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Abstract. Let Ω, with finite Lebesgue measure |Ω|, be a non-empty open subset of
R, and Ω =

⋃∞
j=1 Ωj, where the open sets Ωj are pairwise disjoint and the boundary

Γ = ∂Ω has Minkowski dimension D ∈ (0, 1). In this paper we study the Dirich-
let eigenvalues problem on the domain Ω and give the exact second asymptotic term
for the eigenvalues, which is related to the Minkowski dimension D. Meanwhile, we
give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional
fractal domains.
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1 Introduction and main results

Let Ω, with boundary Γ = ∂Ω be a non-empty open subset of Rn (n ≥ 1). We assume that
Ω has finite Lebesgue measure |Ω|. Then we consider the following Dirichlet eigenvalues
problem: {

−∆u = λu in Ω,
u = 0 on Γ.

(1.1)

As is well-known (or see [4]), the problem (1.1) has a sequence of discrete eigenvalues,
which can be ordered, after counting finite multiplicity as

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · and λk → +∞ as k→ +∞.
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In 1911, Weyl studied the problem (1.1) and obtained the following first asymptotic term
for a bounded open Ω in Rn (see [16, 17]):

λk ∼
4π2k

2
n

(Bn|Ω|)
2
n

as k→ +∞, (1.2)

where Bn is the volume of the unit ball in Rn and we say that fk ∼ gk as k → +∞ means
fk
gk
→ 1 as k→ +∞.
In 1961, Pólya [14] gave his conjecture for any bounded open subset Ω in Rn, the

Dirichlet eigenvalues has the following lower bounds for any k ≥ 1,

λk ≥
4π2k

2
n

(Bn|Ω|)
2
n

, (1.3)

also he proved his conjecture (1.3) would be true when Ω is a plane domain which tiles
R2. Later in 1983, Peter Li and Yau [12] proved for general bounded domain Ω with
smooth boundary, the Dirichlet eigenvalues had the following lower bounds:

k

∑
i=1

λi ≥
n

n + 2
4π2k

2+n
n

(Bn|Ω|)
2
n

for any k ≥ 1. (1.4)

In this direction, there are a lot of research works on eigenvalues for smooth domains (or
regular domains), e.g., one can see [7, 8, 13, 15].

However, when Ω is fractal domain, i.e., its boundary Γ is ”fractal”, the situation will
be more complicated (cf. [2, 3, 5, 9–11]). Here in this paper, we shall study the case for Ω
is one-dimensional fractal string (see the definition below). We shall give the results for
second asymptotic term and precise lower bound estimates of Dirichlet eigenvalues for
such kinds of fractal sets.

Let us start to consider the open bounded subset Ω ∈ Rn with boundary Γ, we shall
first give some definitions about Minkowski measurability and Minkowski dimension as
followes:

Definition 1.1. Let Γε = {x : d(x, Γ) < ε}, where d(x, Γ) denotes the Euclidean distance
of x to the boundary Γ. For d ∈ [n− 1, n], the (d-dimensional) upper Minkowski content
and lower Minkowski content of Γ are given by

M∗(d; Γ) , lim sup
ε→0+

ε−(n−d)|Γε ∩Ω|, M∗(d; Γ) , lim inf
ε→0+

ε−(n−d)|Γε ∩Ω|.

The Minkowski dimension of Γ is defined as

D = inf
d∈[n−1,n]

{d : M∗(d; Γ) < +∞}. (1.5)

If 0 < M∗(D; Γ) = M∗(D; Γ) = M(D; Γ) < +∞, then Γ is D-dimensional Minkowski
measurable with Minkowski measure M(D; Γ).
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In case of D ∈ (n− 1, n], we call Ω the domain with fratcal boundary Γ (or called the
fractal domain). If n = 1, we have the following definition:

Definition 1.2 (Fractal string). Let

Ω =
∞⋃

j=1

Ωj

be a non-empty open subset of R, with finite Lebesgue measure

|Ω| =
∞

∑
j=1
|Ωj| < +∞,

where the open sets Ωj are pairwise disjoint. Let `j , |Ωj|, and set `1, · · · from large to
small. If Minkowski dimension for the boundary of Ω D ∈ (0, 1], we call L = {`j}∞

j=1 the
fractal string of Ω.

Example 1.1. Let Ω =
⋃∞

j=1 Ωj, Ωj are pairwise disjoint intervals, and |Ωj| = `j, ∑+∞
j=1 `j <

+∞. Denote L = {`j}∞
j=1 as the fractal string of Ω, in each Ωj there exists a local eigen-

values

λm,j(Ωj) =
π2m2

`2
j

for m, j = 1, · · · .

Then we extend their eigenfunctions um,j to be zero on other intervals, so we obtain the
expression of λm,j in the whole Ω:

λm,j =
π2m2

`2
j

for m, j = 1, · · · . (1.6)

After arranging them from small to large, we get the all eigenvalues of (1.1).

In the case of n = 1 and D ∈ (0, 1), Lapidus [9] proved that if L = {`j}∞
j=1 is the

fractal string of Ω. Then the condition `j � j−
1
D as j → +∞ holds, (where f (x) � g(x)

(as x → +∞) means that there exists X > 0 and 0 < a ≤ b < +∞ such that when
x > X, a f (x) ≤ g(x) ≤ b f (x)), iff the boundary Γ of Ω has Minkowski dimension D and
0 < M∗(D; Γ) ≤M∗(D; Γ) < +∞. In this case, Lapidus [9] in 1993 gave that

ϕ(λ)− N(λ) � λ
D
2 for λ→ +∞, (1.7)

where
N(λ) = ]{k ≥ 1 : λk ≤ λ}

is Dirichlet counting function,

ϕ(λ) = |Ω|
√

λ

π
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is called ”Weyl term”.
Furthermore, if there exists L > 0 then the condition `j ∼ Lj−

1
D as j→ ∞ holds iff the

boundary Γ is D-dimensional Minkowski measurable and

M(D; Γ) =
21−D

1− D
LD.

In this case, when the boundary is Minkowski measurable, Lapidus [9] proved the fol-
lowing result for second asymptotic term of Dirichlet counting function N(λ):

N(λ) = ϕ(λ)− cDM(D; Γ)λ
D
2 + o(λ

D
2 ) for λ→ +∞, (1.8)

where cD = 2−(1−D)π−D(D − 1)ζ(D) (ζ(z) is Riemann-zeta function). In this paper,
by using Lapidus’ result, we shall give the exact second asymptotic term of Dirichlet
eigenvalues λk, namely

Theorem 1.1 (Asymptotic expansion). Let Ω =
⋃∞

j=1 Ωj be a non-empty open subset of R,
with finite Lebesgue measure |Ω| = ∑∞

j=1 |Ωj| < +∞, where the open sets Ωj are pairwise
disjoint. Let `j , |Ωj|, and L = {`j}∞

j=1 is the fractal string of Ω. The boundary Γ of Ω has
Minkowski dimension D ∈ (0, 1), and {λk}∞

k=1 are the Dirichlet eigenvalues of (1.1). Then

λk −
π2

|Ω|2 k2 � k1+D as k→ +∞. (1.9)

Furthermore, if `j ∼ Lj−
1
D , (j→ ∞) for some constant L > 0, then

λk =
π2

|Ω|2 k2 +
TDM(D; Γ)
|Ω|2+D k1+D + o(k1+D) as k→ +∞, (1.10)

where M(D; Γ) is Minkowski measure of Γ, the constant TD = −2Dζ(D)(1− D)π2 > 0 and
ζ(z) is Riemann-zeta function.

Theorem 1.1 also gives an estimate of the multiplicity of the eigenvalues, see Subsec-
tion 2.3 below.

Let’s turn to the second result, the lower bounds for the Dirichlet eigenvalues. For
one-dimensional fratcal domain, if its boundary has Minkowski dimension D ∈ (0, 1),
then we know that `j � j−

1
D , (j→ ∞), i.e., there exist 0 < α∗ ≤ α∗ < +∞ such that for all

`j which will satisfy

0 < α∗ ≤ Lj ≤ α∗ < +∞ for j ≥ 1, Lj = `j j
1
D . (1.11)

Now our second result will be given as follows:
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Theorem 1.2 (Lower bounds of eigenvalues). Under the conditions in Theorem 1.1, if the
boundary Γ has Minkowski dimension D ∈ (0, 1), then there exist positive constants α∗ and α∗

(as defined by (1.11)). such that the Dirichlet eigenvalues {λk}∞
k=1 of (1.1) have the following

lower bounds:

|Ω|
√

λk

π
≥ k +

P
|Ω|D kD for k ≥ 1. (1.12)

More precise, for any k ≥ 1 we have

λk ≥
π2

|Ω|2 k2 +
2π2P
|Ω|2+D k1+D +

π2P2

|Ω|2+2D k2D, (1.13)

where
P =

Dα∗(
α∗D + `D

1

) 1
D−1

(1− D)
(1.14)

is called crucial constant.

By Theorem 1.1, the order of k for the second term in (1.12) and (1.13) respectively will
be the best. Now let us give more precise lower bound for the second term as follows.

Theorem 1.3 (Precise lower bounds). Under the conditions of Theorem 1.2, then for all integer
k ≥ 1 we have

|Ω|
√

λk

π
≥ Ck, (1.15)

where Ck is the positive solution of equation

x = k +
P
|Ω|D xD,

and P is the same as Theorem 1.2. Moreover, for k ≥ 1,

Ck ≥ k +
P
|Ω|D kD. (1.16)

Observe that the estimate of the lower bounds in Theorem 1.3 is more precise than
the result in Theorem 1.2.

Remark 1.1. 1. By Theorem 1.3, we have

λk ≥
π2k2

|Ω|2 +
2π2P
|Ω|D+2 CD

k k +
π2P2

|Ω|2D+2 C2D
k .

It is easy to check that CD
k k = O(k1+D), so the order of k in the second term here is also

the best.
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2. If there exists L > 0 such that `j ∼ Lj−
1
D as j → +∞. Then the boundary Γ is

Minkowski measuable with Minkowski measure

M(D; Γ) =
21−D

1− D
LD.

Thus we can choose α∗ = γ∗L, α∗ = γ∗L and `1 = γ1L, then the crucial constant in
Theorems 1.2 and 1.3 becomes

P = PM =
Dγ∗M(D; Γ)(

γ∗D + γD
1

) 1
D−1 21−D

.

In this paper, we will prove Theorem 1.1 in Section 2, and proofs of Theorems 1.2 and
1.3 will be given in Section 3. Finally, we shall give some examples in Section 4.

2 Proof of Theorem 1.1

2.1 Proof of Theorem 1.1

Proposition 2.1. Under the conditions of Theorem 1.1, if `j � j−
1
D (as j → +∞) with D ∈

(0, 1), {λk}∞
k=1 is the Direchlet eigenvalues of (1.1), N(λ) is counting function of {λk}∞

k=1, then

ϕ(λ)− N(λ) � λ
D
2 , λ→ +∞, (2.1)

is equivalent to

λk −
π2

|Ω|2 k2 � k1+D, k→ +∞, (2.2)

where ϕ(λ) = |Ω|
√

λ
π .

Proof. If (2.1) holds, then there exist 0 < δ∗ ≤ δ∗ < +∞ and λ0 large enough, such that
when λ > λ0,

δ∗λ
D
2 ≤ ϕ(λ)− N(λ) = |Ω|

√
λ

π
− N(λ) ≤ δ∗λ

D
2 .

Then

|Ω|
√

λ

π
− δ∗λ

D
2 ≤ N(λ) ≤ |Ω|

√
λ

π
− δ∗λ

D
2 . (2.3)

Also we know that there exists K1 > 0, such that when k > K1, we have λk > λ0. And
it’s obvious that N(λk) ≥ k. Then

k ≤ N(λk) ≤ |Ω|
√

λk

π
− δ∗λ

D
2

k . (2.4)
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On the other hand, we notice that N(λ) is right continuous step function. So we construct
a left continuous step function M(λ) when λ > λ0:

M(λ) =

 N(λ), λ is continuous point of N(λ),
lim

p→λ−
N(p), anywhere else. (2.5)

It is easy to obtain M(λk) < k for all λk > λ0. Now, if λ > λ0, when λ is continuous point
of N(λ),

M(λ) = N(λ) ≥ |Ω|
√

λ

π
− δ∗λ

D
2 ,

when λ is not continuous point of N(λ),

M(λ) = lim
p→λ−

N(p) ≥ lim
p→λ−

(
|Ω|
√

p
π
− δ∗p

D
2

)
= |Ω|

√
λ

π
− δ∗λ

D
2 .

So for all λ > λ0, we obtain

M(λ) ≥ |Ω|
√

λ

π
− δ∗λ

D
2 .

Furthermore, since
λ

D
2

k ∈ o(
√

λk) as k→ ∞,

then there exists K2 > 0 such that

|Ω|
√

λk

π
− δ∗λ

D
2

k > 0

if k ≥ K2. Thus, when k > max{K1, K2},

k > M(λk) ≥ |Ω|
√

λk

π
− δ∗λ

D
2

k > 0. (2.6)

Now we consider the following:

bk =:
λk − π2k2

|Ω|2

k1+D =
|Ω|2λk − π2k2

|Ω|2k1+D . (2.7)

By (2.4) and (2.6),

bk ≤
|Ω|2λk − π2(|Ω|√λk

π − δ∗λ
D
2

k

)2

|Ω|2
(
|Ω|

√
λk

π − δ∗λ
D
2

k

)1+D
=

2|Ω|πδ∗λ
1+D

2
k − π2δ∗2λD

k

|Ω|2
(
|Ω|

√
λk

π − δ∗λ
D
2

k

)1+D
, (2.8a)

bk ≥
|Ω|2λk − π2(|Ω|√λk

π − δ∗λ
D
2

k

)2

|Ω|2
(
|Ω|

√
λk

π − δ∗λ
D
2

k

)1+D
=

2|Ω|πδ∗λ
1+D

2
k − π2δ∗

2λD
k

|Ω|2
(
|Ω|

√
λk

π − δ∗λ
D
2

k

)1+D
. (2.8b)
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Let k → ∞, since 1 + D > 2D, the right hand side of (2.8a) goes to 2( π
|Ω| )

2+Dδ∗ and the
same of (2.8b) goes to 2( π

|Ω| )
2+Dδ∗. Thus we obtain (2.2).

Conversely, consider the interval [λk, λk+t), where λk−1 < λk = λk+1 = · · · =
λk+t−1 < λk+t. Thus for any λ ∈ [λk, λk+t), N(λ) = k + t− 1. So in [λk, λk+t),

f (λ) =:
|Ω|

√
λ

π − N(λ)

λ
D
2

=
|Ω|
π

λ
1−D

2 − (k + t− 1)λ−
D
2 (2.9)

is monotonically increasing and continuous. We call every interval like [λk, λk+t) a con-
tinuous and monotonic interval (CM interval) of f (λ). Since λk is finite multiplicity, every
CM interval has finite length and there are infinitely many CM intervals.

If we take the subsequence {λk j : N(λk j) = k j}, then [λk j , λk j+1) turns out to be a CM
interval of f (x). Noticing that λk j+1 = λk j+1, we rewrite [λk j , λk j+1) as [λk j , λk j+1). Hence
for any λ ∈ [λk j , λk j+1),

f (λ) =
|Ω|

√
λ

π − N(λ)

λ
D
2

≤
|Ω|

√
λkj+1

π − N(λk j)

(
√

λk j+1)D
, θj,

where one should notice that

lim
λ→λ−kj+1

N(λ) = N(λk j).

In fact,
θj = sup

λ∈[λkj
,λkj+1)

{ f (λ)}

and
lim sup

λ→+∞
f (λ) = lim

j→+∞
θj. (2.10)

Since the condition (2.2) and the formula (2.7) give that

λk −
π2

|Ω|2 k2 = bkk1+D � k1+D as k→ +∞, (2.11)

then there exist K > 0 and 0 < b∗ ≤ b∗ < +∞, such that when k > K, we have b∗ ≤ bk ≤
b∗. Here we can assume that

lim sup
k→+∞

bk = b∗ and lim inf
k→+∞

bk = b∗. (2.12)

Putting λk into θj, one has

θj =

√
(k j + 1)2 + |Ω|2

π2 bk j+1(k j + 1)1+D − k j(√
π2(k j+1)2

|Ω|2 + (k j + 1)1+Dbk j+1

)D
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=
2k j + 1 + |Ω|2

π2 bk j+1(k j + 1)1+D(√
π2(k j+1)2

|Ω|2 + (k j + 1)1+Dbk j+1

)D(√
(k j + 1)2 + |Ω|2

π2 bk j+1(k j + 1)1+D + k j

) .

Since there are infinitely many CM intervals, then j → +∞ is equivalent to k j → +∞.
Hence

lim sup
j→∞

θj =
b∗

2

( |Ω|
π

)D+2
. (2.13)

By (2.10) and (2.13), we get

lim
λ→+∞

f (λ) ≤ lim sup
λ→+∞

f (λ) = lim
j→∞

θj ≤ lim sup
j→∞

θj =
b∗

2

( |Ω|
π

)D+2
< +∞. (2.14)

By using the same method, for any λ ∈ [λk j , λk j+1), we have

f (λ) =
|Ω|

√
λ

π − N(λ)

λ
D
2

≥
|Ω|

√
λkj

π − N(λk j)

(
√

λk j)
D

, ηj.

Thus
ηj = inf

λ∈[λkj
,λkj+1)

{ f (λ)},

and
lim inf
λ→+∞

f (λ) = lim
j→∞

ηj. (2.15)

Putting λk into ηj, we obtain

ηj =

|Ω|2
π2 bk j k j

1+D(√
π2k j

2

|Ω|2 + k j
1+Dbk j

)D(√
k j

2 + |Ω|2
π2 bk j k j

1+D + k j

) .

Therefore

lim inf
j→∞

ηj =
b∗
2

( |Ω|
π

)D+2
. (2.16)

So (2.15) and (2.16) imply

lim
λ→+∞

f (λ) ≥ lim inf
λ→+∞

f (λ) = lim
j→∞

ηj ≥ lim inf
j→∞

ηj =
b∗
2

( |Ω|
π

)D+2
> 0. (2.17)

Consequently, by (2.14) and (2.17), we can deduce that (2.1). This completes the proof of
Proposition 2.1.
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Next, we consider the case of `j ∼ Lj−
1
D , (j→ ∞).

Proposition 2.2. Under the conditions of Theorem 1.1, if `j ∼ Lj−
1
D , (j → ∞) holds for some

L > 0 with D ∈ (0, 1), {λk}∞
k=1 is the eigenvalues of (1.1), and N(λ) is counting function of

{λk}∞
k=1. Then

ϕ(λ)− N(λ) ∼ −ζ(D)LD

πD λ
D
2 for λ→ +∞, (2.18)

is equivalent to

lim
k→∞

bk =
−2π2ζ(D)LD

|Ω|2+D , (2.19)

where bk is defined as (2.7).

Proof. First, if (2.19) holds, then from (2.12) we have

b∗ = b∗ =
−2π2ζ(D)LD

|Ω|2+D .

Thus
−ζ(D)LD

πD = lim inf
j→∞

ηj ≤ lim
λ→∞

f (λ) ≤ lim sup
j→∞

θj =
−ζ(D)LD

πD ,

where f (λ) defined as (2.9). So we obtain (2.18).
Conversely, if (2.18) holds, by Proposition 2.1, bk will be bounded. Thus we only need

to prove that

b∗ = b∗ =
−2π2ζ(D)LD

|Ω|2+D .

We use the same method for λk j as that in Proposition 2.1. Then we also have the results
in (2.13) and (2.16). It remains to prove

lim
j→+∞

ηj = lim
j→+∞

θj.

By (2.10) and (2.18), we obtain

lim
j→∞

θj = lim sup
λ→+∞

f (λ) = lim
λ→+∞

f (λ) =
−ζ(D)LD

πD ,

which, with (2.13), implies

b∗

2

( |Ω|
π

)D+2
= lim sup

j→∞
θj = lim

j→∞
θj =

−ζ(D)LD

πD .

Hence

b∗ =
−2π2ζ(D)LD

|Ω|2+D . (2.20)
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Next, we calculate b∗. By (2.15) and (2.18), we have

lim
j→∞

ηj = lim inf
λ→+∞

f (λ) = lim
λ→+∞

f (λ) =
−ζ(D)LD

πD ,

which, with (2.16), implies

b∗
2

( |Ω|
π

)D+2
= lim inf

j→∞
ηj = lim

j→∞
ηj =

−ζ(D)LD

πD .

Hence

b∗ =
−2π2ζ(D)LD

|Ω|2+D . (2.21)

Consequently, by (2.20) and (2.21) we have (2.19). Proposition 2.2 is proved.

Finally, from the results of Lapidus [9] (see (1.7) and (1.8) above), the proof of Theorem
1.1 will be given directly by the results in Proposition 2.1 and Proposition 2.2.

2.2 Multiplicity estimate

As a direct application of Theorem 1.1, we give an estimate of ak , N(λk) − k, which
imples the estimate of the multiplicity for the eigenvalues λk.

Proposition 2.3. Under the conditions of Theorem 1.1, {λk}∞
k=1 is the Dirichlet eigenvalues of

(1.1). N(λ) is counting function of {λk}∞
k=1 and let ak , N(λk)− k. For D ∈ (0, 1) and L > 0,

if `j ∼ Lj−
1
D , (j→ ∞), then

ak = o(kD) as k→ +∞.

Proof. If `j ∼ Lj−
1
D , (j → ∞), then from Lapidus’s result (1.8) and Proposition 2.2, we

obtain (2.18) and

b ,: lim
k→∞

bk =
TDM(D; Γ)
|Ω|2+D =

−2π2ζ(D)LD

|Ω|2+D . (2.22)

Then we rewrite λk as (2.11) again. By Example 1.1 we can define a local counting func-
tion

N(λ; Ωj) , ]

{
m ≥ 1 :

π2m2

`2
j
≤ λ

}
=

[
`j

√
λ

π

]
for fixed Ωj, where [x] means the largest integer which is not smaller than x. Then we
have

N(λ) =
∞

∑
j=1

N(λ; Ωj) =
∞

∑
j=1

[
`j

√
λ

π

]
. (2.23)
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Thus,

ak + k =N(λk) =
∞

∑
j=1

[
`j

√
k2

|Ω|2 +
bk

π2 k1+D
]

≤
∞

∑
j=1

`j

√
k2

|Ω|2 +
bk

π2 k1+D

=

√
k2 +

|Ω|2bk

π2 k1+D.

Let k→ +∞, we have

0 ≤ ak

k
≤

√
k2 + |Ω|2bk

π2 k1+D − k

k
→ 0, (2.24a)

0 ≤ ak

kD ≤

√
k2 + |Ω|2bk

π2 k1+D − k

kD → |Ω|
2b

2π2 . (2.24b)

Hence ak = o(k) and ak = O(kD). More precise, we put λk into f (λ), then we have

f (λk) =

√
k2 + |Ω|2

π2 bkk1+D − k− ak(√
π2k2

|Ω|2 + k1+Dbk

)D

=
|Ω|2
π2 bk − 2 ak

kD −
a2

k
k1+D(√

π2

|Ω|2 + kD−1bk

)D(√
1 + |Ω|2

π2 bkkD−1 + 1 + ak
k

) ,

which, with (2.18), (2.22), (2.24a) and (2.24b), implies

lim
k→∞

( |Ω|2
π2 bk − 2

ak

kD

)
= lim

k→∞

(
f (λk)

(√
π2

|Ω|2 + kD−1bk

)D(√
1 +
|Ω|2
π2 bkkD−1 + 1 +

ak

k

)
+

a2
k

k1+D

)

=
−2ζ(D)LD

|Ω|D .

Combining with (2.19), we obtain that

lim
k→∞

2
ak

kD = 0,

which means ak = o(kD) as k→ +∞. Proposition 2.3 is proved.
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There are a lot of examples in which ak → +∞ as k → +∞ (e.g., Ω ⊂ R is a Cantor
string). However, here we can give a special example in which for each k, we have ak = 0.

Example 2.1. Let Ω =
⋃∞

j=1 Ωj, with |Ωj| = `j = j−
√

2. Then Minkowski dimension of
∂Ω is D = 1√

2
∈ (0, 1). In this case we have ak = 0 for each k.

Proof. Assume that the multiplicity of eigenvalue λk is large than 1, then there exist
k1, k2, j1, j2 ∈N \ {0}, such that

π2k2
1 j2
√

2
1 = π2k2

2 j2
√

2
2 and (k1 − k2)(j1 − j2) 6= 0.

That implies
k1

k2
=
( j2

j1

)√2
.

This is a contradiction with Gelfond-Schneider Theorem (see [1,6]) that says if r and t are
algebraic numbers with r 6= 0, 1, and t is irrational, then rt is a transcendental number.
Thus the multiplicity for each eigenvalue is 1, that means ak = N(λk)− k = 0.

3 Proof of Theorem 1.2 and Theorem 1.3

3.1 Proof of Theorem 1.2

First, from (2.23) we have

k ≤ N(λk) =
∞

∑
j=1

[
`j

√
λk

π

]
≤

∞

∑
j=1

`j

√
λk

π
= |Ω|

√
λk

π
.

Thus,

λk ≥
π2

|Ω|2 k2, (3.1a)

k ≤ N(λk) =
∞

∑
j=1

[
`j

√
λk

π

]
=

∞

∑
j=1

`j

√
λk

π
−

∞

∑
j=1

{
`j

√
λk

π

}
, (3.1b)

where {x} = x − [x] ∈ [0, 1). Let x =
√

λk
π , then the condition (1.11) gives that when

j > (α∗x)D, `jx < 1 holds. So {`jx} = `jx. Hence, in the case of `j ≥ α∗ j−
1
D , one has

∞

∑
j=1
{`jx} = ∑

j≤(α∗x)D

{`jx}+ ∑
j>(α∗x)D

`jx

≥α∗x ∑
j≥[(α∗x)D ]+1

j−
1
D

≥ xDα∗

(1− D)([(α∗x)D] + 1)
1
D−1

. (3.2)
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Observe that x ≥
√

λ1
π = 1

`1
, we have

[(α∗x)D] + 1 ≤ (α∗x)D + 1 ≤
(

α∗D + `D
1

)
xD. (3.3)

Then (
[(α∗x)D] + 1

) 1
D−1 ≤

(
α∗D + `D

1

) 1
D−1

x1−D. (3.4)

Thus from (3.2) one has

∞

∑
j=1
{`jx} ≥

xDα∗

(1− D)([(α∗x)D] + 1)
1
D−1
≥ xDα∗(

α∗D + `D
1

) 1
D−1

(1− D)x1−D
= PxD, (3.5)

where

P =
Dα∗(

α∗D + `D
1

) 1
D−1

(1− D)
.

Putting (3.5) into (3.1b), we have

k ≤
∞

∑
j=1

`j

√
λk

π
−

∞

∑
j=1

{
`j

√
λk

π

}
≤ |Ω|

√
λk

π
− P

(√λk

π

)D
.

Thus, from (3.1a), one has

|Ω|
√

λk

π
≥ k + P

(√
λk

π

)D

≥ k +
P
|Ω|D kD. (3.6)

The estimate (1.12) is proved. That means

λk ≥
π2

|Ω|2 k2 +
2π2P
|Ω|2+D k1+D +

π2P2

|Ω|2+2D k2D.

Theorem 1.2 is proved. �

Corollary 3.1. Under the conditions of Theorem 1.2, if L = {`j}∞
j=1 is Minkowski measurable,

that is, `j ∼ Lj−
1
D , (j→ ∞), then (1.13) holds and the crucial constant P becomes

P = PM =
Dµ∗M(D; Γ)(

µD
1 + µ∗D

) 1
D−1 21−D

,

where α∗ = µ∗L, α∗ = µ∗L, `1 = µ1L and M(D; Γ) = 21−D LD

1−D . Meanwhile, Theorem 1.3 has a
similar corollary.
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3.2 Proof of Theorem 1.3

Lemma 3.1. We have the following results:

1. There is only one positive root of the equation x = k + BxD, where 0 < D < 1, k ≥ 1 and
B > 0.

2. Denote the positive root by x0. For any x1 > 0, we set a sequence {xn =: xn(x1)}∞
n=1 as

defined by xn+1 = k + BxD
n for n ≥ 1. Then

lim
n→+∞

xn = x0.

That means, for any x1 > 0, xn has the same limitation x0.

Proof. Let s(x) = k + BxD − x, then s(0) = k > 0 and s(x) → −∞ as x → +∞. So s(x)
has at least a root in (0,+∞). Next we show the positive root is unique. Noticing that
s′(x) = DBxD−1 − 1, and we have s(x) is monotonically increasing in (0, (DB)

1
1−D ) and

monotonically decreasing in ((DB)
1

1−D ,+∞). Also s(x) > 0 in (0, (DB)
1

1−D ) for s(0) =

k > 0. So the zeros must be in ((DB)
1

1−D ,+∞) and there is only one root. Now we
have proved the first part of the lemma. We denote the root by x0 and s(x) > 0 in
(0, x0). To the second part of this lemma. If x1 = x0, then xn = x0 and the limit is x0.
If 0 < x1 < x0, by induction we can easily prove that for any n ≥ 1, xn < x0. Next,
xn+1 − xn = k + BxD

n − xn > 0 since xn < x0 and s(x) > 0 in (0, x0). Thus {xn} is
monotonically increasing. Hence xn has the limitation that is the positive solution of
equation x = k + BxD. The proof for x1 > x0 will be similar so we omit the details.
Hence we have proved the equation x = k + BxD has only one positive root, Lemma 3.1
is proved.

Now we give the proof of Theorem 1.3.

Proof. By (3.6), we have

|Ω|
√

λk

π
≥ k + P

(√
λk

π

)D

. (3.7)

Let Tk = |Ω|
√

λk
π , then (3.7) becomes

Tk ≥ k +
P
|Ω|D TD

k . (3.8)

Consider the sequence {xn(k)}∞
n=1:

x1(k) = k +
P
|Ω|D TD

k and xn+1(k) = k +
P
|Ω|D (xn(k))D.
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Thus by induction we have for any fixed k ≥ 1, xn+1(k) ≤ xn(k) holds for every n ≥ 1.
Thus, by iteration we have for n ≥ 1

Tk ≥ x1(k) ≥ · · · ≥ xn(k). (3.9)

Let n→ +∞ and from Lemma 3.1, we have

Tk ≥ Ck,

where Ck is the positive root of equation

x = k +
P
|Ω|D xD.

The estimate (1.15) in Theorem 1.3 is proved.
Next, we can prove that as the lower bound, Ck is better than (1.12). Consider the

sequence {yn(k)}∞
n=1:

y1(k) = k +
P
|Ω|D kD and yn+1(k) = k +

P
|Ω|D (yn(k))D.

Then from Lemma 3.1, if n → +∞, yn(k) has the same limitation Ck as xn(k). Further-
more, observe that for each k ≥ 1, we have yn(k) ≤ yn+1(k) for all n ≥ 1, so

Ck ≥ y1(k) = k +
P
|Ω|D kD.

The estimate (1.16) holds and the proof of Theorem 1.3 is completed.

When D = 1
2 , 1

3 , 1
4 , one may solve the equation

x = k +
P
|Ω|D xD

by formula and we give the following result in the case of D = 1
2 .

Corollary 3.2. Under the conditions of Theorem 1.3, if D = 1
2 , then we have the sharp lower

bound:

|Ω|
√

λk

π
≥ k +

P
2|Ω|

√
(4|Ω|k + P2) +

P2

2|Ω| .

Proof. It is obvious from Theorem 1.3.
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4 Examples

In this section, we will apply our results to give the following examples. Here, if Minkowski
dimension D = 1

2 , we will use Theorem 1.3, otherwise we use Theorem 1.2. First, we
consider a usual example: `j = j−2. Then the Minkowski dimension of the boundary is
D = 1

2 and we have following example.

Example 4.1. Let the fractal string

Ω =
∞⋃

j=1

Ωj ⊆ R with |Ωj| = `j = j−2,

then

|Ω| =
∞

∑
i=0

j−2 = ζ(2) =
π2

6
, D =

1
2

and M
(1

2
; Γ
)
= 2
√

2.

From Theorem 1.1, the Dirichelt eigenvalues of (1.1) have the following asymptotic ex-
pansion:

λk =
36
π2 k2 − 2

6
5
2 ζ( 1

2 )

π3 k
3
2 + o(k

3
2 ) as k→ +∞.

On the other hand, from Theorem 1.3, for k ≥ 1 we have

π
√

λk

6
≥ k +

3
2π2

√
2π2

3
k +

1
4
+

3
4π2 .

The second example is called Cantor string which is defined as

C = {`j}∞
j=1 = {3[− log2 j]}∞

j=1 =
{1

3
,

1
32 ,

1
32 ,

1
33 , · · · ,

1
33︸ ︷︷ ︸

22

, · · ·
}

. (4.1)

Then we have

Example 4.2. Let Cantor string C be the fractal string of Ω ⊆ R. Then the Minkowski
dimension

D =
ln 2
ln 3

and |Ω| =
∞

∑
i=0

2i

3i+1 = 1.

From Theorem 1.2, we take α∗ =
1
3 and α∗ = 1, the eigenvalues of (1.1) have the following

lower bounds for all k ≥ 1:

λk ≥ π2k2 +
2π2 ln 2

2 · 3 ln 3
ln 2−1(ln 3− ln 2)

k1+ ln 2
ln 3 + π2

(
ln 2

2 · 3 ln 3
ln 2−1(ln 3− ln 2)

)2

k2 ln 2
ln 3 . (4.2)
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The last example is a fractal-string as defined by

A = {`j}∞
j=1 =

{
1
ja −

1
(j + 1)a

}∞

j=1
. (4.3)

Then

`j =
1
ja −

1
(j + 1)a ∼ aj−a−1 as j→ +∞, |Ω| =

∞

∑
i=0

`j = 1,

and the Minkowski dimension D = 1
1+a , `1 ≤ Lj ≤ a. Thus we have

Example 4.3. A is a fractal-string in R with Minkowski dimension D = 1
1+a , which is

Minkowski measurable with

M(D; Γ) =
21−DaD

1− D
= (a + 1)

(2
a

) a
a+1

.

Then from Theorem 1.1 the Dirichlet eigenvalues of (1.1) have the following asymptotic
expansion:

λk = π2k2 − 2π2ζ
( 1

a + 1

)
a

1
a+1 k

a+2
a+1 + o

(
k

a+2
a+1
)

as k→ +∞. (4.4)

Meanwhile, from Theorem 1.2, the Dirichlet eigenvalues have the following lower bounds
for k ≥ 1:

λk ≥ π2k2 +
2π2`1

a
(
a

1
1+a + `

1
1+a
1

)a
k

a
1+a +

π2`2
1

a2
(
a

1
1+a + `

1
1+a
1

)2a
k

2a
1+a , (4.5)

where `1 = 1− 1
2a .
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