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Abstract. We consider the local boundary values of generalized harmonic functions
associated with the rank-one Dunkl operator D in the upper half-plane R2

+ = R ×
(0, ∞), where

(D f )(x) = f ′(x) + (λ/x)[ f (x)− f (−x)]

for given λ ≥ 0. A C2 function u in R2
+ is said to be λ-harmonic if (D2

x + ∂2
y)u = 0.

For a λ-harmonic function u in R2
+ and for a subset E of ∂R2

+ = R symmetric about
y-axis, we prove that the following three assertions are equivalent: (i) u has a finite
non-tangential limit at (x, 0) for a.e. x ∈ E; (ii) u is non-tangentially bounded for a.e.
x ∈ E; (iii) (Su)(x) < ∞ for a.e. x ∈ E, where S is a Lusin-type area integral associated
with the Dunkl operator D.

Key Words: Dunkl operator, Dunkl transform, harmonic function, non-tangential limit, area in-
tegral.

AMS Subject Classifications: 42B20, 42B25, 42A38, 35G10

1 Introduction and main results

For given λ > 0, the rank-one Dunkl operator on the line R is defined by

(D f )(x) = f ′(x) +
λ

x
( f (x)− f (−x)).

A C2 function u in the upper half-plane R2
+ = R × (0, ∞) is said to be λ-harmonic if

∆λu = 0, where
∆λ = D2

x + ∂2
y.
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The operator ∆λ is called the λ-Laplacian, and can be written explicitly by

(∆λu) (x, y) =
∂2u
∂x2 +

∂2u
∂y2 +

2λ

x
∂u
∂x
− λ

x2 (u(x, y)− u(−x, y)) .

Some aspects of harmonic analysis in the upper half-plane R2
+ associated to the Dunkl

operator D were studied in [25] and their analogues in the unit disk D, associated with
Dunkl-Gegenbauer expansions, were developed in [26]. These are generalizations of the
seminal work of Muckenhoupt and Stein [31] on the Bessel operator and the Gegenbauer
expansions. In this paper we study the local existence of boundary values of λ-harmonic
functions in the upper half-plane R2

+.
It is well known that, if u is a harmonic function in the unit disk D and E is a subset of

positive measure of the boundary ∂D, then the existence of non-tangential limit at almost
every eiθ ∈ E of u can be characterized by non-tangential boundedness of u at almost ev-
ery eiθ ∈ E, and also by finiteness of Lusin’s area integral of u at almost every eiθ ∈ E.
The former, as a local version of Fatou’s theorem, was owed to Privalov [38], and the lat-
ter was proved by Marcinkiewicz and Zygmund [30] and Spencer [42]. One of the basic
tools in these works is the conformal mapping, which introduces technical difficulties in
extending them to more variables and other settings. Calderón [5,6] made a breakthrough
and generalized Privalov’s theorem and Marcinkiewicz and Zygmund’s theorem to Eu-
clidean half-spaces of several variables by the real-variable method. A generalization of
the theorem of Spencer [42] to several variables was obtained in Stein [43]. Since then,
criteria on existence of non-tangential boundary limits of harmonic functions in many
different contexts, in terms of non-tangential boundedness or one-side non-tangential
boundedness or finiteness of area integrals have been intensively studied; see, for exam-
ple, [1-4,7,14-22,24,32-37,39] and [46].

As usual, we denote by Γα(x) the positive cone of aperture α > 0 with vertex (x, 0) ∈
∂R2

+ = R, and Γh
α(x) the truncated one with height h > 0, that is,

Γh
α(x0) = {(x, y) ∈ R2

+ : |x− x0| < αy, 0 < y < h}.

For a function u defined in R2
+ and for α > 0, the non-tangential maximal function u∗∇(x)

is defined by
u∗∇(x) = sup

(t,y)∈Γα(x)
|u(t, y)|;

that u has a non-tangential limit at (x, 0) means that for every α > 0, lim u(t, y) exists as
(t, y) ∈ Γα(x) approaching to (x, 0); and that u is said to be non-tangentially bounded at
(x, 0) if u(t, y) is bounded in Γh

α(x) for some α, h > 0. For a C2 function u in R2
+, we define

the Lusin-type area integral Su = Sα,hu for some α, h > 0 by

(Sα,hu) (x) =
(∫

Γh
α(0)

τx(∆λu2)(−t, y)y−2λ|t|2λdtdy
)1/2

,
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where τx, acting on the first argument, is the associated (generalized) translation in the
Dunkl setting (see Section 2). We note that Su was first defined in [27] (see [28] also),
where it is used to characterize the Hardy spaces associated to the Dunkl operator.

Our purpose is to characterize the local existence of non-tangential boundary lim-
its of λ-harmonic functions in R2

+, which generalizes the theorems of Privalov [38],
Marcinkiewicz and Zygmund [30], Spencer [42], Calderón [5, 6] and Stein [43]. The main
results are stated in the following theorem.

Theorem 1.1. Assume that u is a λ-harmonic function in R2
+, and E is a measurable subset of

positive measure of ∂R2
+ = R and is symmetric about y-axis. Then the following assertions are

equivalent:

(i) u has a finite non-tangential limit at (x, 0) for almost every x ∈ E;

(ii) u is non-tangentially bounded at (x, 0) for almost every x ∈ E;

(iii) the area integral (Sα,hu)(x) is finite for almost every x ∈ E with some α, h > 0.

Several remarks are given in order.

(a) For a λ-harmonic function u in R2
+, from [29, (2.2)] we have

∆λu2(x, y) = 2
(

u2
x + u2

y

)
+ λ

(
u(x, y)− u(−x, y)

x

)2

,

which implies that ∆λu2 is nonnegative. Further, although the generalized transla-
tion operator τx is not a positive one, (Sα,hu)(x) preserves positivity since the region
Γh

α(0) of integration in defining (Sα,hu)(x) is symmetric about y-axis. For details, see
Section 2.

(b) We note that the assumption of reflection-symmetry on the given subset E of the
boundary in Theorem 1.1 is necessary, since the Dunkl operator D involves the
value of the function at the reflection-symmetric point.

(c) Here we give a short description on the generalized harmonic functions in the
Dunkl setting in the upper half-space Rd+1

+ = Rd × (0, ∞) for d ≥ 2, and the prob-
lem on their local non-tangential boundary limits is left for further work.

For given λk ≥ 0, k = 1, · · · , d, we put λ = (λ1, · · · , λd) as a multiplicity vector.
For a differentiable function f on Rd, the Dunkl operators are defined by

Dk f (x) =:
∂

∂xk
f (x) +

λk

xk
( f (x)− f (σkx)), k = 1, · · · , d,

where σkx = (x1, · · · ,−xk · · · , xd). The associated Laplacian is ∆λ = ∂2
y + ∑d

k=1 D
2
k ,

or explicitly, for a twice differentiable function u in Rd+1
+ ,

(∆λu) (x, y) = ∆u(x, y) +
d

∑
k=1

2λk

xk

∂

∂xk
u(x, y)−

d

∑
k=1

λk

x2
k
(u(x, y)− u(σkx, y)),
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where ∆ = ∂2
y + ∑d

k=1 ∂2
xk

is the usual Laplacian. As above, a C2 function u in Rd+1
+

is said to be λ-harmonic if ∆λu = 0.

(d) The more general setting of the Dunkl theory is on the study of multivariable an-
alytic structures associated with finite reflection groups, of which the basic tools
are the Dunkl transform and the Dunkl operators invariant under a given group
(cf. [8-13,41,45]). During the last decades, it has gained considerable interest in
various fields of mathematics and also in physical applications; for example, the
Dunkl operators for the symmetric group Sd on Rd are naturally connected with
the analysis of quantum many body systems of Calogero-Moser-Sutherland type,
which describe algebraically integrable systems in one dimension (cf. [23]).

The paper is organized as follows. Section 2 contains some basic facts on the rank-one
case of the Dunkl theory which will be relevant for the sequel. The proof of that (ii)⇒ (i)
of Theorem 1.1 is given in Section 3, and the equivalence of parts (ii) and (iii) in Theorem
1.1 is proved in Section 4.

2 Some facts on the rank-one case of the Dunkl theory

We denote by Lp
λ(R) the set of measurable functions f on R satisfying ‖ f ‖Lp

λ
< ∞, where

for 1 ≤ p < ∞,

‖ f ‖Lp
λ
=

{
cλ

∫
R
| f (x)|p|x|2λdx

}1/p

with
c−1

λ = 2λ+1/2Γ(λ + 1/2),

and ‖ f ‖L∞
λ
=: ‖ f ‖∞ is given in the usual way. For sake of simplicity, we set

〈 f , g〉λ = cλ

∫
R

f (x)g(x)|x|2λdx

whenever the integral exists, and for a measurable set E ⊂ R,

|E|λ = cλ

∫
E
|x|2λdx and σE = {−x : x ∈ E}.

S (R) denotes the space of C∞ functions on R rapidly decreasing together with their
derivatives, and Lλ,loc(R) the set of locally integrable functions on R associated with the
measure |x|2λdx. Throughout the paper, the constants cλ, mλ, c′λ and c′′λ have always the
given values respectively, and c, c′, and c′′ denote constants which may be different in
different occurrences.

For f ∈ L1
λ(R), its Dunkl transform is defined by

(Fλ f )(ξ) = cλ

∫
R

f (x)Eλ(−ixξ)|x|2λdx, ξ ∈ R,
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where Eλ is the Dunkl kernel (cf. [11, 40])

Eλ(z) = jλ−1/2(iz) +
z

2λ + 1
jλ+1/2(iz), z ∈ C,

and jα(z) is the normalized Bessel function

jα(z) = 2αΓ(α + 1)
Jα(z)

zα
= Γ(α + 1)

∞

∑
n=0

(−1)n(z/2)2n

n!Γ(n + α + 1)
.

Since j−1/2(z) = cos z, j1/2(z) = z−1 sin z, it follows that E0(iz) = eiz and F0 agrees with
the usual Fourier transform F . In what follows, we assume that λ > 0.

The Dunkl transform shares many of the important properties with the usual Fourier
transform, part of which are listed as follows. These conclusions extend those on the
Hankel transform and are special cases on the general Dunkl transform studied in [8,12].

Proposition 2.1. (i) If f ∈ L1
λ(R), then Fλ f ∈ C0(R) and ‖Fλ f ‖∞ ≤ ‖ f ‖L1

λ
.

(ii) (Inversion). If f ∈ L1
λ(R) such that Fλ f ∈ L1

λ(R), then f (x) = [Fλ(Fλ f )](−x).
(iii) For f ∈ S (R), we have [Fλ(D f )](ξ) = iξ(Fλ f )(ξ), [Fλ(x f )](ξ) = i[Dξ(Fλ f )](ξ)

for ξ ∈ R; and Fλ is a topological automorphism on S (R).
(iv) (Product formula). For all f , g ∈ L1

λ(R), we have 〈Fλ f , g〉λ = 〈 f , Fλg〉λ.
(v) (Plancherel). There exists a unique extension of Fλ to L2

λ(R) with ‖Fλ f ‖L2
λ
= ‖ f ‖L2

λ
.

If (x, t) 6= (0, 0), the generalized translation (τt f )(x) of f ∈ Lλ,loc(R) associated to the
Dunkl transform Fλ is defined by (cf. [40])

(τt f )(x) = c′λ
∫ π

0

(
fe(〈x, t〉θ) + fo(〈x, t〉θ)

x + t
〈x, t〉θ

)
(1 + cos θ) sin2λ−1 θdθ, (2.1)

where

c′λ = Γ(λ + 1
2 )/(Γ(λ)Γ(

1
2 )), fe(x) =

1
2
( f (x) + f (−x)),

fo(x) =
1
2
( f (x)− f (−x)), 〈x, t〉θ =

√
x2 + t2 + 2xt cos θ.

If (x, t) = (0, 0), we put (τt f )(x) = f (0). We note that τt is not a positive operator in
general (cf. [40]). An equivalent form of τt f for t 6= 0 is given by

(τt f )(x) = cλ

∫
R

f (z)Wλ(x, t, z)|z|2λdz,

where, for x, t, z ∈ R,

Wλ(x, t, z) =
c′′λ(1− σx,t,z + σz,x,t + σz,t,x)|xtz|1−2λ

[((|x|+ |t|)2 − z2)(z2 − (|x| − |t|)2)]1−λ
χ(||x|−|t||,|x|+|t|)(|z|), (2.2)
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and

c′′λ = 23/2−λ
(
Γ(λ + 1/2)

)2/
√

πΓ(λ),

σx,t,z =
x2 + t2 − z2

2xt
,

if x, t ∈ R \ {0}, and 0 otherwise.
For two appropriate functions f and g on R, their λ-convolution f ∗λ g is defined by

( f ∗λ g)(x) = cλ

∫
R
(τx f )(−t)g(t)|t|2λdt.

The properties of τt and ∗λ are listed as follows (cf. [25, 40]).

Proposition 2.2. (i) If f ∈ Lλ,loc(R), then for all x, t ∈ R, (τt f )(x) = (τx f )(t) and (τt f̃ )(x) =
(τ̃−t f )(x), where f̃ (x) = f (−x).

(ii) If f ∈ Lλ,loc(R) is even and nonnegative, then for all x, t ∈ R, (τt f )(x) ≥ 0; and if we
define τ∗t = (τt + τ−t)/2, then for nonnegative f ∈ Lλ,loc(R) and x, t ∈ R, (τ∗t f )(x) ≥ 0.

(iii) For all 1 ≤ p ≤ ∞ and f ∈ Lp
λ(R), ‖τt f ‖Lp

λ
≤ 4‖ f ‖Lp

λ
with t ∈ R, and for 1 ≤ p < ∞,

limt→0 ‖τt f − f ‖Lp
λ
= 0.

(iv) If f ∈ Lp
λ(R), 1 ≤ p ≤ 2, and t ∈ R, then [Fλ(τt f )](ξ) = Eλ(itξ)(Fλ f )(ξ) for

almost every ξ ∈ R.
(v) For measurable f , g on R, we have 〈τt f , g〉λ = 〈 f , τ−tg〉λ, whenever the integral∫∫

| f (z)||g(x)||Wλ(x, t, z)||z|2λ|x|2λdzdx

is convergent. In particular, ∗λ is commutative.
(vi) (Young inequality). If p, q, r ∈ [1, ∞] and 1/p + 1/q = 1 + 1/r, then ‖ f ∗λ g‖Lr

λ
≤

4‖ f ‖Lp
λ
‖g‖Lq

λ
for f ∈ Lp

λ(R), g ∈ Lq
λ(R).

(vii) Assume that p, q, r ∈ [1, 2] and 1/p + 1/q = 1 + 1/r. Then for f ∈ Lp
λ(R), g ∈

Lq
λ(R), [Fλ( f ∗λ g)](ξ) = (Fλ f )(ξ)(Fλg)(ξ). In particular ∗λ is associative in L1

λ(R).

The λ-Poisson integral of f ∈ Lp
λ(R), 1 ≤ p ≤ ∞, is defined by (P f )(x, y) = ( f ∗λ

Py)(x), i.e.,

(P f )(x, y) = cλ

∫
R

f (t)(τxPy)(−t)|t|2λdt, (x, y) ∈ R2
+, (2.3)

where
Py(x) = mλy(y2 + x2)−λ−1

is the λ-Poisson kernel and

mλ = 2λ+1/2Γ(λ + 1)/
√

π.

For α > 0, the non-tangential maximal function is

(P∗∇ f )(x) = sup
(t,y)∈Γα(x)

|(P f )(t, y)|.
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Proposition 2.3 (Theorem 5.4 in [45]). For f ∈ Lp
λ(R), 1 ≤ p ≤ ∞, ‖(P f )(·, y)‖Lp

λ
≤ ‖ f ‖Lp

λ
;

and for f ∈ X = Lp
λ(R), 1 ≤ p < ∞, or C0(R), limy→0+ ‖(P f )(·, y)− f ‖X = 0.

Proposition 2.4 (Theorem 3.8 and Corollary 3.9 in [25]). (i) The non-tangential maximal
operator P∗∇ is of type (p, p) for 1 < p ≤ ∞ and of weak-type (1, 1).

(ii) Assume that α > 0. If f ∈ Lp
λ(R), 1 ≤ p ≤ ∞, then for almost every x ∈ R, the

λ-Poisson integral (P f )(t, y) converges to f (x) as (t, y) ∈ Γα(x) approaching to (x, 0).

The Green formula and the maximum principle associated with the Dunkl operator
are given in the following propositions.

Proposition 2.5 (Green’s formula, (38) in [25]). Assume that the bounded domain Ω ⊂ R2 is
symmetric about y-axis and with piecewise-smooth boundary curve ∂Ω. Then for u, v ∈ C2(Ω),∫∫

Ω
(v∆λu− u∆λv)|x|2λdxdy =

∫
∂Ω
|x|2λ

(
v

∂u
∂n
− u

∂v
∂n

)
d`,

where ∂/∂n denotes the directional derivative of the outward normal.

Proposition 2.6 (Maximum Principle, Lemma 3.2 in [26]). Let Ω ⊆ R2 be an open bounded
region symmetric about y−axis, and let u ∈ C(Ω). Assume that u is of class C2 in the region
where u > 0 and satisfies ∆λu ≥ 0 there. If u|∂Ω ≤ 0, then u ≤ 0 on the whole Ω.

As a corollary we have

Proposition 2.7 (Maximum Principle). Let Ω ⊂ R2 be an open bounded domain symmetric
about y−axis, and let u ∈ C(Ω). If u is λ-harmonic in Ω, then

max
(x,y)∈Ω

u(x, y) = max
(x,y)∈∂Ω

u(x, y).

3 The proof of the main theorem

In this section, we shall prove that (ii)⇒ (i) in Theorem 1.1, which is restated as follows.

Theorem 3.1. Assume that u is a λ-harmonic function in R2
+, and E is a measurable set of

positive measure of ∂R2
+ = R and is symmetric about y-axis. If u is non-tangentially bounded at

(x, 0) for every x ∈ E, then u has a finite non-tangential limit at (x, 0) for almost every x ∈ E.

It is noted that, in the above theorem, we are only assuming that u is bounded in Γh
α(x)

for some α, h > 0, and in particular α, h can depend on x. Nevertheless, the conclusion
is that there exists a subset E0 of full measure of E such that for every α > 0 and each
x ∈ E0, u(t, y) has a finite limit as (t, y) ∈ Γα(x) approaches to (x, 0). The reasons for
this is partly contained in the following lemma. For a subset E of ∂R2

+ = R and for fixed
α, h > 0, we always use the notation

ΩE(α, h) =:
⋃

x0∈E

Γh
α(x0).



J. X. Jiu and Z. K. Li / Anal. Theory Appl., 36 (2020), pp. 326-347 333

Lemma 3.1 (pp. 201 in [44]). Let u be a continuous function in R2
+, and E a measurable set of

∂R2
+ = R with 0 < |E|0 < ∞, where | · |0 denotes the Lebesgue measure. If u is non-tangentially

bounded at (x, 0) for every x ∈ E, then for any ε > 0, there exists a compact set E1 satisfying

(i) E1 ⊂ E, |E− E1|0 < ε;

(ii) for any α > 0 and h > 0, there is a constant cα,h,ε > 0, so that

|u(x, y)| ≤ cα,h,ε, (x, y) ∈ ΩE1(α, h).

Lemma 3.2. If u is a λ-harmonic function in R2
+, then ∆λ|u| ≥ 0 in the region where u 6= 0.

Indeed, a direct calculation shows that

∆λ|u(x, y)| = λ

x2 [|u(−x, y)| − (sgn u(x, y))u(−x, y)] ≥ 0.

The next lemma plays a crucial role in the proof of Theorem 3.1.

Lemma 3.3. Let E be a measurable set of ∂R2
+ = R, symmetric about y-axis, and for α > 0,

Ω = ΩE(α, 1). Then there exists a nonnegative λ-harmonic function H in R2
+ satisfying

(i) H(x, y) is even in x and H(x, y) ≥ 2 for (x, y) ∈ R2
+
⋂

∂Ω;

(ii) H has non-tangential limit 0 at (x, 0) for almost every x ∈ E.

Proof. We first define

H0(x, y) = (PχEc) (x, y) + y,

where χEc is the characteristic function of the complement Ec of E. It is obvious that H0 is
nonnegative and λ-harmonic in R2

+, and also even in x since χEc is even. By Proposition
2.4, H has non-tangential limit 0 at (x, 0) for almost every x ∈ E.

Now we prove that H0 has a positive lower bound on R2
+
⋂

∂Ω. For (x, y) ∈ ∂Ω with
y = 1, H(x, y) ≥ 1. If (x, y) ∈ ∂Ω with 0 < y < 1, then {t : |t− x| < αy} ⊂ Ec; this is
because, t′ ∈ E with |t′ − x| < αy implies that (x, y) ∈ Γ1

α(t′) ⊂ Ω. Thus, by (2.3) we have

H0(x, y) ≥ cλ

∫
|t−x|<αy

τxPy(−t)|t|2λdt. (3.1)

We need to use the following estimate for the λ-Poisson kernel τxPy(−t) (cf. [25, Corollary
3.7])

(τxPy)(−t) � y[y + |x|+ |t|]−2λ

y2 + (x− t)2 ln
(

y2 + (x− t)2

y2 + (x + t)2 + 2
)

. (3.2)

Since, for |t− x| < αy,

y2 + (x− t)2 ≤ (α2 + 1)y2 and y + |x|+ |t| ≤ (α + 1)y + 2|x|,
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it follows that, for some c > 0,

(τxPy)(−t) ≥ cy−1(y + |x|)−2λ. (3.3)

Then from (3.1) we have

H0(x, h) ≥ c
y(y + |x|)2λ

∫
|t−x|<αy

|t|2λdt,

and since ∫
|t−x|<αy

|t|2λdt � y(|x|+ y)2λ,

we conclude that H0 has a positive lower bound c0 on R2
+
⋂

∂Ω. Finally the function
H = 2H0/c0 is desired.

Lemma 3.4. Let u(x, y) be a λ-harmonic function in R2
+, E a compact subset of ∂R2

+ = R being
symmetric about y-axis, and for α > 0, Ω = ΩE(α, 2). If

|u(x, y)| ≤ 1, (x, y) ∈ Ω, (3.4)

then for almost every x ∈ E, u(t, y) has a finite limit as (t, y) ∈ Γα(x) approaching to (x, 0).

Proof. We first note that Ω is an open bounded domain in R2
+, symmetric about y−axis.

Choose a sequence {yk}∞
k=1 ⊂ (0, 1) such that yk → 0, and for x ∈ R, define

ϕk(x) =
{

u(x, yk), if (x, yk) ∈ Ω,
0, otherwise.

Obviously |ϕk| ≤ 1 on R for all k ≥ 1, and thus, one can find a function ϕ with |ϕ| ≤ 1 on
R and a subsequence {ϕk j} so that {ϕk j} converges weakly ∗ to ϕ. In particular, for their
λ-Poisson integrals, we have

lim
j→∞

(Pϕk j)(x, y) = (Pϕ)(x, y), (x, y) ∈ R2
+.

If we write
ψk(x, y) = u(x, y + yk)− (Pϕk)(x, y),

then

ψ(x, y) =: lim
j→∞

ψk j(x, y) = u(x, y)− (Pϕ)(x, y), (x, y) ∈ R2
+. (3.5)

Further we claim that, for each k,

|ψk(x, y)| ≤ 2H(x, y), (x, y) ∈ Ω1 =: ΩE(α, 1), (3.6)
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where H is the function given in Lemma 3.3. In fact, we shall prove the following stronger
version of (3.6)

|ψk(x, y)|+ |ψk(−x, y))| ≤ 2H(x, y), (x, y) ∈ Ω1. (3.7)

If there were some (x0, y0) ∈ Ω1 so that |ψk(x0, y0)| + |ψk(−x0, y0)| > 2H(x0, y0), we
consider the set

G = {(x, y) ∈ Ω1 : Ψk(x, y)− 2H(x, y) > ε0},
where

Ψk(x, y) = |ψk(x, y)± ψk(−x, y))| and ε0 =
1
2

Ψk(x0, y0)− H(x0, y0).

The choice of plus or minus sign depends on

ψk(x0, y0)ψk(−x0, y0) ≥ 0 or ψk(x0, y0)ψk(−x0, y0) ≤ 0.

It follows that the set G is non-empty, open and symmetric about y-axis. By Lemma 3.2
and Proposition 2.6 (the maximum principle), we have ∂G

⋂
∂Ω1 6= ∅, since, otherwise,

G ⊂ Ω1 and the function Ψk − 2H would attain its maximum value inside Ω1.
For (x∗, y∗) ∈ ∂G

⋂
∂Ω1, there exists a sequence of points {(x̂`, ŷ`)} ⊂ G converging

to (x∗, y∗), so that

2H(x̂`, ŷ`) + ε0 < Ψk(x̂`, ŷ`), ` = 1, · · · . (3.8)

If y∗ > 0, letting `→ ∞, gives

2H(x∗, y∗) + ε0 ≤ Ψk(x∗, y∗);

but by Proposition 2.3 and (3.4),

|ψk(±x∗, y∗)| ≤ |u(±x∗, y∗ + yk)|+ |(Pϕk)(±x∗, y∗)| ≤ 2,

which implies Ψk(x∗, y∗) ≤ 4 and leads to a contradiction to the fact H(x∗, y∗) ≥ 2 by
Lemma 3.3. Hence y∗ = 0, and further ±x∗ ∈ E.

Since ϕk(x) = u(x, yk) for |x− x∗| < αyk, ϕk is continuous at x∗. Now from (2.3) and
(3.2), we have

|(Pϕk)(x̂`, ŷ`)− ϕk(x∗)|

≤cλ

∫
R
|ϕk(t)− ϕk(x∗)| (τx̂`Pŷ`)(−t)|t|2λdt

≤c
∫

R
|ϕk(t)− ϕk(x∗)| ŷ`

ŷ2
` + (x̂` − t)2

ln

(
(x̂` − t)2

ŷ2
`

+ 3

)
dt

=c
∫

R
|ϕk(x̂` − ŷ`t)− ϕk(x∗)|

ln
(
t2 + 3

)
1 + t2 dt,
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and by the Lebesgue dominated convergence theorem, (Pϕk)(x̂`, ŷ`) tends to ϕk(x∗) as
`→ ∞. It follows that

lim
`→∞

ψk(x̂`, ŷ`) = u(x∗, yk)− ϕk(x∗) = 0

and similarly
lim
`→∞

ψk(−x̂`, ŷ`) = 0.

Thus, from (3.8) we have
lim sup
`→∞

H(x̂`, ŷ`) ≤ −ε0,

which contradicts the nonnegativity of H by Lemma 3.3. The claim (3.7), and so (3.6), are
proved.

Finally, taking k = k j in (3.6) and letting j→ ∞ yields |ψ(x, y)| ≤ 2H(x, y) for (x, y) ∈
Ω1, and by Lemma 3.3, for almost every x ∈ E, ψ(t, y) tends to zero as (t, y) ∈ Γα(x)
approaching to (x, 0). Further by Proposition 2.4, (Pϕ)(x, y) has a finite non-tangential
limit for almost every x ∈ E, and hence, by (3.5), u(x, y) = ψ(x, y) + (Pϕ)(x, y) has the
desired assertion in the lemma.

Now we turn to the proof of Theorem 3.1:

Proof. We assume that the set E is bounded, without loss of generality. By Lemma 3.1,
for each k ∈ N, there exists a compact set Ek ⊂ E, such that |E \ Ek|0 < 1/k, and for any
α > 0, there is a constant cα,k > 0, so that |u(x, y)| ≤ cα,k, (x, y) ∈ ⋃x0∈Ek

Γ2
α(x0). If we put

E0 =
⋃∞

k=1 Ek, then |E \ E0|0 = 0. Since E is symmetric about y-axis, we may choose each
Ek preserving this property; and otherwise, Ek

⋂
σEk could be used instead of Ek. Thus

applying Lemma 3.4 to u/cα,k, it follows that, for almost every x ∈ Ek, u(t, y)/cα,k has a
finite limit as (t, y) ∈ Γα(x) approaching to (x, 0), and hence, u has a finite non-tangential
limit at (x, 0) for almost every x ∈ E. The proof is completed.

4 The proof of the main theorem (continue)

We recall that, for a C2 function u in R2
+, the Lusin-type area integral Su = Sα,hu for some

α, h > 0 is defined by

(Sα,hu) (x) =
(∫

Γh
α(0)

τx(∆λu2)(−t, y)y−2λ|t|2λdtdy
)1/2

.

In this section, we shall prove the equivalence of parts (ii) and (iii) in Theorem 1.1, which
is reformulated in the following two theorems.

Theorem 4.1. Assume that u is a λ-harmonic function in R2
+, and E is a measurable subset of

positive measure of ∂R2
+ = R and is symmetric about y-axis. If u is non-tangentially bounded at

(x, 0) for every x ∈ E, then for arbitrary α, h > 0, the area integral (Sα,hu)(x) is finite for almost
every x ∈ E.
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Theorem 4.2. Assume that u is a λ-harmonic function in R2
+, and E is a measurable subset of

positive measure of ∂R2
+ = R and is symmetric about y-axis. If for every x ∈ E, there exist

some α, h > 0, so that the area integral (Sα,hu)(x) is finite, then u is non-tangentially bounded
at (x, 0) for almost every x ∈ E.

Clearly Theorem 4.1 is a stronger version of that (ii)⇒ (iii) in Theorem 1.1. To prove
Theorems 4.1 and 4.2, we need several lemmas.

Lemma 4.1. Let E be a measurable and bounded set of ∂R2
+ = R, symmetric about y-axis. Then

for any ε > 0, there exists a compact set Eε, symmetric about y-axis, satisfying
(i) Eε ⊂ E, |E− Eε|λ < ε;
(ii) for η ∈ (0, 1), there exists some δ > 0, such that for x ∈ Eε and 0 < r < δ,

|(x− r, x + r) ∩ E|λ > η|(x− r, x + r)|λ.

Proof. For f ∈ Lλ,loc(R), we define the weighted maximal function Mλ f by

(Mλ f )(x) = sup
r>0

cλ

∫ x+r

x−r
| f (t)||t|2λdt/|(x− r, x + r)|λ.

Since Mλ is of weak-type (1, 1), by a standard process one can prove that

lim
r→0+

cλ

∫ x+r

x−r
| f (t)||t|2λdt/|(x− r, x + r)|λ = f (x)

for a.e. x ∈ R.
Now taking f = χE, it follows that

lim
r→0+

|(x− r, x + r) ∩ E|λ
|(x− r, x + r)|λ

= 1 for a.e. x ∈ E.

By Egorov’s theorem, for given ε > 0 there exists Eε ⊂ E, |E − Eε|λ < ε, so that
|(x− r, x + r) ∩ E|λ /|(x− r, x + r)|λ tends to 1 uniformly for x ∈ Eε as r → 0+. Clearly
one may take Eε to be a closed subset of E. Since E is symmetric about y-axis, the uniform
convergence above is true also for x ∈ σEε, and so is for x ∈ Eε ∪ σEε. Thus we may take
Eε to be symmetric about y-axis, as desired.

Lemma 4.2. Let u(x, y) be a λ-harmonic function in R2
+, E a compact subset of ∂R2

+ = R being
symmetric about y-axis, and for α, h > 0, Ω = ΩE(α, h). Then∫

E
(Sα,hu)2(x)|x|2λdx ≤ c

∫∫
Ω

y(∆λu2)(t, y)|t|2λdtdy, (4.1)

whenever the right hand side above is finite.
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Proof. Let χΓh
α(0) be the characteristic function of Γh

α(0), i.e.,

χΓh
α(0)(x, y) = 1 if |x| < αy and 0 < y < h,

and χΓh
α(0)(x, y) = 0 otherwise. By Proposition 2.2(i) and (v), we have∫

E
(Sα,hu)2(x)|x|2λdx

=
∫

E

∫∫
R2

+

(∆λu2)(−t, y)
(

τxχΓh
α(0)

)
(t, y)y−2λ|t|2λdtdy|x|2λdx, (4.2)

where τx acts on the first argument of χΓh
α(0). If for x ∈ E, (t, y) /∈ Γh

α(x)
⋃

Γh
α(−x), then

y ≥ h or 0 < y < h, with ||t| − |x|| ≥ αy,

and in the later case, the translation kernel (see (2.2)) Wλ(x, t, z) vanishes for (z, y) ∈
Γh

α(0). Thus we have(
τxχΓh

α(0)

)
(t, y) = 0, (t, y) /∈ Γh

α(x) ∪ Γh
α(−x), (4.3)

and then, in view of the symmetry of E about y-axis,∫
E
(Sα,hu)2(x)|x|2λdx ≤

∫∫
Ω
(∆λu2)(−t, y)k1(t, y)y−2λ|t|2λdtdy, (4.4)

where
k1(t, y) =

∫
E

(
τxχΓh

α(0)

)
(t, y)|x|2λdx.

By Proposition 2.2(i), (ii) and (iii), it follows that

k1(t, y) =
∫

E

(
τtχΓh

α(0)

)
(x, y)|x|2λdx ≤

∫
R

(
τtχ(−αy,αy)

)
(x)|x|2λdx

≤4
∫

R
χ(−αy,αy)(x)|x|2λdx = cy2λ+1.

Substituting this into (4.4) and in consideration of the symmetry of Ω about y-axis, (4.1)
is proved.

Lemma 4.3. Let u(x, y) be a λ-harmonic function in R2
+, E a measurable and bounded set of

∂R2
+ = R being symmetric about y-axis, and let β, κ > 0 be given. Then for any ε > 0, there

exists a compact set Eε, symmetric about y-axis, satisfying
(i) Eε ⊂ E, |E− Eε|λ < ε;
(ii) for fixed α ∈ (0, β) and h ∈ (0, κ), there exists some c = c(ε, α, β, h, κ) > 0, such that∫∫

ΩEε (α,h)
y(∆λu2)(t, y)|t|2λdtdy ≤ c

∫
E
(Sβ,κu)2(x)|x|2λdx,

whenever the right hand side above is finite.
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Proof. For given ε > 0, by Lemma 4.1 there exist a compact subset Eε of E, symmetric
about y-axis, and some δ > 0, satisfying |E− Eε|λ < ε and

|(x− r, x + r) ∩ E|λ >
1
2
|(x− r, x + r)|λ (4.5)

for x ∈ Eε and 0 < r < δ.
Now we fix α < β and h < κ. Since (t, y) ∈ Γκ

β(x) ∪ Γκ
β(−x) is equivalent to (x, y) ∈

Γκ
β(t) ∪ Γκ

β(−t), from (4.2) and (4.3) and by Proposition 2.2(i), we have

∫
E
(Sβ,κu)2(x)|x|2λdx =

∫∫
ΩE(β,κ)

(∆λu2)(t, y)k2(t, y)y−2λ|t|2λdtdy, (4.6)

where

k2(t, y) =
∫

E

(
τ−tχΓκ

β(0)

)
(x, y)χΓκ

β(t)∪Γκ
β(−t)(x, y)|x|2λdx. (4.7)

For given (t, y) ∈ ΩEε(α, h), there exists some x̄ ∈ Eε such that (t, y) ∈ Γh
α(x̄). Thus, when

|x− x̄| < γy, γ = min{(β− α)/2, δ/h}, (4.8)

we have |x− t| < α′y with α′ = (α + β)/2, which, certainly, implies that (x, y) ∈ Γκ
β(t).

We claim that, there exists a constant c = c(α, β) > 0, such that for (x, y) ∈ Γh
α′(t),

(
τ−tχΓκ

β(0)

)
(x, y) ≥ c

(
y2

|xt|+ y2

)λ

. (4.9)

In fact, from (2.1) it follows that(
τ−tχΓκ

β(0)

)
(x, y) = c′λ

∫ 1

−1
χ{s:x2+t2−2xts<β2y2}(s)(1 + s)λ(1− s)λ−1ds;

but for
x2 + t2 − 2xts = (x− t)2 + 2xt(1− s) ≤ (x− t)2 + 2|xt|(1− s),

we have (
τ−tχΓκ

β(0)

)
(x, y) ≥ c′λ

∫ 1

0
χ{s:(x−t)2+2|xt|(1−s)<β2y2}(s)(1− s)λ−1ds.

If (x− t)2 + 2|xt| < β2y2, then(
τ−tχΓκ

β(0)

)
(x, y) ≥ cλ

∫ 1

0
(1− s)λ−1ds = c,
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which concludes (4.9); if (x− t)2 + 2|xt| ≥ β2y2, one has(
τ−tχΓκ

β(0)

)
(x, y) ≥c′λ

∫ 1

1− β2y2−(x−t)2
2|xt|

(1− s)λ−1ds

=c
(

β2y2 − (x− t)2

2|xt|

)λ

,

and so, for (x, y) ∈ Γh
α′(t), (

τ−tχΓκ
β(0)

)
(x, y) ≥ c′

(
y2/|xt|

)λ
,

which again concludes (4.9).
Now we show that, for x satisfying (4.8),

|xt|+ y2 � |x̄|2 + y2. (4.10)

If |t| ≤ 2βy, then

|x̄| ≤ |x̄− t|+ |t| ≤ αy + 2βy < 3βy,
|x| ≤ |x− x̄|+ |x̄| < 4βy,

thus (4.10) is verified. If |t| > 2βy, we have

|x̄| ≤ |t|+ |x̄− t| ≤ |t|+ αy < 2|t|,
|x̄| ≥ |t| − |x̄− t| ≥ |t| − αy ≥ |t|/2,
|x| ≤ |x̄|+ |x− x̄| ≤ |x̄|+ βy ≤ |x̄|+ |t|/2 ≤ 2|x̄|,
|x| ≥ |x̄| − |x− x̄| ≥ |x̄| − βy/2 ≥ |x̄| − |t|/4 ≥ |x̄|/2,

and then, collecting these estimates verifies (4.10) again.
Applying (4.9) and (4.10) to (4.7) we obtain, for (t, y) ∈ ΩEε(α, h),

k2(t, y) ≥ c
(

y
|x̄|+ y

)2λ

|(x̄− γy, x̄ + γy) ∩ E|λ ;

and for x̄ ∈ Eε and γy ≤ δy/h < δ, appealing to (4.5) and the estimate

|(x̄− γy, x̄ + γy)|λ � y(|x̄|+ y)2λ

yields

k2(t, y) ≥ c
2

(
y

|x̄|+ y

)2λ

|(x̄− γy, x̄ + γy)|λ ≥ c′y2λ+1.

Finally, inserting this into (4.6) we get∫
E
(Sβ,κu)2(x)|x|2λdx ≥ c′

∫∫
ΩEε (α,h)

y(∆λu2)(t, y)|t|2λdtdy.

The proof of the lemma is completed.
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Lemma 4.4. Let E be a compact subset of ∂R2
+ = R, symmetric about y-axis, and for α, h >

0, Ω = ΩE(α, h). Then there exists a family of y-symmetric regions {Ωε}ε∈(0,h/3), with the
following properties:
(i) Ωε ⊂ Ω, and Ωε1 ⊂ Ωε2 if ε2 < ε1;
(ii) Ωε → Ω as ε→ 0+ (i.e., ∪Ωε = Ω);
(iii) The boundary ∂Ωε is the union of two parts, ∂Ωε = C1

ε ∪ C2
ε, so that C2

ε is a portion of the
horizontal line with y = h− ε; and
(iv) C1

ε is a portion of the plane curve y = α−1δε(x) where δε ∈ C∞(R), and |δ′ε(x)| ≤ 1.

The proof of the lemma follows from that of [44, pp. 206, Lemma 2.2.1], and we only
need to check the symmetry of Ωε. As in [44, pp. 206-207], set δ(x) = dist(x, E). Then δ is
a Lipschitz function, and also even, since E is symmetric about y-axis. We choose a non-
negative and even ϕ ∈ C∞(R), satisfying suppϕ ⊂ [−1, 1] and

∫
R

φ(x)dx = 1, and for ε ∈
(0, h/3), define δε(x) = (δ ∗ ϕαε) (x)+ 2αε and Ωε = {(x, y) : δε(x) < αy, 0 < y < h− ε}.
Obviously δε is even and so Ωε is symmetric about y-axis. Since δ(x) < δε(x), δε2(x) <
δε1(x) for ε2 < ε1, and δε(x) tends to δ(x) as ε → 0+ uniformly, these Ωε’s satisfy the
requirements (i)-(iv).

Lemma 4.5 (cf. [27, 28]). Let β, κ > 0 be given and u a λ-harmonic function in Γκ
β(x0) ∪

Γκ
β(−x0). Then for fixed α ∈ (0, β) and h ∈ (0, κ), there exists a constant c = c(α, β, h, κ) > 0,

so that
(i) if |u| ≤ 1 in Γκ

β(x0) ∪ Γκ
β(−x0), then y|∇u| ≤ c in Γh

α(x0);

(ii) if (Sβ,κu)(x0) ≤ 1 and (Sβ,κu)(−x0) ≤ 1, then y|∇u| ≤ c in Γh
α(x0).

Now we turn to the proofs of Theorems 4.1 and 4.2.
Proof of Theorem 4.1. For given α, h > 0, we fix β > α and κ > h. We may assume that
E is bounded, without loss of generality. By Lemma 3.1, for each j ∈ N, there exists a
compact set Ej ⊂ E, such that |E \ Ej|0 < 1/j, and there is a constant cβ,κ,j > 0, so that
|u(x, y)| ≤ cβ,κ,j, (x, y) ∈ ΩEj(β, κ). If we put E0 =

⋃∞
j=1 Ej, then |E \ E0|0 = 0. Since E is

symmetric about y-axis, we may choose each Ej preserving this property. Thus, the proof
of the theorem would be completed once we prove that for a compact and y-symmetric
set E ⊂ ∂R2

+ = R, ∫
E
(Sα,hu)2(x)|x|2λdx < ∞

under the condition

|u(x, y)| ≤ 1 for (x, y) ∈ ΩE(β, κ), (4.11)

and by Lemma 4.2, it suffices to show∫∫
ΩE(α,h)

y(∆λu2)(t, y)|t|2λdtdy < ∞.
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Further, for Ω = ΩE(α, h), there exists a family of y-symmetric regions {Ωε}ε>0 satisfying
(i)-(iv) in Lemma 4.4, and hence, we only need to prove that, there exists some constant
c > 0 independent of ε ∈ (0, h/3), so that∫∫

Ωε

y(∆λu2)(t, y)|t|2λdtdy < c. (4.12)

Taking integration over Ωε instead of Ω is for legitimate use of Green’s formula. In fact,
for U, V ∈ C2(Ωε), by Proposition 2.5 we have

∫∫
Ωε

(V∆λU −U∆λV)|x|2λdxdy =
∫

∂Ωε

|x|2λ

(
V

∂U
∂n
−U

∂V
∂n

)
d`.

If U = u2 and V = y, then

∫∫
Ωε

y(∆λu2)(x, y)|x|2λdxdy =
∫

∂Ωε

|x|2λ

(
y

∂u2

∂n
− u2 ∂y

∂n

)
d`. (4.13)

Since ∂Ωε ⊂ ΩE(β, κ), it follows from Lemma 4.5(i) and (4.11) that∣∣∣∣y ∂u2

∂n

∣∣∣∣ ≤ 2y|u||∇u| ≤ c on ∂Ωε;

and since |∂y/∂n| ≤ 1, we have
∣∣u2∂y/∂n

∣∣ ≤ 1 on ∂Ωε. Applying these estimates to the
right hand side of (4.13) and on account of boundedness of Ω = ΩE(α, h), we get∫∫

Ωε

y(∆λu2)(x, y)|x|2λdxdy ≤ c
∫

∂Ωε

|x|2λd` ≤ c′
∫

∂Ωε

d`. (4.14)

Since E is bounded, it follows from [44, pp. 209] that the length of ∂Ωε is bounded by a
constant independent of ε. This proves (4.12) and completes the proof of Theorem 4.1. �

Proof of Theorem 4.2. Again, we assume that E is bounded without loss of generality. By
the assumption, E =

⋃
Ej, where Ej =

{
x ∈ E : (Sj−1,j−1 u)(±x) ≤ j

}
which is symmetric

about y-axis; and for each j, by Lemma 4.3, there exists a sequence of compact and y-
symmetric subsets Ej,k (k = 1, · · · ) of Ej such that |Ej \ Ej,k|λ < 1/k, and for fixed α ∈
(0, 1/j) and h ∈ (0, 1/j), there exists some c = c(α, h, j, k) > 0, such that∫∫

ΩEj,k (α,h)
y(∆λu2)(t, y)|t|2λdtdy ≤ c

∫
Ej

(Sj−1,j−1 u)2(x)|x|2λdx.

For (Sj−1,j−1 u)(x) ≤ j (x ∈ Ej) and Ej is a bounded set, the left hand side above is finite;
and further, by Lemma 4.5 there exists some c1 = c1(α, h, j, k) > 0 such that y|∇u(x, y)| ≤
c1 for (x, y) ∈ ΩEj(α, h). Since |Ej \

⋃∞
k=1 Ej,k|λ = 0, the proof of the theorem would be
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completed once we prove that, for a compact and y-symmetric set E ⊂ ∂R2
+ = R, u is

non-tangentially bounded at (x, 0) for almost every x ∈ E under the conditions∫∫
ΩE(α,h)

y(∆λu2)(x, y)|x|2λdxdy ≤ 1, (4.15)

for some α, h > 0, and

y|∇u(x, y)| ≤ 1 for (x, y) ∈ ΩE(α, h). (4.16)

We fix α1 ∈ (0, α) and h1 ∈ (0, h), and work with Ωε (ε ∈ (0, h1/3)) given by Lemma
4.4 associated with Ω = ΩE(α1, h1). By Green’s formula (4.13), (4.15) implies∫

∂Ωε

|x|2λ

(
y

∂u2

∂n
− u2 ∂y

∂n

)
d` ≤ 1. (4.17)

From Lemma 4.4, the boundary ∂Ωε of Ωε consists of two parts, ∂Ωε = C1
ε ∪ C2

ε, where C1
ε

is a portion of the smooth plane curve y = α−1
1 δε(x) with |δ′ε(x)| ≤ 1, and C2

ε is a portion
of the horizontal line with y = h1 − ε.

We extract the term
∫
C1

ε
u2 ∂y

∂n |x|2λd` from (4.17), so that

−
∫
C1

ε

u2 ∂y
∂n
|x|2λd` ≤

∫
C2

ε

u2 ∂y
∂n
|x|2λd`−

∫
∂Ωε

y
∂u2

∂n
|x|2λd`+ 1.

Since E is bounded and 2h1/3 ≤ y ≤ h1 for (x, y) ∈ C2
ε, the first term on the right hand

side above is bounded by a constant independent of ε, and so is the contribution coming
from (x, y) ∈ C2

ε in the second term. Thus we get

−
∫
C1

ε

u2 ∂y
∂n
|x|2λd` ≤ −

∫
C1

ε

y
∂u2

∂n
|x|2λd`+ c. (4.18)

Since the curve C1
ε is determined by the equation δε(x)− α1y = 0 and so the direction n

is given by (δ′ε(x),−α1)
/√

δ′ε(x)2 + α2
1, we have

∂y
∂n

= − α1√
δ′ε(x)2 + α2

1

≤ − α1√
1 + α2

1

;

and since Ωε ⊂ ΩE(a1, h1) is at a positive distance from x-axis, (4.16) implies that

y
∣∣∣∣∂u2

∂n

∣∣∣∣ = 2y|u|
∣∣∣∣ ∂u
∂n

∣∣∣∣ ≤ 2y|u||∇u| ≤ 2|u| on C1
ε.

Applying these estimates to (4.18) gives

α1√
1 + α2

1

∫
C1

ε

u2|x|2λd` ≤ 2
∫
C1

ε

|u||x|2λd`+ c ≤ c′
(∫

C1
ε

u2|x|2λd`
)1/2

+ c,
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where the last inequality is due to the fact that
∫
C1

ε
|x|2λd` is bounded by a constant inde-

pendent of ε as in (4.14). This certainly proves that∫
C1

ε

u2(x, y)|x|2λd` ≤ c, (4.19)

where c > 0 is independent of ε.
If we define fε(x) = |u(x, α−1

1 δε(x))| for x satisfying (x, y) ∈ C1
ε with some y > 0, and

fε(x) = 0 otherwise, then from (4.19), one has, for ε ∈ (0, h1/3),∫
R
| fε(x)|2|x|2λdx ≤

∫
C1

ε

u2(x, y)|x|2λd` ≤ c. (4.20)

Now for (x, y) ∈ C1
ε ⊂ ΩE(α1, h1) with 0 < y < h1/2, one can choose a constant

c ∈ (0, 1) independent of (x, y), so that the disc D((x, y); cy) ⊂ ΩE(α, h). It follows that,
for (t, z) ∈ D((x, y); cy), |u(x, y)− u(t, z)| ≤ cy sup |∇u|, where the supremum is taken
over the line segment joining (x, y) and (t, z), and by (4.16), |u(x, y)| ≤ |u(t, z)|+ c. We
then take the curve integration over C1

ε ∩ D((x, y); cy), and in view of the inequality, for
some fixed c1 ∈ (0, c),∫

C1
ε∩D((x,y);cy)

|t|2λd` ≥
∫ x+c1y

x−c1y
|t|2λdt � y(|x|+ y)2λ,

we get

|u(x, y)| ≤ c′

y(|x|+ y)2λ

∫
C1

ε∩D((x,y);cy)
|u(t, z)||t|2λd`+ c.

Thus by means of (3.3), for (x, y) ∈ C1
ε with 0 < y < h1/2,

|u(x, y)| ≤c′
∫
C1

ε∩D((x,y);cy)
|u(t, z)|(τxPy)(−t)|t|2λd`+ c

≤c′′vε(x, y) + c, (4.21)

where
vε(x, y) = cλ

∫
R

fε(t)(τxPy)(−t)|t|2λdt

is the λ-Poisson integral of fε. Further, since u has a bound on {(x, y) ∈ ∂Ωε : h1/2 ≤
y ≤ h1− ε} independent of ε, we could choose the constant c suitably large, so that (4.21)
is true for all (x, y) ∈ ∂Ωε.

Considering the function

U(x, y) = |u(x, y)| − c′′vε(x, y)− c,

by Lemma 3.2 we have
∆λU(x, y) = ∆λ|u(x, y)| ≥ 0
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in the region where U(x, y) > 0, which implies |u(x, y)| > 0. Since U|∂Ωε
≤ 0 from (4.21),

by the maximum principle (Proposition 2.6) we assert that (4.21) holds on the whole Ωε.
Finally, since, from (4.20), { fε : ε ∈ (0, h1/3)} is a bounded set in L2

λ(R), there exists
a sequence { fεk}∞

k=1, so that fεk converges weakly to a function f ∈ L2
λ(R) as k→ ∞; and

in particular, if v(x, y) denotes the λ-Poisson integral of f , then vεk(x, y) converges point-
wise to v(x, y) for (x, y) ∈ R2

+. Thus, since by Lemma 4.4, Ωεj approaches increasingly to
ΩE(a1, h1), we conclude from (4.21) that

|u(x, y)| ≤ c′′v(x, y) + c, (x, y) ∈ ΩE(a1, h1).

By Proposition 2.4, v(x, y) is non-tangentially bounded at (x, 0) for almost every x ∈ R,
and hence, the same is true for u(x, y) and for almost every x ∈ E. The proof of Theorem
4.2 is completed. �
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