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Abstract. It is well recognized the convenience of converting the linearly constrained
convex optimization problems to a monotone variational inequality. Recently, we have
proposed a unified algorithmic framework which can guide us to construct the solu-
tion methods for solving these monotone variational inequalities. In this work, we
revisit two full Jacobian decomposition of the augmented Lagrangian methods for
separable convex programming which we have studied a few years ago. In partic-
ular, exploiting this framework, we are able to give a very clear and elementary proof
of the convergence of these solution methods.
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1 Introduction

In this paper, we consider the generic convex minimization model with linear constraints:

min
x

m

∑
i=1

θi(xi)

s.t.
m

∑
i=1

Aixi = b;

xi ∈ Xi, i = 1, · · · , m,

(1.1)
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where θi : <ni → < (i = 1, · · · , m) are closed proper convex functions and they are not
necessarily smooth; Xi ⊆ <ni (i = 1, · · · , m) are closed convex sets; Ai ∈ <l×ni (i =
1, · · · , m) are given matrices; b ∈ <l is a given vector; and ∑m

i=1 ni = n. The solution set
of (1.1) is assumed to be nonempty throughout our discussion. The Lagrangian function
of the problem (1.1) is

L(x1, x2, · · · , xm, λ) =
m

∑
i=1

θi(xi)− λT
( m

∑
i=1

Aixi − b
)

, (1.2)

in which λ ∈ <` is the Lagrange multiplier. By adding a penalty term to the Lagrangian
function (1.2), we obtain its augmented Lagrangian function

Lβ(x1, · · · , xm, λ) =
m

∑
i=1

θi(xi)− λT
( m

∑
i=1

Aixi − b
)
+

β

2

∥∥∥ m

∑
i=1

Aixi − b
∥∥∥2

, (1.3)

where β > 0 is the penalty parameter for the linear constraints of (1.1). The augmented
Lagrangian method (ALM) originally proposed in [11, 13] for the problem (1.1) reads as

(xk+1
1 , · · · , xk+1

m ) = arg min
{
Lβ(x1, · · · , xm, λk)

∣∣ xi ∈ Xi, i = 1, · · · , m
}

,

λk+1 = λk − β
( m

∑
i=1

Aixk+1
i − b

)
.

(1.4)

The ALM plays a significant role in both theoretical study and algorithmic design for
various convex programming models. ALM scheme (1.4) is indeed an application of the
well-known proximal point algorithm (PPA) that can date back to the seminal work [12,
14, 15] to the dual problem of (1.1). Throughout, we call (x1, · · · , xm) and λ the primal
and dual variables, respectively.

It is well known that ADMM [3] is powerful for the problem (1.1) when m = 2. In
order to use the separability of the problem, one considers to use the direct extension of
ADMM [3] to solve (1.1) for m ≥ 3. It leads to the following recursion:

1.1 The direct extension of ADMM

The k-th iteration begins with a given (xk
2, · · · , xk

m, λk), then

xk+1
1 ∈ arg min

{
Lβ(x1, xk

2, · · · , xk
m, λk)

∣∣ x1 ∈ X1
}

,

xk+1
2 ∈ arg min

{
Lβ(xk+1

1 , x2, · · · , xk
m, λk)

∣∣ x2 ∈ X2
}

,
...

xk+1
i ∈ arg min

{
Lβ(xk+1

1 , · · · , xk+1
i−1 , xi, xk

i+1, · · · , xk
m, λk)

∣∣ xi ∈ Xi
}

,
...

xk+1
m ∈arg min

{
Lβ(xk+1

1 , · · · , xk+1
m−1, xm, λk)

∣∣ xm ∈ Xm
}

,

λk+1 = λk − β
( m

∑
i=1

Aixk+1
i − b

)
.

(1.5)



264 S. B. He / Anal. Theory Appl., 36 (2020), pp. 262-282

Unfortunately, for m ≥ 3, this direct extension of ADMM is not necessarily convergent,
we can see a counterexample in [2].

1.2 Full Jacobian splitting prediction-correction method

It is interesting to consider decomposing the primal ALM subproblem in (1.4) by the
Jacobian manner so that the resulting subproblems can be solved in parallel [6]. More
precisely, applying the full Jacobian splitting to the primal subproblem in (1.4). The k-th
iteration begins with given (xk

1, · · · , xk
m, λk), it produces the predictor by





xk+ 1
2

1 ∈ arg min
{
Lβ(x1, xk

2, · · · , xk
m, λk)

∣∣ x1 ∈ X1
}

,
...

xk+ 1
2

i ∈ arg min
{
Lβ(xk

1, · · · , xk
i−1, xi, xk

i+1, · · · , xk
m, λk)

∣∣ xi ∈ Xi
}

,
...

xk+ 1
2

m ∈arg min
{
Lβ(xk

1, · · · , xk
m−1, xm, λk)

∣∣ xm ∈ Xm
}

,

(1.6a)

λk+ 1
2 = λk − β

( m

∑
i=1

Aix
k+ 1

2
i − b

)
, (1.6b)

and then, the new iterate is given by


xk+1

1
...

xk+1
m

λk+1

 =


xk

1
...

xk
m

λk

− α


xk

1 − xk+ 1
2

1
...

xk
m − xk+ 1

2
m

λk − λk+ 1
2

 . (1.7)

We call (1.6)-(1.7) the full Jacobian splitting version of ALM [6] for the multi-block sepa-
rable convex minimization (1.1) and the step size α in (1.7) will be discussed later. This
method enjoys the feature that all the xi-subproblems can be solved in parallel, and this
is an important feature when large-scale data is under consideration and parallel com-
puting infrastructures are available.

If we directly take the output of (1.6) as the new iterate (in other words, setting α = 1
in (1.7)), the algorithm does not ensure the convergence. To construct a splitting method
for solving the problem (1.1) without correction, it is necessary to add a regularization
term τβ

2 ‖Ai(xi − xk
i )‖2 to the objective function of each primal subproblem. With given

(xk
1, · · · , xk

m, λk), the k-th iteration generates the new iterate by the following scheme:
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



xk+1
1 ∈ arg min

{
Lβ(x1, xk

2, · · · , xk
m, λk) +

τβ

2
‖A1(x1 − xk

1)‖2
∣∣∣ x1 ∈ X1

}
,

...

xk+1
i ∈ arg min

{
Lβ(xk

1, · · · , xk
i−1, xi, xk

i+1, · · · , xk
m, λk) +

τβ

2
‖Ai(xi − xk

i )‖2
∣∣∣ xi ∈ Xi

}
,

...

xk+1
m ∈arg min

{
Lβ(xk

1, · · · , xk
m−1, xm, λk) +

τβ

2
‖Am(xm − xk

m)‖2
∣∣∣ xm ∈ Xm

}
,

(1.8a)

λk+1 = λk − β
( m

∑
i=1

Aixk+1
i − b

)
, (1.8b)

where τ > m − 1 is a constant. The method is a variant version of the one published
in [7].

On the other hand, in the past few years, developing from [4, 5], we published a
unified algorithmic framework for convex optimization [16] in the frame of variational
inequality. Besides simplifying the convergence analysis, the framework provides us
guidance for constructing solution methods [4]. In this paper, we investigates the full
splitting methods (1.6)-(1.7) and (1.8) in such a framework.

The rest of this paper is organized as follows. We recall some preliminaries in Section
2. Section 3 focuses on the algorithmic framework for the variational inequality which
arising from the problem (1.1). In Sections 4 and 5, by defining suitable prediction and
correction steps, we interpret the method (1.6)-(1.7) and (1.8), respectively, in the unified
algorithmic framework. Finally, we make some conclusions in Section 6.

2 Variational inequality characterization and preliminaries

2.1 Variational inequality characterization of (2.1)

In order to simply describing the problem, we give some compact notations. By denoting

x =


x1
x2
...

xm

 , θ(x) =
m

∑
i=1

θi(xi), A = (A1, A2, · · · , Am),

and
X = X1 ×X2 × · · · ×Xm,

the problem (1.1) thus enjoys a compact form

min{θ(x) | Ax = b, x ∈ X}. (2.1)
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Its corresponding Lagrangian function and augmented Lagrangian function can be writ-
ten as

L(x, λ) = θ(x)− λT(Ax− b), (2.2a)

Lβ(x, λ) = θ(x)− λT(Ax− b) +
β

2
‖Ax− b‖2, (2.2b)

respectively. A pair (x∗, λ∗) defined on X×<` is called a saddle point of the Lagrangian
function (1.2) if it satisfies the inequalities

Lλ∈<`(x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X(x, λ∗).

Alternatively, we can rewrite these inequalities as the variational inequalities:{
x∗ ∈ X, θ(x)− θ(x∗) + (x− x∗)T(−ATλ∗) ≥ 0, ∀x ∈ X,
λ∗ ∈ <`, (λ− λ∗)T(Ax∗ − b) ≥ 0, ∀λ ∈ <`,

(2.3)

or in a compact form VI(Ω, F):

w∗ ∈ Ω, θ(x)− θ(x∗) + (w−w∗)T F(w∗) ≥ 0, ∀w ∈ Ω, (2.4a)

where

w =

(
x
λ

)
, F(w) =

(
−ATλ
Ax− b

)
and Ω = X×<`. (2.4b)

We denote the variational inequality (2.4) by VI(Ω, F, θ). Note that for the operator F
defined in (2.4b) is affine with a skew-symmetric matrix, and thus we have

(w− w̃)T(F(w)− F(w̃)) ≡ 0. (2.5)

The function θ is convex and the operator F is still monotone. We denote the solution set
of the variational inequality (2.4) by Ω∗.

2.2 A basic lemma

The following lemma is basic and will be frequently used in our analysis. Its proof is
elementary and thus omitted.

Lemma 2.1. Let Z ⊂ <n be a closed convex set, θ(z) and f (z) be convex functions. If f is
differentiable on a open set which contains Z, and the solution set of the minimization problem
min{θ(z) + f (z) | z ∈ Z} is nonempty, then

z∗ ∈ arg min{θ(z) + f (z) | z ∈ Z} (2.6a)

if and only if

z∗ ∈ Z, θ(z)− θ(z∗) + (z− z∗)T∇ f (z∗) ≥ 0, ∀z ∈ Z. (2.6b)
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2.3 A unified algorithmic framework for variational inequalities

In the review paper [16], the optimal condition of the linearly constrained convex opti-
mization is described in a variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w− w∗)T F(w∗) ≥ 0, ∀w ∈ Ω. (2.7)

For solving the variational inequality (2.7), we have proposed an algorithmic framework
which consists of a prediction and a correction.

The Algorithmic framework:
The prediction step begins with a given vk, finds a vector w̃k ∈ Ω which satisfying

θ(u)− θ(ũk) + (w− w̃k)T F(w̃k) ≥ (v− ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (2.8a)

where Q is not necessarily symmetric, but QT + Q is positive definite.
The correction step updates the new iterate by

vk+1 = vk − αM(vk − ṽk). (2.8b)

The vector u generally is the vector x defined in (2.4), the vector v can be a part of
elements of the vector w. If the matrix Q itself is a symmetric positive definite matrix,
by setting M = I and α = 1, it leads a proximal point algorithm and widely applied in
imaging science [1, 9, 10].

Convergence conditions of the algorithm (2.8) :
For the matrices Q and M, and the step size α given in (2.8), the matrices

H = QM−1, (2.9a)

G = QT + Q− αMT HM, (2.9b)

are positive definite.

For more details of this framework, the reader is referred to [8, 16].

3 Unified algorithmic framework for variational inequality (2.4)

In this section, we interpret the unified algorithmic framework (2.8)-(2.9) to solve the
problem VI(Ω, F, θ) (2.4). Because we introduce an additional algorithm which uses the
calculated step size in its correction step, we rewrite the framework in the following wise.
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Prediction of the algorithms for solving the variational inequality (2.4):
With a given wk, find a vector w̃k, which satisfying

w̃k ∈ Ω, θ(x)− θ(x̃k) + (w− w̃k)T F(w̃k)

≥(w− w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (3.1)

where the matrix Q is not necessarily symmetric, but

QT + Q must be positive definite when each Ai is full column rank matrix. (3.2)

The two classes of algorithms use the same predictor w̃k provided by the prediction
(3.1) whose matrix Q satisfies the condition (3.2).

3.1 Algorithm I using the constant correction step

The Algorithm I utilizes the predictor offered by (3.1). Its correction step updates the new
iterate by the following formula which uses a constant step size.

Correction of the Algorithm I for solving the variational inequality (2.4):
The new iterate wk+1 is updated by

wk+1 = wk − αM(wk − w̃k), (3.3)

where the matrix M and the step-size α satisfy the following conditions:

1. there is a positive matrix H such that

HM = Q. (3.4a)

2. the matrix G, defined by

G = QT + Q− αMT HM is positive definite, (3.4b)

when each Ai is full column rank matrix.

In principal, Algorithm I belongs to the unified algorithmic framework (2.8)-(2.9). For
completeness, we show the key-inequality for the convergence in the following theorem.

Theorem 3.1. For solving the variational inequality (2.4), Algorithm I uses (3.1) and (3.3) to
produce the predictor and corrector, respectively. If the conditions (3.2) and (3.4) are satisfied,
then the generated sequence {wk} satisfies

‖wk+1 −w∗‖2
H ≤ ‖wk −w∗‖2

H − α‖wk − w̃k‖2
G, ∀w∗ ∈ Ω∗. (3.5)
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Proof. Using Q = HM (see (3.4a)) and the correction update form (3.3), it follows from
(3.1) that

w̃k ∈ Ω, 2α
{

θ(x)− θ(x̃k) + (w− w̃k)T F(w̃k)
}

≥ 2(w− w̃k)T H(wk −wk+1), ∀w ∈ Ω. (3.6)

Applying the identity

2(a− b)T H(c− d) =
(
‖a− d‖2

H − ‖a− c‖2
H
)
+
(
‖c− b‖2

H − ‖d− b‖2
H
)
,

to the right-hand side of (3.6) with

a = w, b = w̃k, c = wk and d = wk+1,

we obtain

2(w−w̃k)T H(wk −wk+1)

=
(
‖w−wk+1‖2

H − ‖w−wk‖2
H
)
+ (‖wk − w̃k‖2

H − ‖wk+1 − w̃k‖2
H). (3.7)

For the last term on the right hand side of (3.7), we have

‖wk−w̃k‖2
H − ‖wk+1 − w̃k‖2

H

= ‖wk − w̃k‖2
H − ‖(wk − w̃k)− (wk −wk+1)‖2

H
(3.3)
= ‖wk − w̃k‖2

H − ‖(wk − w̃k)− αM(wk − w̃k)‖2
H

= 2α(wk − w̃k)T HM(wk − w̃k)− α2(wk − w̃k)T MT HM(wk − w̃k)

(3.4a)
= α(wk − w̃k)T(QT + Q− αMT HM)(wk − w̃k)

(3.4b)
= α‖wk − w̃k‖2

G. (3.8)

Substituting (3.7) and (3.8) in (3.6), we get

2α
{

θ(x)−θ(x̃k) + (w− w̃k)T F(w̃k)
}

≥
(
‖w−wk+1‖2

H − ‖w−wk‖2
H
)
+ α‖wk − w̃k‖2

G, ∀w ∈ Ω.

Taking w = w∗ in the above inequality, it follows that

‖wk−w∗‖2
H − ‖wk+1 −w∗‖2

H

≥ α‖wk − w̃k‖2
G + 2α

{
θ(x̃k)− θ(x∗) + (w̃k −w∗)T F(w̃k)

}
. (3.9)

By using (w̃k −w∗)T F(w̃k) = (w̃k −w∗)T F(w∗) and the optimality of w∗, we have

θ(x̃k)− θ(x∗) + (w̃k −w∗)T F(w̃k) = θ(x̃k)− θ(x∗) + (w̃k −w∗)T F(w∗) ≥ 0.

Finally, it follows from (3.9) that

‖wk −w∗‖2
H − ‖wk+1 −w∗‖2

H ≥ α‖wk − w̃k‖2
G

and the assertion (3.5) of this theorem is proved.
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3.2 Algorithm II using the calculated correction step

The Algorithm II utilizes the predictor offered by (3.1). Its correction step updates the
new iterate by the following formula which uses a calculated step size.

Correction of the Algorithm II for solving the variational inequality (2.4):
The new iterate wk+1 is updated by

wk+1 = wk − αk M(wk − w̃k), (3.10)

where the matrix M and the step-size αk satisfy the following conditions:

1. there is a positive matrix H such that

HM = Q. (3.11a)

2. the step-size αk given by

αk = γα∗k , α∗k =
(wk − w̃k)TQ(wk − w̃k)

‖M(wk − w̃k)‖2
H

, γ ∈ (0, 2). (3.11b)

Similarly as for the Algorithm I, we have the following theorem which contains the
key-inequality for the convergence of the Algorithm II.

Theorem 3.2. For solving the variational inequality (2.4), the Algorithm II uses (3.1) and (3.10)
to produce the predictor and to update the new iterate, respectively. If the conditions (3.2) and
(3.11) are satisfied, then the generated sequence {wk} satisfies

‖wk+1 −w∗‖2
H ≤ ‖wk −w∗‖2

H −
γ(2− γ)

2
α∗k‖wk − w̃k‖2

(QT+Q), ∀w∗ ∈ Ω∗. (3.12)

Proof. Setting an arbitrarily but fixed w∗ ∈ Ω∗ in (3.1), it follows that

(w̃k −w∗)TQ(wk − w̃k) ≥ θ(x̃k)− θ(x∗) + (w̃k −w∗)T F(w̃k), ∀w∗ ∈ Ω∗.

By using (w̃k −w∗)T F(w̃k) = (w̃k −w∗)T F(w∗) and the optimality of w∗, we have

(w̃k −w∗)T F(w̃k) + θ(x̃k)− θ(x∗) ≥ (w̃k −w∗)T F(w∗) + θ(x̃k)− θ(x∗) ≥ 0,

and thus
(w̃k −w∗)TQ(wk − w̃k) ≥ 0.

Using Q = HM, from the above inequality follows that

(wk −w∗)T HM(wk − w̃k) ≥ (wk − w̃k)TQ(wk − w̃k), ∀w∗ ∈ Ω∗. (3.13)
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The right hand side of the above inequality equals 1
2‖wk− w̃k‖2

(QT+Q)
and thus is positive

whenever wk 6= w̃k. For any step-size dependent new iterate

wk+1(α) = wk − αM(wk − w̃k), (3.14)

we investigate the profit the k-th iteration, namely,

ϑ(α) = ‖wk −w∗‖2
H − ‖wk+1(α)−w∗‖2

H. (3.15)

By a manipulation, we get

ϑ(α) = ‖wk −w∗‖2
H − ‖wk+1(α)−w∗‖2

H

= ‖wk −w∗‖2
H − ‖(wk −w∗)− αM(wk − w̃k)‖2

H

= 2α(wk −w∗)T HM(wk − w̃k)− α2‖M(wk − w̃k)‖2
H

≥ 2α(wk − w̃k)TQ(wk − w̃k)− α2‖M(wk − w̃k)‖2
H

=:q(α). (3.16)

Notice that q(α) is a quadratic function of α which reaches its maximum at

α∗k =
(wk − w̃k)TQ(wk − w̃k)

‖M(wk − w̃k)‖2
H

,

which is just the same one defined in (3.4b). By using α∗k‖M(wk − w̃k)‖2
H = (wk −

w̃k)TQ(wk − w̃k), we get

ϑ(αk) ≥q(αk) = q(γα∗k )

=2γα∗k (w
k − w̃k)TQ(wk − w̃k)− γ2α∗k

(
α∗k‖M(wk − w̃k)‖2

H
)

=γ(2− γ)α∗k (w
k − w̃k)TQ(wk − w̃k). (3.17)

Thus

‖wk −w∗‖2
H − ‖wk+1 −w∗‖2

H ≥
γ(2− γ)

2
α∗k‖wk − w̃k‖2

(QT+Q)

and the assertion (3.12) is proved.

For given matrices Q, M, H, the step size αk in (3.11b) is low bounded away from zero.
Thus, (3.12) is the key-inequality for the convergence of Algorithm II. Even though the
correction of the Algorithm II needs to calculate the step size, usually, it converges faster
than Algorithm I.
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4 Splitting method (1.6)-(1.7) in the unified framework

Now, we are in the stage to prove the convergence of the considered splitting methods in
Section 1 by using the unified algorithmic framework in Section 3. This section deals with
the splitting method (1.6)-(1.7). We will interpret the method in a suitable prediction-
correction algorithm and check the conditions (3.2) and (3.4).

Prediction: For given wk = (xk, λk), we define the predictor by



x̃k
1 ∈ arg min

{
Lβ(x1, xk

2, · · · , xk
m, λk)

∣∣ x1 ∈ X1
}

,
...

x̃k
i ∈ arg min

{
Lβ(xk

1, · · · , xk
i−1, xi, xk

i+1, · · · , xk
m, λk)

∣∣ xi ∈ Xi
}

,
...

x̃k
m ∈arg min

{
Lβ(xk

1, · · · , xk
m−1, xm, λk)

∣∣ xm ∈ Xm
}

,

(4.1a)

λ̃k = λk − β
( m

∑
i=1

Ai x̃k
i − b

)
+ 2β

( m

∑
i=1

Ai(x̃k
i − xk

i )
)

. (4.1b)

Lemma 4.1. For solving the variational inequality (2.4), the predictor w̃k = (x̃k, λ̃k) offered by
(4.1) satisfies

w̃k ∈ Ω, θ(x)− θ(x̃k) + (w− w̃k)T F(w̃k) ≥ (w− w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (4.2)

where

Q =

 βATA+ βD 0

−2A
1
β

I

 (4.3)

and D = diag(AT
1 A1, AT

2 A2, · · · , AT
m Am).

Proof. In the prediction step (4.1a), x̃k
i is defined by

x̃k
i ∈ arg min

{
Lβ(xk

1, · · · , xk
i−1, xi, xk

i+1, · · · , xk
m, λk)

∣∣ xi ∈ Xi
}

.

Ignoring the constant term of the objective function (see (1.3)), it leads that

x̃k
i ∈ arg min

{
θi(xi)− xT

i AT
i λk +

β

2
‖Ai(xi − xk

i ) + (Axk − b)‖2
∣∣∣ xi ∈ Xi

}
.

According to Lemma 2.1, using the optimal condition of the above problem, we get

x̃k
i ∈ Xi, θi(xi)− θi(x̃k

i ) + (xi − x̃k
i )

T{
−AT

i λk + βAT
i
[
Ai(x̃k

i − xk
i ) + (Axk − b)

]}
≥ 0, ∀xi ∈ Xi. (4.4)
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Using (4.1b), we have

λ̃k = λk − β(Ax̃k − b) + 2βA(x̃k − xk), (4.5)

and thus

λk =λ̃k + β(Ax̃k − b)− 2βA(x̃k − xk)

=λ̃k + β(Axk − b)− βA(x̃k − xk).

Substituting it in (4.4), we obtain

x̃k
i ∈ Xi, θi(xi)− θi(x̃k

i ) + (xi − x̃k
i )

T{
−AT

i λ̃k + βAT
i A(x̃k − xk) + βAT

i Ai(x̃k
i − xk

i )
}
≥ 0, ∀xi ∈ Xi. (4.6)

Notice that

ATA =


AT

1 A

AT
2 A
...

AT
mA

 and D =


AT

1 A1 0 · · · 0

0 AT
2 A2

. . .
...

...
. . . . . . 0

0 · · · 0 AT
m Am

 .

Summing the inequality (4.6) from i = 1 to i = m, we get

x̃k ∈ X, θ(x)− θ(x̃k) + (x− x̃k)T{
−ATλ̃k + βATA(x̃k − xk) + βD(x̃k − xk)

]}
≥ 0, ∀x ∈ X. (4.7)

Notice that (4.5) can be written as

(Ax̃k − b)− 2A(x̃k − xk) +
1
β
(λ̃k − λk) = 0

and thus we have

λ̃k ∈ <l , (λ− λ̃k)T
{
(Ax̃k − b)− 2A(x̃k − xk) +

1
β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ <l . (4.8)

Combining (4.7) and (4.8) and using the notation F(w̃k), the assertion of this lemma fol-
lows immediately.

It is clear that the matrix Q satisfies the condition (3.2) in the prediction step (3.1).
Now, we give the related correction form.

Lemma 4.2. Let I = diag(In1 , In2 , · · · , Inm). For given wk = (xk, λk), if the predictor w̃k =
(x̃k, λ̃k) is generated by (4.1), then the correction(

xk+1

λk+1

)
=

(
xk

λk

)
− α

(
I 0

−2βA I

)(
xk − x̃k

λk − λ̃k

)
(4.9)

produces the same new iterate wk+1 as the same one by (1.7).
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Proof. For the same wk = (xk, λk), comparing (1.6a) and (4.1a), we have

x̃k
i = xk+ 1

2
i , i = 1, · · · , m.

Thus, the x-part of the correction (1.7) can be written as

xk+1 = xk − α(xk − x̃k). (4.10)

By using xk+ 1
2 = x̃k, it follows from (1.6b) that

λk − λk+ 1
2 = β(Ax̃k − b).

On the other hand, from (4.1b) we have

β(Ax̃k − b) = λk − λ̃k − 2βA(xk − x̃k).

From the above two equations we get

λk − λk+ 1
2 = λk − λ̃k − 2βA(xk − x̃k).

Substituting it in (1.7), the λ-part correction can be written as

λk+1 =λk − α(λk − λk+ 1
2 )

=λk − α[−2βA(xk − x̃k) + (λk − λ̃k)]. (4.11)

Combining (4.10) and (4.11), we get (4.9), and the assertion in proved.

The splitting method (1.6)-(1.7) has been interpreted in the Algorithm I whose pre-
diction and correction steps are (4.1) and (4.9), respectively. Note that in the correction
step,

M =

(
I 0

−2βA I

)
. (4.12)

Indeed, we have the positive definite matrix

H =

 β(ATA+D) 0

0
1
β

I

 , (4.13)

which satisfies the condition (3.4a), namely, HM = Q (also see the matrix Q in (4.3)).
The remained question is to give the range of the constant α in (3.4b). Since QT + Q is

positive definite, there is a positive scalar αmax which satisfies

αmax = arg max
α
{G = QT + Q− αMT HM |G � 0}.

We list the result in the following lemma.
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Lemma 4.3. For the given matrices Q, H and M in (4.3), (4.12) and (4.13), respectively, the
matrix

G = (QT + Q)− αMT HM is positive definite for any α ∈
(
0, 2
(
1−

√
m

m+1

))
. (4.14)

Proof. Using Q = HM, we write the matrix G in the following form

(QT + Q)− αMT HM =MT(HM−1 + M−T H)M− αMT HM

=MT[(HM−1 + M−T H)− αH]M.

In order to show the assertion (4.14), we need only to find the largest α such that

Find the largest α such (HM−1 + M−T H)− αH � 0. (4.15)

Using the expressions of M and H (see (4.12) and (4.13)), we have

M−1 =

(
I 0

2βA I

)
and thus

HM−1 =

 β(ATA+D) 0

2A
1
β

I

 .

Notice that

HM−1 + M−T H = 2

 β(ATA+D) AT

A
1
β

I

 . (4.16)

For discussing the positivity of the matrix [(HM−1 + M−T H)− αH] in (4.15), we define

P = diag
(√

βA1, · · · ,
√

βAm,
1√

β
I
)

,

then we have (see (4.16) and (4.13))

(HM−1 + M−T H)− αH

=PT


2



2Il Il · · · Il Il

Il
. . . . . .

...
...

...
. . . . . . Il

...
Il · · · Il 2Il Il

Il · · · · · · Il Il


− α



2Il Il · · · Il 0

Il
. . . . . .

...
...

...
. . . . . . Il

...
Il · · · Il 2Il 0
0 · · · · · · 0 Il




(m+1)×(m+1)

P. (4.17)
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In this way, in order to show (4.14), we need only to find the largest α such that the
(m + 1)× (m + 1) symmetric matrix

T = 2
(

Im + eeT e
eT 1

)
− α

(
Im + eeT 0

0 1

)
� 0,

where e is an m-vector whose each element equals 1. Let Tz = νz, where ν is the eigen-
value of T and z is the related eigenvector. In the following we try to find the largest α
such that all the eigenvalue of T are non-negative. Note that

T =

(
(2− α)(Im + eeT) 2e

2eT 2− α

)
. (4.18)

Without loss of generality, we assume that the eigenvectors of T have forms

z =

(
y
0

)
and z =

(
y
1

)
,

where y ∈ <m. In the first case, zT = (yT, 0), it follows from Tz = νz and (4.18) that{
(2− α)y + (2− α)(eTy)e = νy,
eTy = 0,

⇒
{

(2− α)y = νy,
eTy = 0.

Therefore, we have (m − 1) linear independent vectors, yi, i = 1, · · · , m − 1, in the or-
thogonal subspace to e, and

zi =

(
yi

0

)
, i = 1, · · · , m− 1,

are eigenvectors of T and the related eigenvalues are

ν1 = ν2 = · · · = νm−1 = (2− α).

In the second case, zT = (yT, 1), from Tz = νz and (4.18) we have{
(2− α)y + ((2− α)eTy + 2)e = νy,
2eTy + (2− α) = ν.

(4.19)

Left-multiplying the first equation of (4.19) by eT and then using the second equation of
(4.19) and eTe = m, we derive that

ν2 − (m + 2)(2− α)ν + [(m + 1)(2− α)2 − 4m] = 0.

Thus, the small root of the above equation is

νmin(T) =
(m + 2)(2− α)−

√
(m + 2)2(2− α)2 − 4[(m + 1)(2− α)2 − 4m]

2
.
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To ensure νmin(T) ≥ 0, we should find α such that

[(m + 1)(2− α)2 − 4m] ≥ 0.

The equivalent expression is

α ≤ 2
(

1−
√

m
m + 1

)
.

The assertion of this lemma is proved.

Due to the correctness of Lemma 4.1, Lemma 4.2 and Lemma 4.3, we have proved
the convergence of the splitting method (1.6)-(1.7). we have proved the splitting method
(1.6)-(1.7) can be interpreted as a convergent method which belongs to Algorithm I. Nev-
ertheless, with the same predictor offered by (4.1), and the matrices Q and M given by
(4.3) and (4.12), respectively, we suggest to use Algorithm II which needs to calculate the
step size by (3.11b) in its correction step.

5 Splitting method (1.8) in the unified framework

In this section, we study the splitting method (1.8) in the frame of the unified algorith-
mic framework introduced in Section 3. For this purpose, the method (1.8) should be
rewritten to a prediction-correction form.

Prediction: For given wk = (xk, λk), we define the predictor by



x̃k
1 ∈ arg min

{
Lβ(x1, xk

2, · · · , xk
m, λk) +

τβ

2
‖A1(x1 − xk

1)‖2
∣∣∣ x1 ∈ X1

}
,

...

x̃k
i ∈ arg min

{
Lβ(xk

1, · · · , xk
i−1, xi, xk

i+1, · · · , xk
m, λk) +

τβ

2
‖Ai(xi − xk

i )‖2
∣∣∣ xi ∈ Xi

}
,

...

x̃k
m ∈arg min

{
Lβ(xk

1, · · · , xk
m−1, xm, λk) +

τβ

2
‖Am(xm − xk

m)
∣∣∣ xm ∈ Xm

}
,

(5.1a)

λ̃k = λk − β
( m

∑
i=1

Ai x̃k
i − b

)
+ β

( m

∑
i=1

Ai(x̃k
i − xk

i )
)

. (5.1b)

Notice that both the x-part and λ-part of this predictor are different from the one pro-
vided by (4.1) in the last section.

Lemma 5.1. For solving the variational inequality (2.4), the predictor w̃k = (x̃k, λ̃k) offered by
(5.1) satisfies

w̃k ∈ Ω, θ(x)− θ(x̃k) + (w− w̃k)T F(w̃k) ≥ (w− w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (5.2)
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where

Q =

 (τ + 1)βD 0

−A 1
β

I

 (5.3)

and D = diag(AT
1 A1, AT

2 A2, · · · , AT
m Am).

Proof. In the prediction step (5.1a), x̃k
i is defined by

x̃k
i ∈ arg min

{
Lβ(xk

1, · · · , xk
i−1, xi, xk

i+1, · · · , xk
m, λk) +

τβ

2
‖Ai(xi − xk

i )‖2
∣∣∣ xi ∈ Xi

}
.

Ignoring the constant term of the objective function (see (1.3)), it leads that

x̃k
i ∈ arg min

{
θi(xi)− xT

i AT
i λk +

β

2
‖Ai(xi − xk

i ) + (Axk − b)‖2

+
τβ

2
‖Ai(xi − xk

i )‖2
∣∣∣ xi ∈ Xi

}
. (5.4)

According to Lemma 2.1, using the optimal condition of the above problem, we get

x̃k
i ∈ Xi, θi(xi)− θi(x̃k

i ) + (xi − x̃k
i )

T{
−AT

i λk + βAT
i
[
Ai(x̃k

i − xk
i ) + (Axk − b)

]
+ τβAi(x̃k

i − xk
i )
}
≥ 0, ∀xi ∈ Xi. (5.5)

Using (5.1b), we have

λ̃k = λk − β(Ax̃k − b) + βA(x̃k − xk), (5.6)

and thus
λk = λ̃k + β(Axk − b).

Substituting it in (5.5), we obtain

x̃k
i ∈ Xi, θi(xi)− θi(x̃k

i ) + (xi − x̃k
i )

T{
−AT

i λ̃k + (τ + 1)βAT
i Ai(x̃k

i − xk
i )
}
≥ 0, ∀xi ∈ Xi. (5.7)

Summing the inequality (4.6) from i = 1 to i = m, we get

x̃k ∈ X, θ(x)− θ(x̃k) + (x− x̃k)T{
−ATλ̃k + β(τ + 1)D(x̃k − xk)

]}
≥ 0, ∀x ∈ X. (5.8)

Notice that (5.6) can be written as

(Ax̃k − b)−A(x̃k − xk) +
1
β
(λ̃k − λk) = 0,
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and hence its corresponding variational inequality has a form

λ̃k ∈ <l , (λ− λ̃k)T
{
(Ax̃k − b)−A(x̃k − xk) +

1
β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ <l . (5.9)

Combining (5.8) and (5.9) and using the notation F(w̃k), the assertion of this lemma fol-
lows immediately.

Lemma 5.2. Let I = diag(In1 , In2 , · · · , Inm). For given wk = (xk, λk), if the predictor w̃k =
(x̃k, λ̃k) is generated by (5.1), then the correction(

xk+1

λk+1

)
=

(
xk

λk

)
−
(

I 0
−βA I

)(
xk − x̃k

λk − λ̃k

)
(5.10)

produces the same new iterate wk+1 as the one by (1.8).

Proof. For the same wk = (xk, λk), comparing (1.8a) and (5.1a), we have

x̃k
i = xk+1

i , i = 1, · · · , m.

Thus, the x-part of the correction (1.7) can be written as

xk+1 = xk − (xk − x̃k). (5.11)

By using xk+1 = x̃k, it follows from (1.8b)) that

λk+1 = λk − β(Axk+1 − b) = λk − β(Ax̃k − b). (5.12)

Since (see (5.1b))
λ̃k = λk − β(Ax̃k − b) + βA(x̃k − xk),

we have
β(Ax̃k − b) = λk − λ̃k − βA(xk − x̃k).

Substituting it in (5.12), the λ-part of the correction (1.7) can be written as

λk+1 = λk − [−βA(xk − x̃k) + (λk − λ̃k)]. (5.13)

Combining (5.11) and (5.13), we get (5.10), and the assertion in proved.

The splitting method (1.8) has been interpreted in the Algorithm I whose prediction
and correction steps are (5.1) and (5.10), respectively. Note that in the correction step,

M =

(
I 0
−βA I

)
. (5.14)
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Indeed, we have positive definite matrix

H =

 (τ + 1)βD 0

0
1
β

I

 , (5.15)

which satisfies HM = Q (see the matrix Q in (5.3)). The remained task is to check the
positivity of the matrix G when τ > m− 1.

Lemma 5.3. For the given matrices Q, M and H (see (5.3), (5.14) and (5.15)), and any positive
constant τ > m− 1, we have

G = (QT + Q)−MT HM � 0. (5.16)

Proof. Indeed, by a manipulation, we have

G =(QT + Q)−MT HM = (QT + Q)−QT M

=

 2(τ + 1)βD −AT

−A 2
β

I

−
 (τ + 1)βD −AT

0
1
β

I

( I 0
−βA I

)

=

 2(τ + 1)βD −AT

−A 2
β

I

−
 (τ + 1)βD+ βATA −AT

−A 1
β

I


=

 (τ + 1)βD− βATA 0

0
1
β

I

 .

By using

P = diag
(√

βA1, · · · ,
√

βAm,
1√

β
I
)

,

we have

G = PT



τ Il −Il · · · −Il 0

−Il
. . . . . .

...
...

...
. . . . . . 0

...
−Il · · · −Il τ Il 0
0 · · · · · · 0 Il


P. (5.17)

In this way, we need only to consider the m×m symmetric matrix

T0 = (τ + 1)Im − eeT,

where e is an a m-vector whose each element equals 1. Indeed, T0 � 0 if and only if
τ > m− 1. The lemma is proved.
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Due to the correctness of Lemma 5.1, Lemma 5.2 and Lemma 5.3, we have proved
the convergence of the splitting method (1.8). we have proved the splitting method (1.8)
can be interpreted as a convergent method which belongs to Algorithm I. Nevertheless
with the same predictor offered by (5.1), the matrix Q and M given by (5.3) and (5.14),
respectively, we suggest to use Algorithm II which needs to calculate the step size by
(3.11b) in its correction step.

6 Conclusion remarks

For solving the convex minimization problem with linear constraints and an objective
function in form of the sum of m functions without coupled variables, the straightfor-
ward splitting version of ALM with full Jacobian decomposition could be divergent. As
a remedy which enjoys the feature that all the xi-subproblems can be solved in parallel,
we have proposed the methods (1.6)-(1.7) and (1.8). In this paper, by suitable rewriting,
we let such methods fit into the unified algorithmic framework, and thus the convergence
of the different previous methods follows immediately. Indeed, for linearly constrained
convex optimization, the unified algorithmic frameworks can guide us to construct suit-
able solution methods. In addition, it is also powerful and flexible for convergence anal-
ysis.
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