
Journal of Computational Mathematics

Vol.39, No.1, 2021, 147–158.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1912-m2018-0279

CONVERGENCE OF BACKPROPAGATION WITH MOMENTUM
FOR NETWORK ARCHITECTURES WITH SKIP

CONNECTIONS*

Chirag Agarwal

Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago,

IL 60607, USA

Email: chiragagarwall12@gmail.com

Joe Klobusicky

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Email: klobuj@rpi.edu

Dan Schonfeld

Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago,

IL 60607, USA

Email: dans@uic.edu

Abstract

We study a class of deep neural networks with architectures that form a directed acyclic

graph (DAG). For backpropagation defined by gradient descent with adaptive momentum,

we show weights converge for a large class of nonlinear activation functions. The proof

generalizes the results of Wu et al. (2008) who showed convergence for a feed-forward

network with one hidden layer. For an example of the effectiveness of DAG architectures,

we describe an example of compression through an AutoEncoder, and compare against

sequential feed-forward networks under several metrics.

Mathematics subject classification: 68M07, 68T01.
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1. Introduction

Neural networks have recently enjoyed an acceleration in popularity, with new research

adding to several decades of foundational work. From multilayer perceptron (MLP) networks

to the more prominent recurrent neural networks (RNNs) and convolutional neural networks

(CNNs), neural networks have become a dominant force in the fields of computer vision, speech

recognition, and machine translation [11]. Increase in computational speed and data collection

have legitimized the training of increasingly complex deep networks. The flow of information

from input to output is typically performed in a strictly sequential feed-forward fashion, in which

for a network consisting of L layers, nodes in the ith layer receive input from the (i− 1)st layer,

compute an output for each neuron through an activation function, and in turn use this output

as an input for the (i+1)st layer. A natural extension to this network structure is the addition

of “skip connections” between layers. Specifically, we are interested in the class of architectures

in which the network of connections form a directed acyclic graph (DAG). The defining property

of a DAG is that it can always be decomposed into a topological ordering of L layers, in which

nodes in layer i may be connected to layer j, where j > i. A skip connections is a connection
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between nodes in layers i and j, with j > i+1. There has been an increasing interest in studying

networks with skip connections which skip a small number of layers, with examples including

Deep Residual Networks (ResNet) [5], Highway Networks [13], and FractalNets [8]. ResNets, for

instance, use “shortcut connections” in which a copy of previous layers is mapped through an

identity mapping to future layers. Kothari and Agyepong [7] introduced “lateral connections”

in the form of a chain, with each unit in a hidden layer connected to the next. The full generality

of neural networks for DAG architectures was considered in [6], which demonstrated superior

performance of neural networks, entitled DenseNets, under a wide variety of skip-connections.

As an example of the efficacy of DAG architectures considered in [6], we consider AutoEn-

coders, a class of neural networks which provide a means of data compression. For an AutoEn-

coder, input data, such as a pixelated image, is also the desired output for a neural network.

During an encoding phase, input is compressed through several hidden layers before arriving

at a middle hidden layer, called the code, having dimension smaller than the input. The next

phase is decoding, in which input from the code is fed through several more hidden layers until

arriving at the output, which is of the same dimension as the input. The goal of compression

is to minimize the difference between input data and output. In [1], Agarwal et al. introduced

CrossEncoders and demonstrated its superior performance against AutoEncoders with no skip-

connections. In Section 3, we extend the previous results to include the MNIST and Olivetti

faces public datasets. We validate our results against several commonly used compression based

performance metrics.

Our main theoretical result is the convergence of backpropagation with DAG architectures

using gradient descent with momentum. It is well known that feed-forward architectures con-

verge under backpropagation, which is essentially gradient descent applied to an error function

(see [3], for instance). Updates for weights in backpropagation may be generalized to include

a momentum term, which can help with increasing the convergence rate [12]. Momentum can

help with escaping local minima, but concerns of overshooting require careful arguments for

establishing convergence. Formal arguments for convergence have so far been restricted to

simple classes of neural networks. Bhaya [2] and Torii [15] studied the convergence with back-

propagation using momentum under a linear activation function. Zhang et al. [17] generalized

convergence for a class of common nonlinear activation functions, including sigmoids, for the

case of a zero hidden layer networks. Wu et al. [16] further generalized to one layer by demon-

strating that error is monotonically decreasing under backpropagation iterations for sufficiently

small momentum terms. The addition of a hidden layer required [16] to make the additional

assumption of bounded weights during the iteration procedure.

It is not evident whether applying the methods of [16] would generalize to networks with

several hidden layers and skip connections, or if they would require stronger assumptions on

boundedness of weights or the class of activation functions. We show in Section 4 that con-

vergence indeed does hold, with similar assumptions to the proof of convergence of one hidden

layer. In Theorem 4.1, we give the key inequality for proving Theorem 2.1, a recursive form

for increments of error and output values of hidden layers after each iteration. This estimate

allows us to show that for sufficiently small momentum parameters (including the case of zero

momentum), error decreases with each iteration. Our approach to convergence is somewhat

more explicit than the traditional proof of gradient descent, which minimizes a loss function

without considering network architecture.
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2. Architecture for a Feed-Forward Network with Cross-Layer

Connectivity

In this section, we formally explain DAG architectures, and the associated backpropagation

algorithm with momentum. We then state a theorem for the convergence of error through

backpropagation, whose proof is presented in Section 4.

2.1. DAG architecture and backpropagation

We now present the architecture for neural networks on DAGs. Nodes of a DAG can always

be ordered into layers 0, . . . , L, in which connections (or directed edges) point to layers labeled

with higher indices. We will consider J input values xp ∈ R
l0 , p = 1, . . . , J . For each layer

i = 0, . . . , L, there are li nodes, with layer 0 denoting the input. Under this ordering, define

v
l,m

(i,j) as the weight between node l in layer i and node m in layer j, where i < j. Let v(i,j) denote

the matrix of weights from layer i to j. Over all nodes, we use a single (possibly nonlinear)

activation function g : R → R for the determination of output values.

The explicit output values of the lj nodes in layer j are denoted as

Hj = (H1
j , . . . , H

lj
j ), 0 ≤ j ≤ L. (2.1)

These are defined recursively from forward propagation, where the jth layer receives input from

all layers Hi with i < j. Explicitly,

H0 = x, H1 = g
(
H0v(0,1)

)
, (2.2)

Hj = g




∑

i<j

Hiv(i,j)



 , HL = y = g

(
∑

i<L

Hiv(i,L)

)

. (2.3)

Note that here and in the future, for a real valued function f , and a vector v = (v1, . . . , vn), we

will use the notation f(v) = (f(v1), . . . , f(vn)). Node inputs are defined as

Sj =
∑

i<j

Hiv(i,j). (2.4)

We seek to minimize the difference between a set of J desired outputs d1, . . . , dJ ∈ R
lL ,

and the corresponding network outputs y1, . . . , yJ ∈ R
lL . We measure the distances between

desired and network outputs with the total quadratic error

E =
1

2

J∑

p=1

‖dp − yp‖2. (2.5)

The norm ‖b‖2 =
∑

b2i denotes the usual Euclidean norm for a vector b = (b1, . . . , bn). Gradients

of the error with respect to weights are then defined as

∂E

∂v
l,m

(i,j)

= q
l,m

(i,j). (2.6)

The iteration of weights by backpropagation is done through gradient descent with momen-

tum. Here and in the future, a superscript k is used as an iteration variable, and ∆Xk =

Xk −Xk−1 for any quantity X . Weights are updated as

∆v
m,l;k+1
(i,j) = τ

m,l;k
(i,j) ∆v

m,l;k
(i,j) − ηq

m,l;k
(i,j) . (2.7)
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The second term in (2.7) corresponds to traditional backpropagation through gradient descent,

while the first term, for a predetermined τ ∈ (0, 1), is the contribution from adaptive momentum,

with

τ
m,l;k
(i,j) =







τ‖qm,l;k
(i,j)

‖

‖∆v
m,l;k
(i,j)

‖
‖∆v

m;k
(i,j)‖ 6= 0,

0 otherwise.
(2.8)

When the norm acts on a matrix A = (ai,j)n×m, it is treated as the Frobenius norm, with

‖A‖2 =
∑

i,j a
2
i,j . For clarity, we sometimes place a variable denoting iteration after a semicolon

to distinguish it from node indices. We note that a similar choice of momentum was also used

in [17].

2.2. Convergence of backpropagation

Our major theorem is a statement of convergence under backpropagation with momentum.

Specifically, for some input xj ∈ l0, we will use a generic desired output of dj ∈ R. We use a 1-D

output for clarity in exposition. The proof of convergence for output in multiple dimensions is

essentially the same as the one presented here. The error in this case is then

E =
J∑

p=1

(dp − yp)2

2
:=

J∑

p=1

φp(S
p
L). (2.9)

We will need some regularity and boundedness assumptions. These assumptions are similar

to those used in [16], and may also be found in other nonlinear optimization problems such

as [4].

Assumption 2.1.

1. The function g, and its first two derivatives g’ and g”, are bounded in R.

2. The weights vk(i,j) are uniformly bounded over layers 0 ≤ i < j ≤ L and iterations k =

1, 2, . . . .

3. The gradient ∇E vanishes only at a finite set of points.

It readily follows from these assumptions that we may also uniformly bound qk(i,j), H
k
i , φp,

φ′
p, and φ′′

p .

The purpose of Assumption 3 is to establish convergence with the following Lemma (see [14]):

Lemma 2.1. Let f ∈ C1(Rn,R), and suppose that ∇f vanishes at a finite set of points. Then,

for a sequence {xk}, if ‖∆xk‖ → 0 and ‖∇f(xk)‖ → 0, then for some x∗ ∈ R
n, xk → x∗ and

∇f(x∗) = 0.

Theorem 2.1. Under assumptions 1 and 2 in Assumption 2.1, for any s ∈ [0, 1) and τ = sη,

there exists C > 0 such that if

η <
1− s

C(s2 + 1)
, (2.10)

then for k = 1, 2, . . . ,

Ek = E(vk(i,j)) → E∗, 1 ≤ i < j ≤ L, (2.11)

qk(i,j) → 0. (2.12)
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If part (3) of the Assumptions is satisfied, weights vk(i,j) → v∗(i,j), and E∗ = E(v∗(i,j)) is a

stationary point (∇E = 0).

Remark 2.1. In the case of s = 0, Theorem 2.1 is a statement convergence for backpropagation

without momentum. This can be quickly demonstrated through gradient descent on the error

function E. The proof for 2.1 differs from traditional gradient descent by introducing a recursive

formula for ∆Ek and ∆Hk
n given in Theorem 4.1 which uses the intrinsic structure of the

network.

The constant C used is solely dependent on fixed parameters form the network, and the

uniform bounds from the assumptions. A complete proof for Theorem 2.1 is provided in Section

4.

3. Experiments

In this section, we give examples of the efficacy for both DAG architectures and the addition

of momentum to backpropagation with the example of AutoEncoders, a framework of data

compression. The addition of skip connections in AutoEncoders, entitled CrossEncoders, was

studied by Agarwal et al. [1]. We will apply CrossEncoders to the MNIST and Olivetti face

dataset1) .

For the problem of compression, we require a code layer with index 0 < c < L and dimension

lc < l0. Since we are now comparing input and output, layer L also contains l0 nodes. For the

error defined in (2.5), we set dp = xp, and thus

E =
1

2

J∑

p=1

‖xp − yp‖2. (3.1)

Since decoding should be solely dependent from the code layer, we also require that skip con-

nections cannot occur between encoding layers and decoding layers. Thus

v
l,m

(i,j) = 0 if i < c < j. (3.2)

See Fig. 3.1 for a visual representation of the CrossEncoder architecture.

3.1. Momentum analysis and performance

To study the effect of backpropogation with momentum, we use the standard MNIST [9]

dataset of handwritten digits. Each sample is a 28 × 28 binary pixel image, transformed to a

1×784 vector. The complete dataset consists of 70, 000 images, divided into 60, 000 training

and 10, 000 testing images. We train a 784(L0)−64(L1)−64(L2)−code(L3)−64(L4)−64(L5)−

784(L6) network using four different cases by considering architectures with and without skip

connections, and also backpropagation with zero and positive momentum (set to 0.95). For the

CrossEncoder, each node in layer L1 is connected to all nodes in L3 and each node in layer L4

is connected to all nodes in L6. In Fig. 3.2, we show the training loss curve for all the four cases

by plotting epochs against mean squared error. We find that for momentum term improves the

speed of convergence for architectures with and without skip connections. Furthermore, the

addition of skip connections leads to faster convergence for both zero and positive momentum

backpropagation.

1) Both of these datasets are public, and may may be obtained from https://www.cl.cam.ac.uk/research/dtg/

attarchive/facedatabase.html (Olivetti) and http://yann.lecun.com/exdb/mnist (MNIST).
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Fig. 3.1. Architecture for CrossEncoders. A directed edge from a node (circle) in one layer (column

of circles) to another node in a different layer represents a connection. Additional edges between nodes,

suppressed for presentation, may also exist. Note, however, that edges may not connect encoding and

decoding layers.

Fig. 3.2. Effect of adding momentum to an optimizer.

3.2. DAG architecture and performance

The Olivetti faces dataset [10] is comprised of a set of 400 gray-scale face images consisting

of ten different images of 40 distinct subjects. Images for some subjects were taken with varying

lighting, facial expressions (e.g. open / closed eyes, smiling / not smiling), and facial details

(e.g. glasses / no glasses). The images are 64×64 in size and are quantized to 8-bit [0-255] scale.

A 4096(L0)− 500(L1)− 500(L2)− code(L3)− 500(L4)− 500(L5)− 4096(L6) MLP network was

used for training the face dataset. Like the previous example, each node in layer L1 is connected

to all nodes in L3 and each node in layer L4 is connected to all nodes in L6.

The original 64 × 64 images were transformed to a 1 × 4096 vector. For training, 350
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images were used, and 50 images were used for the testing dataset. Both AutoEncoders and

CrossEncoders were trained for 300 epochs using SGD optimizer with a learning rate set to 0.001

and momentum of 0.95. For the given task, we used several lower dimension representations,

such as 1× 600, 1 × 300, and 1× 30, respectively. Table 3.1 illustrates the performance of the

respective networks for different code size using peak signal to noise ratio (PSNR), structural

similarity index (SSIM), and normalized root mean squared error (NRMSE) metrics. In Table

3.1, we observe improved performance for CrossEncoders across all performance metrics.

Table 3.1: PSNR, SSIM, and NRMSE values of CrossEncoder and Autoencoder between reconstructed

and the original images for Olivetti face dataset. Higher PSNR and SSIM values, and lower NRSME

values, imply more accurate results.

CrossEncoder Autoencoder

Code PSNR SSIM NRMSE PSNR SSIM NRMSE

1× 600 79.4679 0.9040 0.1464 75.8858 0.8554 0.2217

1× 300 79.4551 0.9046 0.1467 75.8919 0.8555 0.2215

1× 30 77.8398 0.8791 0.1764 75.9066 0.8560 0.2211

4. Proof of Convergence

4.1. Notation and conventions

In what follows, we will need some notation for matrix and tensor manipulation. First,

we recall the entrywise, or Hadamard, product, which for two matrices A = (ai,j)n×m, B =

(bi,j)n×m, is defined as (A ◦ B)i,j = ai,jbi,j . By taking the sum of all entries of a Hadamard

product, we obtain the Frobenius inner product A : B =
∑

i,j(A◦B)i,j . Also, a matrix gradient

of a real (vector) valued function is matrix (tensor) valued, with an element-wise representation

as
∂f

∂vk(i,j)
=

(

∂f

∂v
a,b;k
(i,j)

)

li×lj

,
∂Hk

m

∂vk(i,j)
=

(

∂Hc;k
m

∂v
a,b;k
(i,j)

)

li×lj×lm

.

In all future estimates, we look at backpropagation over a single input, meaning J = 1. This

allows us to suppress the variable p, which is essentially done for the sake of presentation. The

proofs of Theorem 4.1 and Lemma 4.1 generalize immediately to the case of multiple inputs by

taking sums over all inputs. Finally, in our estimates, we will use the constant C > 0 which

depends solely on fixed parameters in the network, such as the input value x, uniform bounds of

node outputs Hj and inputs Sj , and for generalizing to multiple inputs, the size of the dataset

J . The constant C is used in multiple estimates, and may increase each time it appears.

4.2. Estimates on node output increments

Our major technical theorem shows that the increments of outputs ∆Hk+1
n are similar, up

to first order, to Qk(Hk), where Qk denotes the differential operator

Qk =
∑

i<j≤L

∆vk+1
(i,j) :

∂

∂vk(i,j)
. (4.1)

Note that when Qk acts on a length lm vector, the matrix inner product in (4.1) is between a

li × lj-sized matrix and a li × lj × lm-sized tensor, and is a vector of size lm.
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The major utility of introducing Qk is that it provides a simple bound when acting on Ek.

Specifically, using (2.6)–(2.8), it is straightforward to show that

Qk(Ek) ≤ (−η + τ)
∑

i<j≤L

‖qk(i,j)‖
2. (4.2)

Theorem 4.1. There exists a universal constant C > 0 such that

|Qk(Ek)−∆Ek+1| ≤ C




∑

n≤L

‖∆Hk+1
n ‖2 +

∑

m<n≤L

‖∆vk+1
(m,n)‖

2



 . (4.3)

Proof. We show (4.3) follows through three steps: (1) finding a recurrence relation, with

respect to the ordering of hidden layers, for Qk(Hk
n) and Qk(Ek); (2) finding a similar relation

for ∆Hk+1
n and ∆Ek+1; and (3) comparing the two relations.

(1) (A recurrence for Qk(Hk
n) and Qk(Ek)). Applying the chain rule to the total error (2.9),

using (2.3), and rearranging sums,

Qk(Ek) = φ′(Sk
L)

∑

i<j≤L

∆vk+1
(i,j) :

∂

∂vk(i,j)

(
∑

m<L

Hk
mvk(m,L)

)

= φ′(Sk
L)
∑

m<L

∑

i<j≤L

∆vk+1
(i,j) :

∂

∂vk(i,j)

(

Hk
mvk(m,L)

)

. (4.4)

We now focus on expressing (4.4) in a recursive form. We begin with considering the terms

in (4.4) with j = L. We first work elementwise by differentiating with respect to the (a, b) entry

of the matrix derivative for ∂
∂vk

(i,j)

(

Hk
mvk(m,L)

)

. From the product rule, this can be written as

a sum of vectors, with

∂

∂v
a,b;k
(i,L)

(

Hk
mvk(m,L)

)

=
∂Hk

m

∂v
a,b;k
(i,L)

vk(m,L) +Hk
m

∂vk(m,L)

∂v
a,b;k
(i,L)

=
∂Hk

m

∂v
a,b;k
(i,L)

vk(m,L) + (0, . . . , δi,mHa;k
m

︸ ︷︷ ︸

bth entry

, . . . , 0)

=:Aa,b;k
i,m +B

a,b;k
i,m . (4.5)

Each of these terms is handled in turn. First, summing the Frobenius inner product of the

matrix ∆vk+1
(i,L) and the tensor Ak

i,m, we may write

∑

m<L

∑

i<L

∆vk+1
(i,L) : A

k
i,m =

∑

m<L

∑

i<L

∑

a<li
b<lL

∆v
a,b;k+1
(i,L)

∂Hk
m

∂v
a,b;k
(i,L)

vk(m,L)

=
∑

m<L

∑

i<L

(

∆vk+1
(i,L) :

∂Hk
m

∂vk(i,L)

)

vk(m,L). (4.6)
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For Bk
i,m, we also work elementwise, and write the Frobenius inner product as

∑

m<L

∑

i<L

∆vk+1
(i,L) : B

k
i,m =

∑

m<L

∑

a≤lm
b≤lL

∆v
a,b;k+1
(m,L) Ba,b;k

m,m

=
∑

m<L




∑

a≤lm

Ha;k
m ∆v

a,1;k+1
(m,L) , . . . ,

∑

a≤lm

Ha;k
m ∆v

a,lL;k+1
(m,L)





=
∑

m<L

Hk
m∆vk+1

(m,L). (4.7)

Calculations for double sum in (4.4) for the remaining terms with j < L are similar to the

case j = L, except that there is no corresponding Bk
i,m term. Indeed, we can show

∑

m<L

∑

i<j<L

∆vk+1
(i,j) :

∂

∂vk(i,j)

(

Hk
mvk(m,L)

)

=
∑

m<L

∑

i<j<L

(

∆vk+1
(i,j) :

∂Hk
m

∂vk(i,j)

)

vk(m,L). (4.8)

Putting together (4.4)-(4.8), we arrive at

∑

m<L

∑

i<j≤L

∆vk+1
(i,j) :

∂

∂vk(i,j)

(

Hk
mvk(m,L)

)

(4.9)

=
∑

m<L



Hk
m∆vk+1

(m,L) +
∑

i<j≤m

(

∆vk+1
(i,j) :

∂Hk
m

∂vk(i,j)

)

vk(m,L)



 (4.10)

=
∑

m<L

(

Hk
m∆vk+1

(m,L) +Qk(Hk
m)vk(m,L)

)

. (4.11)

Note that (4.10) uses the fact that since Hk
m only depends on layers 1 through m− 1, we may

truncate the sum of Qk and write

Qk(Hk
m) =

∑

i<j≤m

∆vk+1
(i,j) :

∂Hk
m

∂vk(i,j)
. (4.12)

We may now substitute (4.9) into (4.4) to yield the recursive formula

Qk(Ek) = φ′
(
Sk
L

) ∑

m<L

(

Hk
m∆vk+1

(m,L) +Qk(Hk
m)vk(m,L)

)

. (4.13)

From similar calculations, the formula over a node Hk
n, with n < L, is

Qk(Hk
n) = g′

(
Sk
n

)
◦
∑

m<n

(

Hk
m∆vk+1

(m,n) +Qk(Hk
m)vk(m,n)

)

. (4.14)

(2) (A recurrence for ∆Hk+1
n and ∆Ek+1). A recursive formula for ∆Hk+1

n is found through

a Taylor expansion of E(Sk+1
L ) centered at Sk

L. Specifically, there exists tk between Sk
L and
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Sk+1
L with

∆Ek+1 = φ′
(
Sk
L

) ( ∑

m<L

∆(Hk+1
m vk+1

(m,L))
)

+
1

2
φ′′(Sk

L)

(
∑

m<L

∆(Hk+1
m vk+1

(m,L))

)2

= φ′
(
Sk
L

) ∑

m<L

(

∆Hk+1
m vk(m,L) +Hk

m∆vk+1
(m,L) +∆Hk+1

m ∆vk+1
(m,L)

)

+
1

2
φ′′(tk)

(
∑

m<L

∆(Hk+1
m vk+1

(m,L))

)2

. (4.15)

Similarly, there exist tn,k = (t1n,k, . . . , t
ll
n,k) where each trn,k lies between Sr;k

n and Sr;k+1
n for

r = 1, . . . ln and

∆Hk+1
n =g′

(
Sk
n

)
◦
∑

m<n

(

∆Hk+1
m vk(m,n) +Hk

m∆vk+1
(m,n) +∆Hk+1

m ∆vk+1
(m,n)

)

+
1

2
g′′(tn,k) ◦

(
∑

m<n

∆(Hk+1
m vk+1

(m,n))

)2

. (4.16)

(3) (Comparing recurrences). From (1) and (2) of Assumption 2.1, we may derive the simple

bound

‖∆Hk+1
m ∆vk+1

(m,n)‖ ≤ C
(

‖∆vk+1
(m,n)‖

2 + ‖∆Hk+1
m ‖2

)

(4.17)

for some constant C > 0. Taking differences of (4.16) and (4.14), for any n < L, we then obtain

the recurrence inequality

‖Qk(Hk
n)−∆Hk+1

n ‖

≤C

(
∑

m<n

‖Qk(Hk
m)−∆Hk+1

m ‖

)

+ C
∑

m<n

(‖∆vk+1
(m,n)‖

2 + ‖∆Hk+1
m ‖2). (4.18)

Replacing Hk
n with Ek in (4.18) produces the same type of inequality, with the sum in (4.18)

now ranging from m = 1, . . . , L− 1. Repeated applications of (4.18) to Ek and subsequently to

Hk
n , for n = 1, . . . , L− 1, result in

|Qk(Ek)−∆Ek+1|

≤C
(
‖Qk(Hk

0 )−∆Hk+1
0 ‖

)
+C

(
∑

n<L

‖∆Hk+1
n ‖2 +

∑

m<n<L

‖∆vk+1
(m,n)‖

2

)

. (4.19)

To complete the proof, we note that the input data x does not change under iterations, so

Qk(Hk
0 )−∆Hk+1

0 ≡ 0. (4.20)

This completes the proof of the theorem. �

We now bound the quadratic terms in (4.3).

Lemma 4.1. For some constant C > 0, we have

‖∆vk+1
(m,n)‖ ≤ (η + τ)‖qk(m,n)‖, (4.21)

‖∆Hk+1
n ‖ ≤ C(η + τ)

∑

i<j<n

‖qk(i,j)‖. (4.22)
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Proof. We may show (4.21) immediately from (2.7) and (2.8). For (4.22), we use strong

induction, assuming the inequality holds for layersm < n (note that the base case holds trivially

for n = 0). From the Taylor expansion used in (4.16), and the boundedness of g′ and g′′:

‖∆Hk+1
n ‖ ≤C

∑

m<n

∥
∥
∥∆Hk+1

m vk(m,n) +Hk
m∆vk+1

(m,n) +∆Hk+1
m ∆vk+1

(m,n)

∥
∥
∥

+ C

∥
∥
∥
∥
∥
∥

(
∑

m<n

∆(Hk+1
m vk+1

(m,n))

)2
∥
∥
∥
∥
∥
∥

. (4.23)

From the induction hypothesis, the boundedness of weights and node outputs, and (4.21), the

right hand side of (4.23) is bounded by the right hand side of (4.22) for some C > 0. From the

boundedness assumptions,
∥
∥
∥
∥
∥
∥

(
∑

m<n

∆(Hk+1
m vk+1

(m,n))

)2
∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∑

m<n

∆(Hk+1
m vk+1

(m,n))

∥
∥
∥
∥
∥
, (4.24)

which implies that we may use similar estimates for (4.24) which we used in (4.23) to arrive at

(4.22). �

From Theorem 4.1, (4.2), and Lemma 4.1, the iteration of error may now be estimated as

∆Ek+1 ≤ C




∑

n≤L

‖∆Hk+1
n ‖2 +

∑

m<n≤L

‖∆vk+1
(m,n)‖

2



+Qk(Ek)

≤
(
−η + τ + C(τ2 + η2)

) ∑

m<n≤L

‖qk(m,n)‖
2. (4.25)

4.3. Proof of convergence

For some s ∈ [0, 1), assume τ = sη. It is straightforward to show that the term in front of

the norms in (4.25) is negative when

η <
1− s

C(s2 + 1)
. (4.26)

Under this constraint, Ek is decreasing under each iteration. The summability for ‖qk(i,j)‖
2 also

follows, since

∞∑

k=1

‖qk(i,j)‖
2 ≤

1

(η − τ − C(τ2 + η2))

∞∑

k=1

∆Ek < ∞. (4.27)

Thus ‖qk(i,j)‖ → 0 and, from (4.21), ‖∆vk(i,j)‖ → 0. Lemma 2.1 and part (3) of Assumption 2

imply a set of minimum weights v∗1 , v
∗
2 , z

∗, w∗, which determine a stationary point of E. This

shows Theorem 2.1. �

5. Conclusion

We have studied a feed-forward network with skip-layer connections. The possible directed

graph architectures are the class of directed acyclic graphs. As shown in [6], introducing skip
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connections often increases the performance of a deep neural network. In [1] and in Section 3, we

have demonstrated increased performance in the setting of AutoEncoders. For our main result,

we have established the convergence of backpropagation with adaptive momentum of networks

with skip connections. This generalizes the result of Wu et al. [16] who established convergence

for a feed forward network with one hidden layer. While we have considered general DAG

architectures, it remains to investigate, both through theory and experiment, the optimality

properties with regards to the number of layers and skip-connections. We hope to address these

properties in future works.
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