It is also shown that the error curves keep the optimal convergence order
(the slope of the right triangle is 0.5) both for the true error and error estimator, which
verifies the theoretical analysis presented in Theorem 3.1. Compared the error estimator
N¢a (symbol ”—[1”) with the error ey, (symbol ”—A") obtained on the adaptive meshes,
it is also shown that the curves of 74, close to that of ey ,, which suggests the a posteriori
error estimator for ¢ is almost exact not only on the uniform meshes but also on the
adaptive meshes.

Similarly, it is observed from Figs. 2 and 3 that the error curves of the error estimators
are close to the true errors for concentrations for positive and negative ions under both
the uniform meshes and the adaptive meshes (e.g., the error estimator 7,1, (symbol ”-
-0”) asymptotically close to the true error e, , (symbol ”- -+”) on uniform meshes and
Ny ,a (symbol ”—¢”) asymptotically close to the true error ¢, , (symbol ”—x")), which
suggests the error estimators 74, and My defined by (4.1a) and (4.1b) are almost exact on
the uniform meshes as well as the adaptive meshes.

Figs. 1, 2 and 3 show that the numerical results coincide with the theoretical results
shown in Theorems 3.1 and 3.2 respectively.

In the above, we have presented the example with a smooth solution to show the
validity of the a posteriori error estimators derived in the paper. However, because of the
smoothness of the solution in Example 4.1, the advantages of the adaptive computing are
not obvious. In order to show the efficiency of the adaptive finite element algorithm, we
consider another example in which the exact solution has a strong singularity at the point
(0,0).
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Figure 1: The error estimator 77y, (symbol "~ -[0") and the error ¢y, (symbol "- -A") obtained on the uniform
meshes. The error estimator 7, (symbol "—[") and the error ¢4, (symbol "—A") are obtained on the
adaptive meshes for the electrostatic potential. N is the number of degrees of freedom.

10" ¢
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E e 1
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N
Figure 2: The error estimator 77,1 ,, (symbol "~ -0") and the error ¢, , (symbol - -+") obtained on the uniform
meshes. The error estimator 77,1 , (symbol " —¢") and the error e , (symbol " —x") obtained on the adaptive

meshes. N is the number of degrees of freedom.

Example 4.2. In this example, we consider the following PNP equation
—V-(Vp'+4'p'Ve)=f; in Q, i=12,
2

_A(P_ Zqipi :f3 in Q, (43)
i=1
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10" |

error

10

[| == N2,
L +np2,a
L e 2

p2.u

e 2
p .a

Figure 3: The error estimator 17,2 ,, (symbol "~ -%") and the error ¢,z ,, (symbol - -0") obtained on the uniform

meshes. The error estimator 77,2 , (symbol " —%") and the error ¢,> , (symbol " —o") obtained on the adaptive
meshes. N is the number of degrees of freedom.

where the computational domain is Q=[0,1]2CIR? and q' =1, 4*=—1. The boundary con-
dition and the right-hand side functions are chosen such that the exact solution (¢, p*,p?)
satisfy the classical Boltzmann distributions which is given by

p=(x2+y?)"1,
pl=0.5¢"", (4.4)
p?=0.5¢?.

In the following, we first compute the finite element solution on uniform meshes and
then solve this singular problem by Algorithm 4.1 on adaptive meshes by using error
indicators (4.1a)-(4.1b). A uniform initial mesh and an adaptively refined mesh with
2733 degrees of freedom generated by the error estimators 7y, 17, are shown in Fig. 4. It is
observed from Figs. 5, 6 and 7 that the convergence orders of the error curves (solid line)
for both true errors and error estimators of the electrostatic potential and concentrations
on the adaptive meshes are optimal. Compared the true errors and error estimators on
adaptive meshes (solid line) with the true errors and error estimators on the uniform
meshes (dashed line), one can easily observe that the errors on the adaptive meshes are
much less than that on uniform meshes. For example, for the electrostatic potential ¢, it is
shown in Fig. 5 the error value e, <0.08605 achieved with about 150 degrees of freedom
on the adaptive mesh in comparison of about 260,000 degrees of freedom on a uniform
mesh. The ratio of degrees of freedom is about 1:1700. Similar results are displayed
in Figs. 6 and 7 which indicates that the adaptive finite element method based on the
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X X

Figure 4: The left figure is the initial mesh with 81 degrees of freedom and the right one is an adaptive mesh
with 2733 degrees of freedom generated by error estimators 774, Npi for Example 4.2.
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Figure 5: The error estimator 77y, (symbol "~ -[0") and the error ¢y, (symbol "~ -A") obtained on the uniform
meshes. The error estimator 77¢,, (symbol "—[1") and the error eg, (symbol "—A") are obtained on the
adaptive meshes for the electrostatic potential. N is the number of degrees of freedom.

a posteriori error estimators derived in this paper is efficient for the steady-state PNP
system with a singular solution.

Note that the traditional gradient recovery type error indicators for ¢ and p’ on ele-
ment T € T" can be expressed respectively as follows:

1D, = IV —Gronllo,r, (4.5a)
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10

error

Figure 6: The error estimator 77,1 ,, (symbol "~ -0") and the error ¢ , (symbol - -x") obtained on the uniform

meshes. The error estimator 77,1 , (symbol " —¢") and the error €1 , (symbol " —x") obtained on the adaptive
meshes constructed by the error indicators. N is the number of degrees of freedom.
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Figure 7: The error estimator 17,2 ,, (symbol "- -%") and the error ¢,z ,, (symbol - -0") obtained on the uniform
meshes. The error estimator 77,2 , (symbol " —%") and the error ¢,2 , (symbol " —o") obtained on the adaptive

meshes. N is the number of degrees of freedom.

M2 =V Ph—Grphllor, i=1,2. (4.5b)

Compared (4.5a) and (4.5b) with (4.1a) and (4.1b), respectively, the traditional gradient
recovery type error indicators are a part of the indicators presented in this paper. In the
following, we will study the performance of the traditional error indicators #p ¢ and
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Figure 8: The left figure is the error estimator #p g, (symbol "- -0") and the true error ep 4, (symbol "—o")

for Example 4.2. The right figure is the error estimators 77p 1 , (symbol "~ -x"), #1p 2 ; (symbol "~ -<") and
the true errors ep 1, (symbol "—"), ep 2, (symbol "—<") for Example 4.2. N is the number of degrees of
freedom.

Dx,pi
For simplicity, we take Example 4.2 as an example. Fig. 8 indicates the error estima-

tors for ¢ and p' generated by (4.5a) and (4.5b) are asymptotically exact in the adaptive
computation. Note that Fig. 5 shows the error estimator for ¢ obtained from (4.1a) is also
asymptotically exact in the adaptive computation, although it contains more terms than
the error indicator defined in (4.5a).

In order to explain this phenomenon, we first decompose the error indicator 74
shown in (4.1a) into two parts as follows

N, =D + MR, ¢r (4.6)

where 17p 14 is given by (4.5a) and the element residual is defined by

HRx,0 = h. (4.7)

2
qup;1+F3—|—diV(Gh¢h)‘ .
i=1 Ot

Fig. 9 displays the residual generated by (4.7) and two error estimators obtained re-
spectively from (4.5a) and (4.6). It is observed that the curve of the error estimators gen-
erated by (4.6) is very close to the estimators generated by (4.5a), when the degrees of
freedom is large. Fig. 9 also shows that the residual induced by (4.7) is much less than
that by (4.5a), which indicates the element residual 7, plays a very small role in the
error indicator 77y defined in (4.6) for Example 4.2. Therefore, the error estimator for



1380 R. G. Shen, S. Shuy, Y. Yang and M. J. Fang / Adv. Appl. Math. Mech., 12 (2020), pp. 1353-1383

10° g
LY
LY
3
Q >
A Y LY
=) LY
10 " \\\ 4
B
V‘ -~
N
v, ~
— §~
2
2107 Bl E
() e
)
0.52 -,
1 .
-
10°F ’5\3 E
= 9 = rIDma
Nrga 1
10’4 | | | |
10" 107 10° 10* 10° 10°

Figure 9: The error estimators 17p ¢, (symbol "~ -0"), 74,2 (symbol "~ -[J") and the residual g ¢,, (symbol "-
-") on the adaptive meshes for Example 4.2. N is the number of degrees of freedom.

¢ presented in this paper has the similar effect as the traditional error estimator in the
adaptive computation for Example 4.2.

Although the numerical experiment shows that the influence of the residual is small
in the error indicator presented in this paper, it is necessary to present the analysis of the
upper and lower bound for the PNP equations in this paper. Furthermore, the problem
tested here is a model problem. For some complex practical biological problems, the

source term F3 and 2 q'pl, in 1R 7,4 probably have an impact for the adaptive computation

of PNP equations, Wthh needs further study.

5 Conclusions

In this paper, we constructed a gradient recovery type a posteriori error estimator for
a class of steady-state Poisson-Nernst-Planck equations. The upper bounds and lower
bounds of the a posteriori error estimators are derived both for the electrostatic potential
and concentrations. Theoretical analysis and numerical experiments verify the validity
and efficiency of the a posteriori error estimators. The corresponding adaptive finite el-
ement computation is presented for PNP systems. Compared with the existing work
on the adaptive finite element computations for PNP equations, the adaptive finite ele-
ment algorithm constructed here is based on the a posteriori error analysis for PNP itself.
Particularly, we discussed only a special class of Poisson-Nernst-Planck equations in the
paper. In fact, this type of a posteriori error estimator is also efficient and reliable for more
general and complex nonlinear PNP equations, for example, the modified nonlinear PNP
equations (MNPNPE), which will be addressed in our next work.
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