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Abstract. In this paper we reformulate a Lyapunov center theorem of infinite dimen-
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1 Introduction

The KAM theory of infinite dimensional Hamiltonian systems arising from PDEs has
been studied widely. Earlier works in this area are due to Wayne, Craig, Bourgain,
Kuksin, Poschel, Eliasson and etc. [4,6-8,11,13,15]. More recently, the infinite dimen-
sional KAM theory has been developed and there are many infinite dimensional KAM-
type theorems. For some related results, see [1-3,5,9,10,12, 14, 18] and the references
therein. We also refer to [17] for a survey on both finite and infinite dimensional KAM
theory.

However, most of previous works mainly focus on quasi-periodic case, since periodic
case can be regarded as a special quasi-periodic case. But Craig and Wayne constructed
periodic solutions of the nonlinear wave equations and nonlinear Schrédinger equations
with periodic boundary value by the Nash-Moser methods in weaker small divisor con-
ditions, see [6,7]. Their results give an infinite dimensional version of the Lyaponuv
center theorem.

In this paper, we want to extend the finite dimensional Lyapunov center theorem to
infinite dimensional Hamiltonian systems. The result can be regarded as a complement
of infinite dimensional KAM theorems. Our results can also be applied to some partial
differential equations, but here we do not pursue this problem.
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2 Main results

Consider a nearly integrable infinite dimensional Hamiltonian H = N 4 P. The normal
form

1 oo
N=wl+ 5 Zlf)J(w)(u]2 + 0]2), (0,1,u,v) € TP =T xR x £*P x {*F,
]:

where T is the usual 1-torus, R is the 1-dimensional real space and the Hilbert space
0P = {w = (wy,wy, - )|||w]lap < +oo

with .
lwl2, = Y- [P, a>0, p>o.
j=1
The frequency w € O = (B4, B2) is regarded as parameter and the normal frequencies
(4,0, - - - are Lipschitz-continuous in the parameter w.

The small perturbation P = P(6,I,u,v) is analytic in (6,I,u,v) and Lipschitz-
continuous in w, here and below, the dependence of P in the parameter w is usually
implied and not written explicitly only for simplicity if there is no any confusion.

The Hamiltonian system of H is

0=H =w+Pj, [ =—Hy=—P,, (2.1a)
i =H,=Quv+P,, 0v=—H,=—-Qu—P, (2.1b)

where Q) = (1, Oy, -+ ) and Qu = (Qquq, Qouy, - - ).
If P = 0, the system (2.1) is integrable and admits a family of invariant tori

To =T x {0} x {0} x {0} CT*?, Vw €O,
on which there are periodic trajectories
0=wt+6, VecT, [I=0 u=0 ov=0.

If P # 0, the system (2.1) is not integrable in general. If the space ¢*7 is finite dimen-
sional, the Lyaponuv center theorem says, if kw = Q); # 0, Vk € Z,Vj > 1, and the pertur-
bation P is sufficiently small, then the Hamiltonian system (2.1) has many 1-dimensional
invariant tori with the frequency w, which are embeddings of 7, in I'*”.

In this paper we will prove a similar result in infinite dimensional case. To state our
main results, we first introduce some notations.

Let f(0) be a 27r-periodic function and its Fourier series expansion is

f(0) =Y fie™.

kez
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If £(0) is analytic on the trip domain D(s) = {0||Im6| < s}, denote the super norm of f
by

[fls = sup |f(0)].
6eD(s)
Define a little stronger norm by
Iflls = Y | filel™.
kez

If f also depends on w € O, define the Lipschitz norm of f by
fls = sup [f(O)I",

6€D(s)

where

f(6;w2) —f(9;w1),

Wy — w1

FOIF = sup [Loywnf(O)], Loy f(0) =

w1F#wy
where we write f(0) = f(6; w) for simplicity. Define by

IF1E = 3 1fulbe .

kez

Sometimes we denote |f|; and |f|L by |f|? for simplicity. Similarly, we have || f||}. For
some properties of the norms | - | and || - ||, see Lemma A.1 in Appendix of this paper.
Denote by

D(s,r) = {(6, Lu,0)[[Im 0] <'s, [I| <7, [[ullap <7, [[0]ap <7}
Suppose P is analytic in (6, I, ,v) on D(s, r) and Lipschitz-continuous in w on O. Let

P =Y Py (0)I'u'o7.
Lag

Define _
HPH)B(S,r) = sup Y || Puggll2 0.

[<r, ulap<r, [ollap<r Lq4q

If w(6,1,u,v) is an analytic map from D(s,r) to ¢*? and Lipschitz-continuous in w,
define

o 1/2

ol i) = (D||wj||g<s,,)>2j2ﬁezw) |
=1

Denote the Hamiltonian vector field of P by Xp = (P;, —Py, P,, —P,). Define

|||}<P|||)L sr - HPIHDsr +||P9||Dsr +||PuHastr +||Pv||astr
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Assumption 2.1 (Asymtotics of Normal Frequencies). Suppose
Q| > b and ||t < B, Vi>1,

whereb > 0,b > 0,d > 1and d < d are constants. Moreover, there exist positive integers N,
jo > 0and a small positive number &, such that for Vj > jo, |QYj 5 — Q] > & hold.

Assumption 2.2 (Regularity of Perturbation). Let p > p. Suppose P is analytic in (0, I,u,v)
on D(s,r) and Lipschitz- continuous in w on O and Xp is an analytic mapping from D(s,r) to
TP and Lipschitz-continuous in w on O.

Theorem 2.1 (Infinite Dimensional Lyapunov Center Theorem). Let
Xl e = €

If Assumptions 2.1 and 2.2 hold, then there exist a positive integer | > 0 and a sufficiently small
constant y > 0 independent of €, such that for sufficiently small 0 < a« < 1, if

kw+Qj|>a>0, YweO, Vj<], Vkez,

and € < ya?, then there exists a nonempty Cantor-like subset O, C O, a Lipschitz continuous
family of tori embeddings ® : T x Op — I'“P and a Lipschitz-continuous mapping w : Oy —
R, such that for w € Oy, the map ® restricted to T x {w} is a real analytic embedding of a
rotational torus with frequency w, (w) for the Hamiltonian H at w. Thus, for w € O, P(wst +
6o; w) is a periodic trajectory of the system (2.1). Moreover,

’HCI) - CI)O’HD(S/Z,?/Z) <ce/a,
where @ is the trivial embedding

T x Oy — T x {0} x {0} x {0} C T*?,
|w*(w) —w| <ce, w € Oy,

and
meas(O \ Oy) < ca,

where c is independent of €, «.
The measure estimates of O \ O, is based on the following theorem.

Theorem 2.2. If Assumption 2.1 holds and wy : w € O — R satisfying
1
inf |wy| > B, >, Vkez,
nfjw] > B, anl” 2 5

then there exists | > 0, such that
meas (Uj>, kez Rij(a)) < ca,

where Ryj(a) = {w||kwi + Q| < a} and c is a constant independent of a.
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Remark 2.1. It is well known that small divisor conditions are necessary for KAM the-
orems. However, in periodic case the small divisor condition is very special. In finite
dimensional case, the small divisor condition can hold for the parameter on a interval, so
the invariant tori exist continuously depending on the frequency w. But this is not true
for infinite dimensional Hamiltonian systems. Since there are infinitively many normal
frequencies, the small divisor conditions can only hold on a Cantor-like subset even in
the periodic case, which causes much difficulty in the estimates of Lipschitz-norms with
respect to the parameter w. Moreover, the smoothness of the parameter is in the sense
of Whitney [9]. Furthermore, the Lipschitz-norms with respect to the parameter w can
result in some loss of regularity about the angle variable 6, so the traditional implicit
function theorem is not valid for our problem, the proof is still based on KAM iteration.

Remark 2.2. The asymtotics of normal frequencies that (); > bj* with d > 1 is very
important for small divisor conditions |kw + Qj| > a. Infact, if 0 < d < 1, the above
small divisor conditions may not hold.

3 Proof of main theorems

At first we make the complex conjugate coordinates change
z=(u—iv)/V2, zZ=(u+iv)/V?2,
then the associated symplectic form is d60 A dI + idz A dz. In the new coordinates,

N=wl+(Qz,z) and P=Y Pu(0)I'z"Z,
Laq

where (-, -} is the inner product in the Hilbert space ¢* = (%0, Below, without confusion
we use the same notations ”¢*?” and "T"“P” to denote their complexification respectively.
Thus, D(s, r) is a complex neighbourhood of T x {0} x {0} x {0} in T'*?.

The proof of Theorem 2.1 is based on a KAM iteration. We construct a sequence of
symplectic maps Py, P, - - - P,_1 such that the zero-th and the first order coefficients of
Ho®godqo---P,_ 1 with respect to I,z and Z become smaller and smaller and finally
vanish. In this paper, the special small divisor conditions |kw £ Q)j| > & do not cause
the loss of smoothness, so the zero-th and the first order coefficients of H o &y o ®; o

-+ ®,_1 with respect to I,z,Z can become smaller and smaller. This is different from
quasi-periodic case.

Below, in all estimates of KAM step we always use the same c to denote the constants
of estimates which are independent of KAM steps.
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Outline of KAM steps
Let H= N + P, where N = wl + (Qz,z), P = R + P, where
R POOO(G) + P100(9)I + <P010(9),Z> —+ <P001 (9),Z>,

P= Pygs(0)1'2727,
L+]gl+q1>2

where g = (q1,92,---) € N® and |g| = |q1] + |g2] + - - - and 7 has the same meaning as
g. Let
IXellry <€ Ml <€ e <el, ex<eb

Note that Xp = (P;, —Py,iP;, —iP;). Thus we have

IPooolls < €3, [1Prolld <€, [Pioll < €b/r, (3.1a)
1Poollzppis) < €20 1Poorlly 5 ps) < €20 (3.1b)
1Pg1oll2 o, p,00s) S €277 1Poonll e p(s) < €571 (8.1¢)
where
P = dP
la1 = 4o laa
Let

Powo(8) = Y Plige™,  Poo(0) = Y Phoe™,  Pfio(6) = Poro(6) — Poro(6).
kez |k|<K

Similarly, we have Py (0) and P, (6). Let
R = Pooo(6) + P1oo(6)I + (Po10(8), z) + (Poo1 (), 2).
3.1 Solving linear homological equation
The linear homological equation is as follows:
{N,F}+R=N, (3.2)

where {-, -} is the Poisson product, N and F are functions to be solved.
Let N = [Poo()] + [Pmo]l, where

1 271
[Pigg] = 5 /O Py, (0)d6,
F = F000<9) + F100(9)I —+ <F010(9),Z> + <F001 (9),Z>
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By (3.2) we have
1
Fooo(0) = 5(1’000(9) — [Pooo]), Fioo(0) = Z(Ploo(g) — [P1oo]),
wFélo(G) —|—iQF010(9) = 15010(9), Q)F(;Ol <9) — iQF001(9> = p001(9>.

By (3.1) and (3.3a), it follows easily

1 11
IFoolls < o—€2, I Fgoolls < <7 + 7)(;%
p1 s B B

In the same way we have

1
| 000||s = *HpéooHs < Eez,

1 1
[EfsollE < 1 PhoollE + 1 1Bhlls < (5~ + ) k-
" B R B B

Thus we have
IBoolld < ce3,  IFanolld < ce3,

where c = ﬁ + —>. In the same way it follows that

,32
HF{OOH? gceg, | 100”5 §C€§/”-

The estimates of Fyjp and Fyp; are more complicated. Let

1 2 ik .
F010:(F010/F010/"'>/ Félo— ZF]loe ]21.

kez
If
]kwj:Q]-| >ua, VKl <K Vj>1,
from (3.3b) that
jk Pl jk jk ;
Foro = i(kw + Q) and |Fy,l < - |P010| k| <K, j>1
Thus we obtain
€2
[ Fotoll4,p,0(s) < HPOlOHapD 5 S

301

(3.3a)
(3.3b)

(3.4)

(3.5)

(3.6)

(3.7)
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For the Lipschitz-norms we have

Lo L, K+ 1yt
’Fél()’ ’P(])lo‘ ‘k +Q |2’ 010
If |Q;] > 2B5|k|, then |kw + Q] > [Q);|. By Assumption 2.1, it follows

K+ 10yL K|+ 10y
j pIR51
ykw+m2 =" =©

ik ik
|Fgrol" < |P]0‘L+ P 10!,
where ¢ = /5 F + 1 b2 If |Qj| < 2B5|k|, then

[kl + 19" _

1 c
Forar<alkeg T

and so
1
|F(])10|L |P(])10’L 2’k||P(])10|

Using Lemma A.1 and (3.1b) we have

L
€
||F010HapD —p) < &HPOlOHcI;,fJ,D(s—p) “2” 010||ast p) 2
In the same way as above, by (3.1c) we have
€2
1Eotoll—a,—p0(s) < 2 1Por0lla—p.0(6) <
1 €

L
[ For0l1=4,—5,D(s—p) [1Powol12 -5 ps—p) + ZH Potoll—a,—p,n(s—p) <

R

Similarly, for Fop; we have

€
|1Footla,ppis) < 7
L
||F001Ha,ﬁ,D(sfp) = anz,
/ €2
[ Foo1 | —a,—p,0(s) < L

L
€& , e
ar  a?p%r

HF601 ’ ’Ea,—ﬁ,D(s—p) <

+

or

ceEn
2oL 3.8

207 (3.8)
(3.9a)

“g‘;gr. (3.9b)
(3.10a)

(3.10b)

(3.10¢)

(3.10d)
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3.2 Coordinates transformations

The symplectic map ® = X} is the time-1 map of flow Xt = (6, I', 2!, ") of the following
differential equations
0 = Fr = Fioo(6),
I'= —Fy = —Fyoo(0) — Fiog(6)1 — (Foy(0), 2) — (Fopy (0), 2),
z =1iF; = iFyn (0),
2= —iF = —iFy0(6).

(3.11)

By integrating the first equation we have

t
9t — 9+ = / F100<9T)dT,
0

where 6'[;—g = 6.
If | Fiools < ||Fiool]s < ce2 < p, then 6 exists for 64 € D(s — p) and |t| < 1. Thus 0" is
a mapping from D(s — p) to D(s). For 64 € D(s — p) and |t| < 1 we have
16°(64) — 01| < |Fiols < ce. (3.12)

By the above equation
t t t
1011 < /0 | Fio0(6) ng+/0 IEloy(6)]]67|LdT < cek + 062/0 67| d.

By Gronwall’s inequality we have

0'|F < cek, VB, € D(s—p), Vte[0,1]. (3.13)
By Lemma A.2 and (3.5), if €2 < p?, we have

t
16" [15250 < [ 11Fr00(67)I]5-5,dT < ce3, (3.14)
0 0 0

L

s_3p is the norm of 6(6,.) with respect to 6 and w. Since

where | |6
Dy 0 —1= /O ' Floo(67) Do, 077,
by Lemma A.2 and (3.5) it follows
|Dg, 8" — 1[]s_3p < ce2 /Ot |De, 07 |s_spd.

By Gronwall’s inequality we have

HD9+9t - 1‘ ’5—3‘0 S cey, (315)
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where || - ||s_3, is the norm with respect to the new variable 6. For the Lipschitz norm,

also by Lemma A.2 we have

t
[1D6, 0']I53, S/O [ Floo(07)1 15301 De. 07 [ls—3pdT

t
+ [ 11Eioo (630l Do, 07| s, v

t
<cek + ce; /o ||Dg, 67| |SL_3pdT.
By Gronwall’s inequality we have
’ ’D9+9t| ‘573(3 < C€%.
Now we consider the transformations for z and Z. Since
t
ZtL —Zy = 1/ FOOl (QT)dT,
0
by Lemma A.2 and (3.10a) we have
cen
||Zt - Z+Ha,ﬁ,D(573p) < e

In the same way as the above and using (3.10b) it follows that

L
; L cey cer
||z _Z+Ha,;a,D(s—4p) < X (xzpz'
By (3.17), (3.18) and Lemma A.1 we have
¢ cen
HD9+Z Hu,ﬁ,D(sf4p) < szl

t|L
HD9+Z Ha,fz,D(s—Sp) < oép2 {sz4'

Moreover, by (3.10c), (3.10d) and Lemma A.2 it follows easily

ceEr

1De. 2| —a,—p,D(s—-30) < ar’

1Dy 21| 5
+

_ < — .
—a,—p,D(s—4p) = 4p “ZPZr

(3.16)

(3.17)

(3.18)

(3.19a)

(3.19b)

(3.20a)

(3.20b)
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Similarly, we have

12 = 24llapps-30) < 2 (3:21a)
12" = 21 |1z 5 p(s—ap) < CZZL + :f;z, (3.21b)
190, 2la - < 5 (3.21¢)
1De, 2[5 5, p(s5p) < s;é ~ :f;l, (3.21d)
100,210, -p0is-30) < =2 (3:21¢)
1De, 2'(|% 5, D(s—ap) < ff O;Zr. (3.21f)

Now we estimate the transformation of variable I, which is a little more complicated. By
integrating the second equation of (3.11) we have

t t

T, —— /0 Floo(67)dt — /0 Flo (67)I*d

t t

— [ {Fo®7),2%) dr = [ (Fj(67), 2
=+ L+ 3+ s

Let0 < 2 < § < r. By Lemma A.2 and using (3.4), (3.5), (3.9a), (3.10¢), (3.17) and (3.21a)
it follows that

1" = Li|Ip(s—3pr—s) < C% +ce /Ot 1T = Lt [Ip(s—3pr—e)dT-
By Gronwall’s inequality we have
11" = Li || p(s—3p,r—s) < c%. (3.22)
Now we estimate Lipschitz norm. By Lemma A.2 and using (3.4) and (3.6) we have
1111550y < ce3,
allbegpr < [ 1Fioo (8 e 1T tsapsy
L PGP Y

t
< ce% +C€2/O ||ITH%)(sf4p,r*(5)'
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Since
H]SHDS —4p,r—0) / || Foro( 9T>H—u —p,D(s—4p) HZ Hast 40,r—5)AT

[ 10 o p0t6s0 7 g

by Lemma A.2 and using (3.9a), (3.9b), (3.17), (3.18), if €2 < ar, we have

L
L ce; ceEr
|U3‘|D(s—4p,r—t5) < e ‘xzpr
Similarly we have
L
[Jallp(s—sp,r—s) < o a2p?

Thus,

cel  cey
W%WWWSE;‘*+@/WWM@M

By Gronwall ’s inequality we have

L
Hlt‘ ’%(5—4@7’—5) By SU R (3.23)

By (3.22) and (3.23) and using Lemma A.1 we have

cen

||Do. I'l| p(s—sp,r—0) < ap? (3.24a)
L

||D9+It||D(575p’r75) < sz DCTP4 (3.24b)

Now we estimate || Dy, I'|| D(s—30,%2)" By derivating I' with respect to 6, we have

/ 000(607) D, 07dT — / 100(07)Dg, 67 I7dT

_/0 F{OO(QT)DBJT‘ZT_/ (Fo10(687),2%) Dy, 0%dT
_/Ot<F610(9T)fD9+ZT>d /<F001(9T)/ZT>D9+9TEZT

- /Ot<F001(9T>IDe+ZT>dT- (3.25)

Without loss of generality we only estimate the second term and the forth term, since the
other terms can be estimated similarly or even more simple. If
cer cen

ceEn
1] < o |\Z+’|a,ﬁ_7/ ’|Z+Ha‘<7/
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it is easy to see that

2ce 2ce 2ce
t 2 t 2 =t 2
1Pl === Zllap= == [Zllep = ——
Using Lemma A.2, (3.5) and (3.15) we have
(8/35) €2 cen
CREAT I -
H/ 100 b+ ‘ D(s—40,2) — r &« T ar

By Lemmas A.2 and A.1, and using (3.9a), (3.15), if e < txpz, we have

| [ ot D] < Lt
D(s—4p,~;

2y T rap? « ar

By (3.25) and combining all the above estimates we have

t
D0, llpge-sp 2y < <2 +cea [ 1D0, I e, 2

By Gronwall’s inequality it follows that

106, Pllpgs_gz) < 2.

307

(3.26)

To estimate Lipschitz-norm of Dy, I', we still only consider the second term and the forth
term in (3.25) without loss of generality. By Lemma A.2 and combining (3.5), (3.15), (3.16),

(3.22) and (3.23), it follows easily that

H/ 2(69)Dy, 9T1TdrH oy

C€2 )

< [ 1B (@) -4y 10, €711 a1 g0
16 sl Do, 611 1 g2

t
+/O [1F100(87) 15401 Do 07 [|sap | T[]y 2 I

L
L& ce

“ar  a?p%r

In the same way as the above, if €, < apz, by Lemmas A.1 and A.2 and using (3.9a), (3.9b)
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and (3.15)-(3.18) we have

oD GTdTH
H / 010 b+ D(s—5p,2)

/ H 010 GT HLa —p,D(s— 5p)H THapD(s 5pce2 HD9+0 HS 5,0dT

[ IR0 a5l 17711 sy 1D, 8

+/H%mwuupD 12710 p 50,2 || Do, 67 [F_s, T
Lo ce2 cer
ar  a2p%r

By (3.25) and using the above estimates we have

L
cey cer

t|L
HD9+I ||D(575p,ff72) <

t
T||L
S T e | 1De, Il g, 0

By Gronwall inequality it follows that

L
L cey cer
[1De, T |D(S*5P/Ef72) = ar | a2p%r’ (3:27)
Since ,
DLI' 1= —/ Floo(67)Dy, I7 d1,
0
in the same way as the above and by (3.5) it follows that
||DI+ I'— 1||D(573p,r75) < cey, (3.28a)
101 'l 3pr0) < ce2- (3.28b)
For the derivatives of I with respect to z, we have
t t
D, I' = — / F(67)D;, [Tdt — / EL(07)dx.
0 0
In the same way as the above, by (3.5) and (3.7) it follows that
C€2
HDZ+I HapD (s—4p) < CGZ/ HDZ+I HapD (s— 4p)dT+ P
SO,
ceEn
1Dz I lap,p(s—40) < (3.29)

ap?’
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For Lipschitz norm, by (3.5), (3.8) and Lemma A.1, we have

||DZ+ItHapD (s—4p)

< / [1ELo0 (6715 sg 1D=. Lo ()T
+ [ 100 @ ) otss1 12, Tl a7+ [ 1EEV L, e 87

L
ce;  ce
— + 2ot +ce2/ HDZJTHast Py

SO
; < ce% cer
HD I Hast —4p) [XPZ anél (3.30)
Similarly we have
cen
1Dz, 0 pp(s—40) < 3/ (3:31a)
0
L
|| Dz ItHapD (540 S w2t azpt (3.31b)
Lets; =s—5p, r4 = r — 26. Combining above estimates we have
c€r cer
11® = idllIpge, ) < <2, (1IDD = IallIpge,r,) < g (3.32)

ap?

3.3 Estimates of new perturbation
Now we use Lemma 3.1 to estimate the Hamiltonian vector field of the new perturbation
P, = P' + P? + P3, where

Pl=Pod, P>= /Ol{tﬁ + (1 —t)N,F} o Xkat,

P? = (P§o,z) o @+ (P§,,2)®.
To estimate the new perturbation we need the following lemma.
Lemma 3.1. If Q(0,1,z,2) is analytic in (0,1,z,2) on D(s,r) and Lipschitz continuous in w on
O, then

cen

100 @llpe-spr—s) < (1473 )11QlIpges)

Proof. Let ]
Q=Y Quy(0)1'2"2".

La.q
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Then
Qo® =Y Quul0(0)][I(0+, L+, z+,2:)] [2(0+,2+)]"[2(04, 2+ )]7.
La.q
By Lemma A.2 we have

C€2
1Qug 0 €llks-3p < (1+ 7)1 Qg
Again, by (3.17), (3.21b) and (3.22) we have

HZtHIl,ﬁ,D(S*?)p,F*&) <7, HZtHa,ﬁ,D(st%p,rﬂS) <, Hlt‘ ’D(sf?)p,rfd) <r.

So
||Q o q)||D (s—3p,r—06)
<(1+37) L lIQua @) ll12 129 27
qu D(s—3p,r—6) 12" ||D(s—3p,r—8) |12 HD(sf?)p,rfé)
Lag
ce
(1 + 22) sup Y 11Quga(0)||sI'2927
O™ ln<r zllap<rilzllop<r iag
cen
=(1+°3)11Qllotss
Thus, we complete the proof. O

Now we first consider P!. Note that
Py, = Pyo®Dy, 0+ Pyo @Dy, I+ (P, 0D, Dy, z) + (P: 0 D, Dy, 2). (3.33)

Since
[De. z||-a,—p < |IDg, zllap, [|De,Zl|-a—p < ||Do, 2,5,

by Lemma 3.1 and using (3.15), (3.24a), (3.19a) and (3.21c) it follows that

ceEn (8135
1P ots-spr-0) < (14 5 )1 Pellos (1 + ce2) + 1Pl lpgory 5
cen cen
+||PZ||astr P +|| ZHastr)lxp
ceEn ceEn
<(1+ 22 ) 1Pl + L 111Xl (3.34)

Moreover, by (3.15), (3.26), (3.20a), (3.21e), it is easy to see that

c€r cer
1P o5y ) < (15 ) 1Bollpgg e (1 -+ €2) 1Pl )
cen
+HPHapD 21:92 +HPHapD CEZ)E
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Since P only consists of more than 1-order terms of I,z and z, so

_ _ 2c€er\ 2 2cer
1Bsllp 22y < 1Polloen (5,2) 0 WPl ) < 1Prlloen %,
2cer 2cer
H Z||apD 2C€2 <||PZ||astr) ar ' ||PZ||apD 2552 <HPZ||astr) P
Thus, we have
(8135
1P llpgs_sp2) < (S2) 111Xl oo (335)

To estimate Lipschitz norms, we first estimate the following norms:
[1Po 0 @[55, 20)- [1Pro @|[5s_5p,r—26)
|| P O‘DHapD _5p,r—26)7 HPZOCDHLD(S—Sp,r—za)-
Since
[1Ps © |55 5pr—25)
SSUPwy £, | (Ley ., Po) 0 @| |D(s—5p,r—2¢5)
+ | Pog © @||p(s—5p,—20) 16 |%)(sf5p) +[[Por 0 @|[p(s—5p,r-26) 1] |lLD(s75p,rf2f5)
+ [ Poz 0 @] 4, p,0(s—50,r—25)| 12 |L€,ﬁ,D(sfSp,1'725)

+ | |P92 © Q)| |fa,fﬁ,D(575p,r72§) | |Z| |§,ﬁ,D(575p,r725)’
by Lemma 3.1 and using (3.14), (3.23), (3.18) and (3.21b) it follows that

D L
||P9 © q)HD (s—5p,r—20)

cer
< (12 )Pl + ceb 1 Paal e

L L
ce; | cep ceE;  CE2 N\ n
+ <7 + DCZ 2)HP91||D —p,r—0) + (7 + “2‘02)HPHZH—H,—p,D(s—p,r—&)

L
+ (57 + a2 1Pl poispro

By Lemma A.1 and Cauchy’s inequality it follows that

5 L
| |P9 o CI)| |D(sf5p,r72(5)

L L
ce2 céy | ey cer B
<(1+ = ) IPsl by + (52 + = +“2p25)up9||D(s,r). (3.36)
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In the same way it follows that
1Py 0 @[, o)

ceEr
< (1 )Pl e + bl Pl 2

L
* (7+ azgt) 1 Pol e 2

+( + 25 ) 1P|
w202 )10l pisp 22

L
€5 cen
G [ AT ——

Since P only consists of more than 1-order terms with respect to I, z, Z, by Lemma A.2
and Cauchy’s inequality it follows that

7w

_ _ 2c€r\ 2
[1Bellf ey < 1PsllBien (52)

= 1 2C€2 2
Pool sy 22) = 55 (%7) I1Bol o

or
_ 8C€2
1Potll oy 22y < (S ) [1Pollgss)s

HPQZH —p,D(s pz%)_ ar2 HpeHDsr
_ 8cep
1Peell syt < 1Pyl

Ife, < zxpz, combining all the above estimates we have

_ cer
100 @Il s, < (5

cen C€ cen
(5
ar

2
- _
) [[Pol [ Ds,r) + 2\ [x2p2>HP9||D(s,r)- (3.37)

In the same way as the estimates of Py o ®, by Lemma A.2 and Cauchy’s inequality it
follows that

D L
HPI ° CD’ ‘D(s—5p,r—2§)

L
1 P cex 3.38
< + P )|| IHDsr (0(5 + PZ + P )H IHDsr ( )

Also we have

1Pro @b, o e,

cen -
<(1+ f)HP e e, + 6511 Prel ey 2
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L L
cek  ce cek  ce
+< —2 + 2)||PH||D 266)+< a2+ pz)|| Pr||_

_ 2
o a,—p,D(s—p,~32)

ce2 cer
=y LA

Since P only consists of more than 1-order terms with respect to I, z, Z, by Lemma A.2
and Cauchy’s inequality it follows that

1 2cer

- ~ 2cer ~
HPIHLD(SIZ%) < ||PI||Ib(s,y)(7)f ||P€I||D(S 222 < ;WH Pilpsr),
[1Prll s 222y < ellPilps ) Pl b 22y < ellPrllpgs )
1Pizl]_,,_p pis, 22y = ellPrllpgen)-
Thus,
L
_ cen ce cen
1P o @[5, _s, 0y < L 2I1PIIb + (52 + 223 ) 1P b6y (3:39)

Now we estimate Lipschitz-norm of P, o ®. By Lemma 3.1 it follows that
5 L
| |P o (I)’ |a ,§,D(s—5p,r—25)
<(1+° = EMNPLNLE 5 pe—pr—s) + €51 1Peol Lo D5 —pr—a)

cel  cey cel  cey
+( 2+ >H ZIHapD p,r75)+( 2+ >|H ZZH’zzst 0,r—9F)

ap? ap?
cek  cep
+ (5 + 22 )Pl ois-pr-o)
where ||| - |||s,5 is the operator norm from ¢*? to {*P. By the generalized Cauchy’s in-

equality of analytic function on Banach space it follows that

D) L
| ‘Pz o CI)| |,1 ,p,D(s—50,r—25)
L L
(1 + p) HP H” PD(s,r) + ( wad + ? + “2‘025) | ’PZ||a,r7,D(s,r)~ (3.40)
Also note that

D L
||PZ o q)| ‘a,',D(sfSp,C%)

L
cer L cey C€2>
<1+ 02 )HPZHMD p2f2)+< w +(x2p I1Pz0l, s -2)

L
+C€2||le|‘a,p,D(sfp,{%)+( X +,sz )m szapD -0, %2)

L
+< M +oc2p )W szaPD -0, 52"
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In the same way as the above, if €, < (sz and 2% < %r, we have

120 sty < 2R+ (2 + 55 1P uporsns 34D
Moreover, we have
||Pz 0 P ‘11;17 D(s—5p,r—26)
(1 + @)HP 155,000 T (fgL + C’fz + lx;ié(s)”piHa,ﬁ,D(s,r)/ (3.42a)
10 1L biespezy < 2Nl ooy + (Cié s Il G420

By (3.33), (3.15), (3.16), (3.24a) (3.24b), (3.20a), (3.20b), (3.21e), (3.21f) and combining
(3.36), (3.38), (3.40) and (3.42a), we have

HP91+||D —5p,r—26) = (1+p>|\P9]|Dsr H|XP|HDS,
L L
ce; ce2 ces ces
+<1x§ T T2 T2t )IH Xplllpsr. — (343)

In the same way as the above, by (3.37), (3.39), (3.41) and (3.42b) we have

(8/3))

(8/3))
1P 1 gy < (S2) 111Xy + 2

cek  cer

) 1Xelloen. 649

Now we estimate P}+. Since P}+ = P;o®Dy, I, by Lemma 3.1 and (3.28a) we have

cen
1P llpts-spr-20 < (17 ) 1Billogss) (3.45)

Moreover, by (3.38), (3.28a) and (3.28b) it follows that

L L
Cc€En ce ce CEn
1PL Wo-sp2) < (12 ) IPillbn + (55 + 23 + 22,5 ) 1 Xelllogsn. G:46)

Atl; =0,z =0,z =0, itis easy to see that

cen

1P} Ip(s—sp0) < — HPIHDsr (3.47)
By (3.39), (3.28a) and (3.28b) it follows that
L
cér CE cep
1PENbe-spo) < e IPillben + (52 + 3202 ) 1Pt e (3.48)
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Since
P! =Po®D. I+DP.0®,

by Lemma 3.1 and (3.29) we have

cen

cen
zy lla,p,D(s=3p,r—8) = zlla,p,D(s,r) I D(sr)" .
12, 1] < (14 =3 )lI1E] + 2Pl (349)
p? ap>
Moreover, by (3.38), (3.40), (3.29) and (3.30) it follows that
H Hast 50,r—20)
cen cen
< (1 IR E 0o + o2 1Pl
L L
cef b cer | cer
+ (s g a2p25+ 2ot ) Ul + 1PrlIoen).— (3:50)
AtlL =0,z =0,z =0, we have
a,p,D(s— 5p0) I11D(s,r) a,p,D(s,r) :
[IPZ, I [HPH + [P 1 (3.51a)
C€2
H z+||apD( 5p0) (||P||astr +HPIHD(S,T’))
cel  cep
+ <D€2+062p )(HPZHLIPD (1) +||PI||D sr) (3.51b)
Similarly we have
cen C€2
||P21+||a,]z7,D(s—5p,r—2§) S <1+ P )HPZHapD (s,r) HPIHD (s,7) (3528.)
L L
cer 2 5L ce;  CEy
H Z+HapD(s —50,r—26) < (1 P )HPHDsr 2HPIHD(s,r)+<D“5+W
(8/3)) (8/3))
+ 2055+ i) WPellapoisn +11Billogsr). - (3:520)
Atl, =0,z =0,z =0, we have
C€2 _ _
H HapD (s,1) = 7[HPIHD (s,7) +HPZHII,;§,D(S,1’)]/ (3.53a)
C€2 _
H Z+Hap, D(s— 5p0) (HPHustr +HPIHé(s,r))
cel  cey
+(“2+p>(HpHustr +||P1’|Dsr)' (3-53b)

Thus by (3.34), (3.45), (3.49) and (3.52a) we have

cen
11Xl lots-5p-20) < (145 ) 11Xl 6o (3.54
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By (3.43), (3.46), (3.50) and (3.52b) we have
ceEn
11X 1—spr-20) = (1 + 22 )Xl e

+ 2 (G ) (4 o2) el (359

Let P! = Rl + P, where
RY = R{ (6+) + Ry (0+) L+ + (R7 (6+),2+) + (Ry (6+),24)
only consists of the lower order terms of P! with respectto Iy, z,,z,,and

_ o
Pp= ), Pl (0)l2
[1+1al-+1g>2

consists of the higher order terms. By (3.35), (3.47), (3.51a) and (3.53a) we have

C€2
Xk D(s-5p,r-25) < H\XP’HDsr (3.56)
By (3.44), (3.48), (3.51b) and (3.53b) we have
L
ce2 Cce C€2
1 lb—spr-20) = 71Xl + (52 + oo JlIXellloer @57)

Now we estimate P2. By the construction of F and using (3.4), (3.5), (3.7), (3.9a) and
(3.9b) it follows easily that

cel  ce

HFQHD(S,T < =« azpz

ce2
x
Let
{R,F} = RoF; — RiFg+ (R., Es) — (R5, F;)
= RgF100(0) — P1oo(0) Fo + (Po10(6), Foo1 (8)) — (Poo1(6), For0(6))
=:01— Q2+ Q3 — Q4.
We only estimate Q, and Q3, since Q1 and Q4 can be estimated similarly. Since
Dy, (Q2 0 XE) =(P{o0(8)Fg + P1oo(6) Fge) © Xi:Da, 6" + Pioo(6") F{oo(6") Dg, I'
+ P1oo(6") (Ey10(6"), Do, z") -+ Proo(6") (Fgo1 (6°), De, 2"),

by (3.58), (3.5), (3.9a), (3.10c), (3.19a), (3.21c) and (3.24a) and using Lemma 3.1 and
Cauchy’s inequality it follows that if e, < ar, then

2
cey

HD9+ Qa0 XtF‘ ’D(sfSp,rfzb‘) < sz
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Since
Dy, Qs 0 Xi = (Py10(6"), Foor (6")) Dg. 0" + (P10 (6"), Fy1 (6%)) Do 0,

by (3.1b), (3.1¢c), (3.10a), (3.10c) and using Lemmas 3.1 and A.2 it follows that

2
cey
||D9+Q3OXF||DS —50,r—26) < — ar

Thus we have

2 2

< ce;  c€
| |D9+ {R' F} © X% | |D(575p,r72(5) < szz 71’2 (3.59)
In the same way as the above it follows that
L ce2 (1, €2
||D9+ QZ © X%‘ |D(575‘g/r725) S (Xipz (62 + W)’
L 2
FOL cer€E; ce;,  cerf | €
10, @50 Xllbis spr-20 < %+ 22ty = 5 (£ + 2
Thus we have
= L cen cen L €2
[Dg, {R,F} o Xlt:HD(s—Sp,r—Zé) < (W + W> (ez + W)' (3.60)

The other derivatives of {R, F} o XL with respect to I, z+ and Z; can be estimated in the
same way or even more simple. Thus, by (3.59) and (3.60) we have

2 2

ce ce
’HXPZWD(S—Sp,r—Z(S) < ocT)zz + DT;’ (3.61a)
cen (8135
1Xpe s —sprs) < (52 + = =) (e + = <2). (3.61b)

Now we estimate P3. Since the two terms can be estimated similarly, we only consider
the first one. By Lemma A.2 we have

||Dg., (Poio, 2) © P |p(s—5p,r—26)
< 010[ (0-)]]]- —a,—p,D(s—5p) ||Z|’apD 5p,r—2(5)||D9+9||D(s—5p)
+ HP010[ (0-)111a,5,0(s—50,r—26) Do, 2| | —a,— 5, D(s—50,r—26)
2
<ce PKey + °2,
ar’

Since
D, <P(§<10/Z> o = P(ﬁo [0(6+)],
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by Lemma A.2 it follows that

HDZ+ <P(§<10/ Z> © CI)’ ’a,ﬁ,D(sfSp,rfz(S) < CeipK€2-

Thus,
2
_ ce
| Xp3 || p(s—5p,r—26) < ce PRex + 072- (3.62)
Similarly, we have
L KL, C€ (1, €
1 Xps 1D (s—50,r—20) < ce P €7 + *( €+ W). (3.63)

Let Py = Ry + P, where Ry = R} + P2+ P3. Lets, =s—5pandry =r— 25. Suppose
21, Z2<y et e (3.64)

Then, by (3.54)-(3.57) and (3.61a)-(3.63) we have

( 1Xp, lD(s ) < (1+ C;2)€1 Ley,
1 o < Shert 2+ L 2y, .
10l < (1555 ek + (54 ) (S o )er 2 |
Iy = 2+ (2452 4 5 o >

Obviously, if €1 < ef and e, < e%, thene; ;. < ef cand e 4 < eé - Below we consider
the new frequency.

Let
2__a
(Kp)?2 — ar
ie.,
1 /2
k-1 or
py €
Then
—Ko €
ar

Let wy = w + @, where w satisfies

lwk+Qi| >a, V[k| <K, Vj>1
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By the above estimates we have |@|* < €3. So for |k| < K we have

€ [2ar
’w+k+ﬂ]|2&—? 6—1:lx+.

Let
P k= L B R {wljwsk £ Q] < s}

P+ 2/ + o4 €1t s kj + 7l = R4

If
w € Oy = 0 — Ug< <k, j>1Rujs
then
|CU+k:|:Q]| Z X4, V|k| S K+, \V/] Z 1.

KAM iteration

Now we go through the KAM iteration. Let

1 s
50 =S, Sm+1 = Sm — D0m, Pm = 102m+1’
1 r
ro=r, 7m+1 :rm—Z(Sm, (Sm = EW
Thus, we have s, > 5 and r,, > 7. Let
1 [ 2a,tm €m | 20mTy
K, =— and w1 = oy — —— ,
Om €1,m Om €1,m

where ay = «. Let
O" =Pyody---0d,,_;, H"=Hod" = N" | P"

with
N"™ = wyl + (Qz,z), P™=R"+ P",

where
R™ = Poo(0) + Piog(0) I + (Pyio(0), z) + (Poon (0), 2),

_ o
P"= ). Pp(6)I'2720,
H+q|+1g1>2

319
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At the initial step, let €19 = e[, = €20 = €5 = €. Then let

C€2/m
€Lmit = (1 S )eLm, (3.66a)
mEm
2 2
CEm C€m  C€
€2,m+1 = €,m+ 5 (3.66b)
XmTm Xm¥m DCum
CE2m C€1,m 62 m
ehar = (14 22 e, + 1 , (3.660)
’ CmPy /7 K D‘um
L o C€2,m L Celm CeZm C€2m L €2m 3 66d
€ mi1 = — . €1 + > )\ em+—5 ) (3.66d)
Kmlm Kmlm+1 Eml'm Xm Py, Xm P

Then, by the previous estimates we have

1Xpnl D) < €me NIXr D6, ) < €2 (3.67)

Vm rm

Convergence of the KAM iteration

At first note that 0 < & < 1, 7, > § and s, > 5. Suppose that a;,, > %uc. Then, by (3.66)
we have

ce
€1,m+1 < <1 + 2'2m ) €1,m. (3.68a)
X0m
2
C€1 m C€2 m
< — 5= 3.68b
€m+1 S — ~€2m + vl ( )
L C€m\ I c€1m s 1 1 L €2,m
€1 m+1 < (1 + %1 )el,m + 2 (a + ,0%1> <€2,m + “P%1>’ (368C)
cey, ceq, cey, €2,
s < el 4 (S 4 Wm) (eb + apg“) (3.684)
m m

Note that the constants ¢ in the above inequalities are independent of KAM steps.
Now suppose €<eym <2,€< el n < 2€. Below, by induction we will prove that if
< 4 and 2 5 o7 Are sufficiently small for all m > 1, we have

app’
24
o) Jesze
168ce> (Dgiszo) > € < 2,

6ce 8ce\ mt1
ez,mg(*z) o ehus (B5)"
, D‘Po

€1,m (1 +

IT(+(
(
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Form =1, we have

€11 < ( p%)€10 (1—1—0%)

CELQ CG%,O < 2C€

2 P
"‘Po

Moreover, if €7 ,, < 2€ and 6“3 < 1, by (3.68), it follows that

€1 < 2,0
o ap

2
2ce C€F m—1 6ce

€m < Tc €2,m—1 < —5€,m-1.

2
X0y, _q “Po

Then we have

e < (14 (22) Yer,

Obviously, it follows that

o (1 ) =)

By the induction assumption, we have

L C€2m 1\ L c€im—1( 1 1 L €2,m—1
¢ 1+ )e ot ( + )(e i+ )
1m = ( P 1,m—1 5m—1 pz_ 2,m—1 o 2

m—1 ’ & m—1 pm—l
168ce 64ce \J
<TT(+ () + (i) e
H 0 "‘25OP(2)
ce 26 CEy €9 m— 8ce\ M1
ng 2,m— 12 —l—(f—i— 2,2m 1)(6%,”1_1_1_ 2,;1 1) < <72> ‘
& X001 X0y, 1 &P

It is easy to see that 1f 2 , 2p4 and 2 5 pz are sufficiently small, we have

e<er,; <2, €< elL,m < 2e.

Now we verify all the conditions required in the estimates of KAM steps. At first we
prove a,;, > a/2. Since a,;, < &, we have

i 20T €2, 2ar € i (12ce>m < 800are < 10\/20cr'y“'
m

2 = s?
We choose 7 sufficiently small such that 2377 < 1 Thys we have

> o Z 2ur 207 €25 S 4 10\/2047’706 >

€1, P 52

N[ R
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Now we verity all conditions of (3.64). By the estimates of the KAM steps, we can choose
the sufficiently small -y such that the following inequalities hold:

e*Kum < €1,m

2
Em S ATy, €y < Xy, €2 < Ky, < .
Knlm

Since
A A
|wWmi1 — wm|” < €5,

it follows that |w, — w| < ce and

L 8ce\tl
W — w| <€20+]Z:€2]<€+]Z<(xpo) <2 <

N =

and so |wy, |l > 1. By the KAM steps we have
lkewm £ Q| > ay > /2, Vk| <Ky, Vji>1, Vw €Oy

Let
ka]'(lX) = {wl|kwy + Qj\ <a},

where wy = wy, if Ky, < |k| < Kjy41. Let
Om = Uk, <[kl <Kypsr,j=1 R (@m)-
If w € Oyi1 = Oy \ Oy, we have
kwmi1 £Qfl > apy1, V| < Kpyr, Vi>1
Let Oy = N_,O. By Theorem 2.2 we have
meas(O \ O,) < meas(Uy>00p) < ca.
Now we consider the convergence of {®"}. By the KAM steps we have
Dy = (O, L, Zm, Zm) © D(Sms1,"ms+1) = D(Sm, Tm),

is a symplectic map on the space I'?. Moreover, (3.32) implies the following estimates

. ces, cey,
‘ ’ |¢m - Zd‘ ‘ ’D(sn1+lrrn1+1) S amm 4 | ‘ ’D®m - Id‘ ’ ’D(Sm+1rrm+1) S Démpn%/: . (369)

Note that @, is affine about (I, u,v), by (3.69) it follows easily the convergence of {®"};
here we omit the details.
Let
" - P, H, >Hod,=H,=N,+P,.
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Then
N. = w, I+ (0z,2), P.(0,1,22) =0(|(Lz2)).
Moreover,
. ce
1@ —idll[ps/2r2) < -

Then, the ® in Theorem 2.1 is given by ®(6; w) = ®.(6,0,0,0; w).

Proof of Theorem 2.2. Without loss of generality, we only consider the case k > 0. Suppose
0 <a < 3B. Let fij(w) = kwi(w) — Qj(w) and

Rij(a) = {w||fyj(w)| < a}.
If w € Ryj, then for k' # k we have
1
fey(@)] > [k~ Kl ~a> 2p>

If |j — j/| > N we have

x.

N =

)| 28— >
There exist c; > 0, c2 > 0 such that if |f;(w)| < &, then
c1j? < K| < caf”.
Since i
1  bj 1 b
s g2 9\ s (2 _ Y dd
fil —k<2 k>—k<2 )
so there exists | > 0 such that if j > ], we have
figlt > k> S

Thus, since d > 1, we have
meas(UjsrezRi(2)) < ) meas(Ry;(a)) < ZNZ

Thus, we complete the proof. O

Appendix

In this section we give some lemmas which are useful in KAM steps.

Lemma A.1. If f(0) is a 27t-periodic analytic function on D(s), then

L%SMB\WHégm,WWMwSQM-
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Proof. The proof is easy and we omit the details. O

Lemma A.2. Let © : 6. — 0(6.) is a real analytic map from D(s — p) to D(s), which depends
on the parameter w and satisfies that for 64 € D(s — p)

0 -0, <e and |0)F <eb,

where e < p < 1. Let f(0) be a 27t-periodic function depending on a parameter w. If f is analytic
in 6 on D(s) and Lipschitz continuous in w on O, then

(1) [|f o Offs—3p < (1+ %)Hf“s/
2) ||f e ®llts, < (14 35|l + 25 |Ifls, wheree < {pand p < 3s.
Proof. Let
f(61) = fo®(6:) = f[6(6+)] and  f(64) = F(6+) — f(6:).
Then f is analytic in §; on D(s — p) and
N 1
F04) = [ 10+ +10—0,)](0 -0, ). (A70)

Thus, )
£ (61)]s—p < €lf'(O)]s-
For the Fourier coefficients of f, f and f, we have f; = fi + fx and

[ Flls—2p < ) | fi|elkl=20) 4 y |Folelk(=20)

kez kez
- 3e
—|k
<[ flls—20 + | fls—p 23 ko < I flls—20 + ?‘f/|s
kez

By Cauchy’s estimates we have proved the result (1).
By Eq. (A.70), for 64+ € D(s — p) we have

~ 1 1
FOI < [ 1F10: +H0—0))H0 — 0 ldt+ [ If0: + 10— 0.)][10— 0, |“ds

<e [[1f, + 10 - 0]t + HF @)
Since

f[04 + 0 — 0] < | (0)I5 + [f"(0)[s|6 — 01" < [£/(B)IF +€"[£"(0)]s,
so it follows that

FOI" < e [f'(O)]s +ellf (0)ls +e"[f7(8)ls].

In the same way as the above it follows that

_ 3
1F115-20 < NIf115 2, + ;{el‘lf’!s +ellf'ls + et}

By Cauchy’s estimates we have the result (2). O
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