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Abstract

In this paper, the superconvergence properties of the time-dependent Navier-Stokes

equations are investigated by a low order nonconforming mixed finite element method

(MFEM). In terms of the integral identity technique, the superclose error estimates for

both the velocity in broken H1-norm and the pressure in L2-norm are first obtained,

which play a key role to bound the numerical solution in L∞-norm. Then the corresponding

global superconvergence results are derived through a suitable interpolation postprocessing

approach. Finally, some numerical results are provided to demonstrated the theoretical

analysis.

Mathematics subject classification: 65N38, 65N30, 65M60, 65M12.

Key words: Navier-Stokes equations, Nonconforming MFEM, Supercloseness and super-

convergence.

1. Introduction

In this paper, we focus on the following time-dependent Navier-Stokes equations in 2D:

ut − ν∆u+ (u · ∇)u +∇p = f , (x, t) ∈ Ω× (0, T ], (1.1)

∇ · u = 0, (x, t) ∈ Ω× (0, T ], (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (1.3)

u(x, 0) = u0(x), x ∈ Ω, (1.4)

where Ω ⊂ R
2 is a rectangular domain with boundary ∂Ω and x = (x1, x2). u = (u1, u2)

represents the velocity vector, p the pressure, f = (f1, f2) the body force, ν = 1/Re the

viscosity coefficient and Re is the Reynolds number.

It is well known that the incompressible Navier-Stokes equations are of great importance

both in mathematics and fluid mechanics. There have been a large number of works concen-

trated on the numerical solutions of Navier-Stokes equations. We refer the readers to mono-

graphs [1,2] for the theoretical and numerical analysis, [3–6] for finite difference methods, [7–24]

for FEMs, [25–27] for characteristics FEMs, [28, 29] for discontinuous Galerkin method. More
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precisely, ax fast finite difference method was proposed in [4] based on the vorticity stream-

function formulation. A backward Euler fully-discrete penalty FEM was presented in [7] and an

optimal error estimate was provided when the corresponding parameters were sufficiently small.

Through the spatial discretization by finite element approximation and the time discrtization

by the semi-implicit scheme, a fully-discrete stabilized FEM was studied in [8]. In addition,

a stabilized FEM was considered by use of the local polynomial pressure projection with the

lowest equal-order elements in [9]. The two-level finite element Galerkin method was employed

to deduce the corresponding optimal error estimates in [10] and [11], respectively. Moreover,

a class of nonconforming rectangular elements were used in [16] and an optimal estimate was

obtained. Two kinds second order nonconforming mixed FEMs were developed and optimal

error estimates were derived in [22] and [23], respectively. In [27], the unconditional stability

and convergence of characteristics type method was studied and an optimal error estimate was

achieved.

As far as we know, all of the above works are concerned with convergence analysis and

optimal error estimates. Recently, the superconvergnece analysis was researched with non-

conforming mixed FEM (CNRQ1+Q0, see the Section 2 for the definition) for the stationary

Navier-Stokes equations and time-dependent Navier-Stokes equations in [30] and [31], respec-

tively. However, only the error estimate for the spatial semi-discrete scheme was considered

in [31] and the error estimate is not valid when t → 0.

In this paper, we will focus on the superconvergence analysis for (1.1)-(1.4) by a linearized

fully-discrete scheme, in which the spatial discretization approximated by the low order CNRQ1

element (cf. [32, 33]) for the velocity, and the piecewise constant for the pressure and the time

discretization approximated by the semi-implicit Euler scheme. It should be mentioned that the

factor 1/t required in [31] is removed in our present work, which shows that the error estimates

are also valid when t → 0.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the non-

conforming finite element spaces and some lemmas. In Section 3, we discuss the superclose

and superconvergence analysis for (1.1)-(1.4). In the last section, we carry out two numerical

experiments to confirm the theoretical analysis.

2. The Finite Element Spaces and Some Lemmas

We will use the standard notations for the Sobolev space Hm(Ω), m ≥ 0 (cf. [34]) with

their associated norm ‖ · ‖m and seminorm | · |m. In the case m = 0, then H0(Ω) = L2(Ω), the

norm and inner product are denoted by ‖ · ‖0 and (·, ·), respectively. We let L2
0(Ω) denote the

subspace of L2(Ω) such that

L2
0(Ω) =

{

v ∈ L2(Ω) :

∫

Ω

vdx1dx2 = 0

}

.

In addition, for any Banach space X and I = [0, T ], let Lp(I;X) be the space of all measurable

function f : I → X with the norm

‖f‖Lp(I;X) =

{

(
∫ T

0 ‖f‖pXdt)
1

p , 1 ≤ p < ∞,

esssupt∈I‖f‖X, p = ∞.
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The weak formulation of (1.1)-(1.4) reads as: find u : [0, T ] → (H1
0 (Ω))

2 and p : [0, T ] → L2
0(Ω),

such that

(ut,v) + νa(u,v) + c(u;u,v)− b(p,v) = (f ,v), ∀v ∈ (H1
0 (Ω))

2, (2.1)

b(q,u) = 0, ∀q ∈ L2
0(Ω), (2.2)

where

a(u,v) =

∫

Ω

∇u : ∇vdx1dx2, b(q,u) =

∫

Ω

∇ · uqdx1dx2,

c(u;u,v) =

∫

Ω

(u · ∇)u · vdx1dx2.

Let Th = {e} be a uniform rectangular mesh over Ω with mesh size h. For a given element

e ∈ Th, its four nodes are denoted by ai = (x1i, x2i), i = 1, 2, 3, 4, in the counterclockwise order

(see Fig. 2.1). Moreover, li = aiai+1 (mod 4), i = 1, 2, 3, 4, are the four edges of element e.

Let ê = [−1, 1]2 denote the reference element with nodes âi, i = 1, 2, 3, 4. Define the bilinear

transformation Fe : ê → e by

x1 =

4
∑

i=1

x1iNi(ξ, η), x2 =

4
∑

i=1

x2iNi(ξ, η), (ξ, η) ∈ ê,

where Ni(ξ, η), i = 1, 2, 3, 4 are the bilinear basis functions, which can be written as

N1(ξ, η) =
1

4
(1− ξ)(1 − η), N2(ξ, η) =

1

4
(1 + ξ)(1− η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1 − ξ)(1 + η).

For edge l ⊂ ∂e, the edge functional ihv is defined as

ihv|l =
1

|l|

∫

l

vds, ∀v ∈ L2(e).

Here, we briefly describe the construction of CNRQ1 element (cf. [32, 33]). Since the CNRQ1

element is obtained from the nonconforming rotated Q1(NRQ1) element (cf. [35]) by imposing

a constraint (cf. [36]) on each element. The NRQ1 element space Rh is defined as:

Rh =
{

v ∈ L2(Ω) : v|e = v̂ ◦ F−1
e , v̂ ∈ span{1, ξ, η, ξ2 − η2}, v is continuous regarding ih

}

.

and the corresponding homogenous space is

Rh
0 =

{

v ∈ Rh : ihv|l = 0, if l ⊂ ∂Ω
}

.

Hence, with the help of the spaces Rh and Rh
0 , we state the constrained nonconforming rotated

Q1 (CNRQ1 for short) element space CRh and its homogenous space CRh
0 as:

CRh =

{

v ∈ Rh :
1

|l1|

∫

l1

vds+
1

|l3|

∫

l3

vds =
1

|l2|

∫

l2

vds+
1

|l4|

∫

l4

vds, ∀e ∈ Th

}

,

CRh
0 =

{

v ∈ Rh
0 :

1

|l1|

∫

l1

vds+
1

|l3|

∫

l3

vds =
1

|l2|

∫

l2

vds+
1

|l4|

∫

l4

vds, ∀e ∈ Th

}

.
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LetNV
i denote the number of interior nodes. It has been proven in [32, 36] that dim(CRh

0 )=NV
i .

For completeness, we present the basis of CRh
0 (cf. [32]). Firstly, on the reference element ê,

define

φ̂1 =
1

4
(1− ξ − η), φ̂2 =

1

4
(1 + ξ − η),

φ̂3 =
1

4
(1 + ξ + η), φ̂4 =

1

4
(1 − ξ + η),

which are associated with nodes âi, i = 1, 2, 3, 4, of ê. In particular, it holds that

∫

l̂1

φ̂idŝ+

∫

l̂3

φ̂idŝ =

∫

l̂2

φ̂idŝ+

∫

l̂4

φ̂idŝ, i = 1, 2, 3, 4.

Secondly, for each interior node aj , j = 1, 2, . . . , NV
i , let E(j) denote the set of elements with

the node aj as one of their vertexes. Then we define

φj(a) =

{

φ̂i(F
−1
e (a)), a ∈ e ∈ E(j),

0, a ∈ e ∈ Th\E(j),

where the subscript i is determined by aj = ai,e = Fe(âi) with ai,e, i = 1, 2, 3, 4, the four nodes

of element e. It is easy to see that φj , j = 1, . . . , NV
i are linearly independent and that

span{φi, · · · , φNV
i
} ⊂ CRh

0 ,

therefore, {φj}
NV

i

j=1 is a basis of CRh
0 .

a1 a2

a3a4

e

e1 e2

e3 e4

Fig. 2.1. The element e (left) and ẽ (right).

For the velocity, we choose Vh = CRh
0 × CRh

0 as finite element space. For the pressure, we

assume that the subdivision Th is obtained from T2h = {ẽ} by dividing each element of T2h into

four small congruent rectangles. Let P
′

h consist of piecewise constant functions with respect to

Th and the local basis functions for P
′

h on a 2× 2-patch of ẽ (see Fig. 2.1) are indicated in Fig.

2.2. Then, the finite element space for pressure is defined by P
′

h ∩ L2
0(Ω). In what follows, we

always assume that ẽ = ∪4
i=1ei ∈ T2h with ei ∈ Th (1 ≤ i ≤ 4) (see Fig. 2.1). Thus, Vh and Ph

are described by

Vh = CRh
0 × CRh

0 , Ph =

{

p ∈ L2
0(Ω) : p|ẽ =

3
∑

i=1

λẽ
iϕ

ẽ
i , ∀ẽ ∈ T2h

}

.

It is easy to see that | · |h =
{
∑

e∈Th
| · |21,e

}1/2
is a norm on the space Vh.
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Moreover, let 0 = t0 < t1 < · · · < tN = T be a given uniform partition of the time interval

with time step τ = T/N and tn = nτ, n = 0, 1, · · · , N . For a smooth function u defined on

[0, T ], denote

un = u(tn), Dτu
n =

un − un−1

τ
. (2.3)

1 1

11

ϕ
ẽ
1

1 −1

−11

ϕ
ẽ
2

−1 −1

11

ϕ
ẽ
3

Fig. 2.2. Local basis functions of P
′

h.

Then, the linearized fully-discrete approximation of (2.1)-(2.2) is: for given Un−1
h ∈ Vh,

find (Un
h , P

n
h ) ∈ Vh × Ph, such that

(DτU
n
h ,vh) + νah(U

n
h ,vh) + ch(U

n−1
h ;Un

h ,vh) + bh(P
n
h ,vh) = (fn,vh), ∀vh ∈ Vh, (2.4)

bh(qh,U
n
h ) = 0, ∀qh ∈ Ph, (2.5)

where

ah(U
n
h ,vh) = (∇Un

h ,∇vh)h =
∑

e

∫

e

∇Un
h : ∇vhdx1dx2,

bh(qh,U
n
h ) = (∇ ·Un

h , qh)h =
∑

e

∫

e

∇ ·Un
h qhdx1dx2,

ch(U
n−1
h ;Un

h ,vh) = ((Un−1
h · ∇)Un

h ,vh)h =
∑

e

∫

e

(Un−1
h · ∇)Un

h · vhdx1dx2.

It has been shown in [32, 33] that the nonconforming finite element pair (Vh, Ph) satisfies

the discrete Babuška-Brezzi condition, i.e., there exists a constant β > 0, such that

sup
06=vh∈Vh

(qh,∇ · vh)h
‖vh‖h

≥ β‖qh‖0, ∀qh ∈ Ph. (2.6)

From [16,30], the space Vh also satisfies the discrete embedding inequality, i.e.,

‖vh‖0,2k ≤ C(k)‖vh‖h, ∀vh ∈ Vh, k = 1, 2, . . . , (2.7)

where C(k) is a constant independent of h.

Now, we recall some lemmas, which play a key role in the error analysis.

Lemma 2.1 ([33]). Let e ∈ Th be a rectangular mesh and φ ∈ H3(e). Then when v is a

constant on e, we have

((φ −Πhφ)x1
, v)e + ((φ −Πhφ)x2

, v)e ≤ Ch2‖φ‖3,e‖v‖0,e, (2.8)

where Πh is the interpolation operator on Vh. Furthermore, for u ∈ (H3(Ω))2, there holds

(∇(u −Πhu),∇vh)h ≤ Ch2‖u‖3‖vh‖h, ∀vh ∈ Vh. (2.9)

Here and later, C is a generic positive constant independent of n, τ , h, but may dependent on

the different norms of u and p.
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Lemma 2.2 ([33]). If Th is a rectangular mesh, u ∈ (H3(Ω))2 and p ∈ H2(Ω), then

(∇ · (u −Πhu), qh)h ≤ Ch2‖u‖3‖qh‖0, ∀qh ∈ Ph, (2.10)

(p− Jhp,∇ · vh)h ≤ Ch2‖p‖2‖vh‖h, ∀vh ∈ Vh, (2.11)
∑

e

∫

∂e

(ν
∂u

∂n
− p · n)vhds ≤ Ch2(‖u‖3 + ‖p‖2)‖vh‖h, ∀vh ∈ Vh. (2.12)

Lemma 2.3 ([15]). Let τ , D and {an}, {bn}, {cn}, {dn} be nonnegative numbers such that

an + τ

n
∑

i=0

bi ≤ τ

n
∑

i=0

diai + τ

n
∑

i=0

ci +D,

fora n ≥ 0. Suppose that τdi < 1 for all i. Then

an + τ

n
∑

i=0

bi ≤ exp

(

τ

n
∑

i=0

di
1− τdi

)(

τ

n
∑

i=0

ci +D

)

.

3. The Superclose and Superconvergent Error Estimates

In this section, we will present the main results of our paper.

Theorem 3.1. Let (un, pn) and (Un
h , P

n
h ) be the solutions of (2.1)-(2.2) and (2.4)-(2.5) at t =

tn, respectively. For each t ∈ (0, T ], assume that u, ut ∈ (L∞(H3(Ω)))2, utt ∈ (L∞(L2(Ω)))2,

p ∈ L∞(H2(Ω)) and pt ∈ L2(L2(Ω)), then for any integer number 1 ≤ n ≤ N , we have

‖Πhu
n −Un

h ‖h + τ

n
∑

i=1

‖Jhp
i − P i

h‖0 ≤ C(h2 + τ). (3.1)

Proof. Denote

un −Un
h = un −Πhu

n +Πhu
n −Un

h := ρn + θn,

pn − Pn
h = pn − Jhp

n + Jhp
n − Pn

h := ξn + ηn.

From (2.1)-(2.2) and (2.4)-(2.5), we have the following error equations:

(Dτθ
n,vh) + ν(∇θn,∇vh)h − (ηn,∇ · vh)h

=− (Dτρ
n,vh)− ν(∇ρn,∇vh)h + (ξn,∇ · vh)h + (Rn,vh)

− ((un−1 · ∇)un − (Un−1
h · ∇)Un

h ,vh)h +
∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

vhds, ∀vh ∈ Vh, (3.2)

(∇ · ρn, qh)h + (∇ · θn, qh)h, ∀qh ∈ Ph (3.3)

where Rn = Dτu
n − un

t + ((un−1 −un) · ∇)un. Taking vh = Dτθ
n and qh = ηn in (3.2)-(3.3)

yields

‖Dτθ
n‖20 +

ν

2τ
(‖θn‖2h − ‖θn−1‖2h + ‖θn − θn−1‖2h)

=− (Dτρ
n, Dτθ

n)− ν(∇ρn,∇Dτθ
n)h + (ξn,∇ ·Dτθ

n)h

− (∇ ·Dτρ
n, ηn)h + (Rn, Dτθ

n)− ((un−1 · ∇)un − (Un−1
h · ∇)Un

h , Dτθ
n)h

+
∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

Dτθ
nds :=

7
∑

i=1

Ei(Dτθ
n). (3.4)
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Firstly, by Cauchy-Schwarz inequality and ǫ-Young inequality, it is easy to check that

E1(Dτθ
n) ≤ Ch2τ−1

∫ tn

tn−1

‖ut‖2dt‖Dτθ
n‖0 ≤ Ch4τ−1

∫ tn

tn−1

‖ut‖
2
2dt+ ǫ‖Dτθ

n‖20, (3.5)

and

E5(Dτθ
n) ≤ Cτ

∫ tn

tn−1

(‖ut‖
2
0 + ‖utt‖

2
0)dt+ ǫ‖Dτθ

n‖20. (3.6)

Secondly, by use of Lemma 2.2, we have

E4(Dτθ
n) ≤ Ch2τ−1

∫ tn

tn−1

‖ut‖3dt‖η
n‖0. (3.7)

Thirdly, by Lemma 2.1 and summation by parts with respect to time t, it follows that

E2(Dτθ
n) = −

ν

τ
[(∇ρn,∇θn)h − (∇ρn−1,∇θn−1)h] +

ν

τ
(∇(ρn − ρn−1),∇θn−1)h

≤ −
ν

τ
[(∇ρn,∇θn)h − (∇ρn−1,∇θn−1)h] + Ch2τ−1

∫ tn

tn−1

‖ut‖3dt‖θ
n−1‖h. (3.8)

In the same way,

E3(Dτθ
n) =

1

τ
[(ξn,∇ · θn)h − (ξn−1,∇ · θn−1)h]−

1

τ
(ξn − ξn−1,∇ · θn−1)h

≤
1

τ
[(ξn,∇ · θn)h − (ξn−1,∇ · θn−1)h] + Ch2τ−1

∫ tn

tn−1

‖pt‖2dt‖θ
n−1‖h, (3.9)

E7(Dτθ
n) =

1

τ

[

∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

θnds−
∑

e

∫

∂e

(

ν
∂un−1

∂n
− pn−1 · n

)

θn−1ds

]

−
1

τ

∑

e

∫

∂e

∫ tn

tn−1

(

ν
∂ut

∂n
− pt · n

)

dtθn−1ds

≤
1

τ

[

∑

e

∫

∂e

(ν
∂un

∂n
− pn · n)θnds−

∑

e

∫

∂e

(

ν
∂un−1

∂n
− pn−1 · n

)

θn−1ds

]

+ Ch2τ−1

∫ tn

tn−1

‖ut‖3 + ‖pt‖2dt‖θ
n−1‖h. (3.10)

Finally, note that (2.7) and

(un−1 · ∇)un − (Un−1
h · ∇)Un

h

=((un−1 −Πhu
n−1) · ∇)un + ((Πhu

n−1 −Un−1
h ) · ∇)un

+ ((Un−1
h −Πhu

n−1) · ∇)(un −Πhu
n) + ((Πhu

n−1 − un−1) · ∇)(un −Πhu
n)

+ (un−1 · ∇)(un −Πhu
n) + (Un−1

h · ∇)(Πhu
n −Un

h ) :=
6
∑

i=1

Fi, (3.11)

we have

(F1, Dτθ
n)h ≤ ‖un−1 −Πhu

n−1‖0‖∇un‖0,∞‖Dτθ
n‖0

≤ Ch2‖un−1‖2‖Dτθ
n‖0 ≤ Ch4 + ǫ‖Dτθ

n‖20, (3.12)

(F2, Dτθ
n)h ≤ ‖Πhu

n−1 −Un−1
h ‖0‖∇un‖0,∞‖Dτθ

n‖0

≤ C‖θn‖h‖Dτθ
n‖0 ≤ C‖θn‖2h + ǫ‖Dτθ

n‖20, (3.13)
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(F3, Dτθ
n)h ≤ ‖θn−1‖0‖∇(un −Πhu

n)‖0‖Dτθ
n‖0,∞

≤ C‖θn−1‖h(h‖u
n‖2)(h

−1‖Dτθ
n‖0)

≤ C‖θn−1‖h‖Dτθ
n‖0 ≤ C‖θn−1‖2h + ǫ‖Dτθ

n‖20, (3.14)

(F4, Dτθ
n)h ≤ ‖Πhu

n−1 − un−1‖0‖∇(un −Πhu
n)‖0‖Dτθ

n‖0,∞

≤ Ch2‖un−1‖2(h‖u
n‖2)(h

−1‖Dτθ
n‖0)

≤ Ch2‖un−1‖2‖Dτθ
n‖0 ≤ Ch4 + ǫ‖Dτθ

n‖20. (3.15)

As for (F5, Dτθ
n)h, we rewrite it as

(F5, Dτθ
n)h =

1

τ

[

((un−1 · ∇)(un −Πhu
n), θn)h − ((un−2 · ∇)(un−1 −Πhu

n−1), θn−1)h

]

−
1

τ

(

((un−1 · ∇)(un −Πhu
n))− ((un−2 · ∇)(un−1 −Πhu

n−1)), θn−1

)

h

=
1

τ

[

((un−1 · ∇)(un −Πhu
n), θn)h − ((un−2 · ∇)(un−1 −Πhu

n−1), θn−1)h

]

−

(

(
un−1 − un−2

τ
· ∇)(un −Πhu

n), θn−1

)

h

− (un−2 · ∇)

(

∇(
un − un−1

τ
−Πh

un − un−1

τ
), θn−1

)

h

. (3.16)

Moreover, we introduce the local L2 projection defined by

Peu = u|e = u|e =
1

|e|

∫

e

udx, ∀e ∈ Th.

Then it follows that

‖Peu‖0,e ≤ ‖u‖0,e, ‖u− Peu‖0,e ≤ Ch‖u‖1,e, for u ∈ (H1(e))2. (3.17)

Denote Z = (un−1 − un−2)/τ . Thus we have

((Z · ∇)(un −Πhu
n), θn−1)h

=
∑

e∈Th

((Z · ∇)(un −Πhu
n), θn−1)e =

∑

e∈Th

((Z · ∇)(un −Πhu
n), θn−1 − Peθ

n−1)e (3.18)

+
∑

e∈Th

(((Z −Z) · ∇)(un −Πhu
n),Peθ

n−1)e +
∑

e∈Th

((Z · ∇)(un −Πhu
n),Peθ

n−1)e :=

3
∑

i=1

Ai.

By Lemma 2.1, (2.7) and (3.17), we have

A1 ≤
∑

e∈Th

‖Z‖0,∞,e‖∇(un −Πhu
n)‖0,e‖θ

n−1 − Peθ
n−1‖0,e

≤
∑

e∈Th

Ceh
2‖un‖2,e‖θ

n−1‖1,e ≤ Ch2‖θn−1‖h, (3.19)

A2 ≤
∑

e∈Th

‖Z −Z‖0,∞,e‖∇(un −Πhu
n)‖0,e‖Peθ

n−1‖0,e

≤
∑

e∈Th

Ceh
2‖Z‖1,∞,e‖u

n‖2,e‖θ
n−1‖0,e ≤ Ch2‖θn−1‖h, (3.20)
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and

A3 ≤
∑

e∈Th

Ceh
2‖un‖3,e‖Peθ

n−1‖0,e ≤ Ch2‖θn−1‖h. (3.21)

Therefore, there holds

(

(Z · ∇)(un −Πhu
n), θn−1

)

h
≤ Ch2‖θn−1‖h ≤ Ch4 + C‖θn−1‖2h. (3.22)

In the same way,

(un−2 · ∇)

(

∇(
un − un−1

τ
−Πh

un − un−1

τ
), θn−1

)

h

≤ Ch4 + C‖θn−1‖2h. (3.23)

Thus, we have

(F5, Dτθ
n)h ≤

1

τ

[

((un−1 · ∇)(un −Πhu
n), θn)h − ((un−2 · ∇)(un−1 −Πhu

n−1), θn−1)h

]

+ Ch4 + C‖θn−1‖2h. (3.24)

As for (F6, Dτθ
n)h, we need the following induction hypothesis and prove it later,

‖Un
h ‖0,∞ ≤ K, n = 0, 1, . . . , N, (3.25)

where K = ‖Πhu‖L∞(L∞) + 1.

In fact, for n = 0, U0
h = Πhu0, we have ‖U0

h‖0,∞ ≤ K. We assume that (3.25) holds for

n = 0, 1, . . . , k − 1, for k > 0, then we have

(F6, Dτθ
n)h ≤ ‖Un−1

h ‖0,∞‖θn‖h‖Dτθ
n‖0 ≤ C‖θn‖2h + ǫ‖Dτθ

n‖20. (3.26)

With the estimates of F1 − F6, it follows that

E6(Dτθ
n) ≤

1

τ

[

((un−1 · ∇)(un −Πhu
n), θn)h − ((un−2 · ∇)(un−1 −Πhu

n−1), θn−1)h

]

+ Ch4 + C(‖θn‖2h + ‖θn−1‖2h) + 5ǫ‖Dτθ
n‖20. (3.27)

Substituting (3.5)-(3.10) and (3.27) into (3.4) leads to

‖Dτθ
n‖20 +

ν

2τ
(‖θn‖2h − ‖θn−1‖2h)

≤Ch4 + Ch4τ−1

∫ tn

tn−1

‖ut‖
2
3 + ‖pt‖

2
2dt+ Cτ

∫ tn

tn−1

‖ut‖
2
0 + ‖utt‖

2
0dt

+ Ch2τ−1

∫ tn

tn−1

‖ut‖3dt‖η
n‖0 + C(‖θn‖2h + ‖θn−1‖2h) + 7ǫ‖Dτθ

n‖20

−
ν

τ

[

(∇ρn,∇θn)h − (∇ρn−1,∇θn−1)h

]

+
1

τ

[

(ξn,∇ · θn)h − (ξn−1,∇ · θn−1)h

]

+
1

τ

[

((un−1 · ∇)(un −Πhu
n), θn)h − ((un−2 · ∇)(un−1 −Πhu

n−1), θn−1)h

]

+
1

τ

[

∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

θnds−
∑

e

∫

∂e

(

ν
∂un−1

∂n
− pn−1 · n

)

θn−1ds
]

. (3.28)
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On the other hand, we rewrite (3.2) as

(ηn,∇ · vh)h = (Dτθ
n,vh) + ν(∇θn,∇vh)h + (Dτρ

n,vh) + ν(∇ρn,∇vh)h

− (ξn,∇ · vh)h − (Rn,vh)− ((un−1 · ∇)un − (Un−1
h · ∇)Un

h ,vh)h

−
∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

vhds. (3.29)

Thus, we have

(Dτθ
n,vh) ≤ C‖Dτθ

n‖0‖vh‖h, (Dτρ
n,vh) ≤ Ch2‖ut‖L∞(H2)‖vh‖h,

(∇θn,∇vh)h ≤ ‖θn‖h‖v‖h, (∇ρn,∇vh)h ≤ Ch2‖un‖3‖vh‖h,

(Rn,vh) ≤ Cτ(‖ut‖L∞(L2) + ‖utt‖L∞(L2))‖vh‖h, (ξn,∇ · vh)h ≤ Ch2‖pn‖2‖vh‖h
∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

vhds ≤ Ch2
(

‖un‖3 + ‖pn‖2

)

‖vh‖h.

In addition, according to (3.11), it follows that

(

(un−1 · ∇)un − (Un−1
h · ∇)Un

h ,vh

)

h
≤ C(h2 + ‖θn‖h + ‖θn−1‖h)‖vh‖h.

Therefore, by the discrete LBB condition, we have

β‖Jhp
n − Pn

h ‖0 ≤ sup
vh∈Vh

(∇ · vh, Jhp
n − Pn

h )

‖vh‖h

≤ C(h2 + τ) + C‖Dτθ
n‖0 + C(‖θn‖h + ‖θn−1‖h). (3.30)

Now, substituting (3.30) into (3.28) and using ǫ-Young inequality, we have

‖Dτθ
n‖20 +

ν

2τ
(‖θn‖2h − ‖θn−1‖2h)

≤C(h4 + τ2) + Ch4τ−1

∫ tn

tn−1

‖ut‖
2
3 + ‖pt‖

2
2dt+ C(‖θn‖2h + ‖θn−1‖2h) + 9ǫ‖Dτθ

n‖20

−
ν

τ

[

(∇ρn,∇θn)h − (∇ρn−1,∇θn−1)h

]

+
1

τ

[

(ξn,∇ · θn)h − (ξn−1,∇ · θn−1)h

]

+
1

τ

[

((un−1 · ∇)(un −Πhu
n), θn)h − ((un−2 · ∇)(un−1 −Πhu

n−1), θn−1)h

]

+
1

τ

[

∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

θnds−
∑

e

∫

∂e

(

ν
∂un−1

∂n
− pn−1 · n

)

θn−1ds
]

. (3.31)

Then, summing up the above inequality and noting that θn = 0 shows that

τ

2

n
∑

i=1

‖Dτθ
i‖20 +

ν

2
‖θn‖2h

≤C(h4 + τ2) + Cτ

n
∑

i=1

‖θi‖2h − ν(∇ρn,∇θn)h + ((un−1 · ∇)(un −Πhu
n), θn)h

+ (ξn,∇ · θn)h +
∑

e

∫

∂e

(

ν
∂un

∂n
− pn · n

)

θnds. (3.32)
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Furthermore, using Lemmas 2.1–2.2 and the estimation process as F5 again, we have

τ

2

n
∑

i=1

‖Dτθ
i‖20 +

ν

2
‖θn‖2h

≤C(h4 + τ2) + Cτ

n
∑

i=1

‖θi‖2h + Ch4(‖un‖23 + ‖p‖22) +
ν

4
‖θn‖2h, (3.33)

which implies that

‖θn‖2h + τ

n
∑

i=1

‖Dτθ
n‖20 ≤ C(h4 + τ2) + Cτ

n
∑

i=1

‖θi‖2h. (3.34)

Thanks to Lemma 2.3, there exists a small τ1, when τ < τ1, we have

‖θn‖2h + τ

n
∑

i=1

‖Dτθ
n‖20 ≤ C(h4 + τ2). (3.35)

Now, we are in the position to prove (3.25). In fact, by (3.35) and inverse inequality, we

have for n = k

‖Un
h ‖0,∞ ≤ ‖Πhu

n‖0,∞ + ‖Πhu
n −Un

h ‖0,∞ ≤ ‖Πhu‖L∞(L∞) + Ch−1‖Πhu
n −Un

h ‖0

≤ ‖Πhu‖L∞(L∞) + Ch−1‖Πhu
n −Un

h ‖h ≤ ‖Πhu‖L∞(L∞) + Ch−1(h2 + τ)

≤ ‖Πhu‖L∞(L∞) + 1, (3.36)

where we require τ = O(h1+γ), γ > 0 and C(h + hγ) ≤ 1. Then, the induction hypothesis

(3.25) holds true uniformly for n = 0, 1, · · · , N .

Finally, substituting (3.35) into (3.30), it follows that

‖Jhp
n − Pn

h ‖0 ≤ C(h2 + τ) + C‖Dτθ
n‖0. (3.37)

Using (3.35) again leads to

τ
n
∑

i=1

‖Jhp
i − P i

h‖
2
0 ≤ C(h4 + τ2) + Cτ

n
∑

i=1

‖Dτθ
i‖20 ≤ C(h4 + τ2), (3.38)

which together with (3.35) completes the proof. �

Remark 3.1. We can see that the superclose error estimate ‖Πhu
n − Un

h ‖h ≤ C(h2 + τ) in

the above proof indeed plays a key role to bound the numerical solution Un
h in L∞-norm.

In what follows, we introduce the postprocessing operator Π2h to get the global supercon-

vergent estimates (see [32, 33] for details). Let Th be obtained from a coarse mesh T2h by

bi-sectioning each rectangle ẽ and ai, i = 1, 2, · · · , 9 be the nodes on ẽ (see Fig. 2.1).

For any vh ∈ CRh
0 , it has the form

vh|ẽ =

9
∑

i=1

viφi,
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where φi, i = 1, 2, · · · , 9 are the basis functions in CRh
0 . Now, we define the interpolation

operator Π2hvh ∈ Q2(ẽ) by

Π2h =

9
∑

i=1

viΦi,

where Φi, 1 ≤ i ≤ 9, are the basis functions of the space Q2(ẽ). Moreover, for w ∈ H2(Ω) ∩

H1
0 (Ω), let Π

∗
2hw be its piecewise Lagrange biquadratic interpolation with respect to the coarse

mesh T2h defined by

Π∗
2h|ẽ =

9
∑

i=1

wiΦi,

where wi are the values of w on the nodes ai, i = 1, 2, · · · , 9.

Then [32] and [33] have shown that

Π2hΠhu = Π∗
2hu, ∀u ∈ H2(Ω) ∩H1

0 (Ω), (3.39)

|Π2hvh|1 ≤ C‖vh‖h, ∀vh ∈ CRh
0 , (3.40)

|Π∗
2hu− u|1 ≤ Ch2‖u‖3, ∀u ∈ H3(Ω). (3.41)

Moreover, let J2h : p ∈ H1(Ω) → J2hp ∈ Q1(ẽ) satisfy
∫

ej
(p − J2hp)dx1dx2 = 0, where

ej(j = 1, 2, 3, 4) are the four small elements of the macroelement ẽ (see Fig. 2.1). Then the

following properties hold

J2hJhp = J2hp, ∀p ∈ H1(Ω), (3.42)

‖J2hph‖0 ≤ C‖ph‖0, ∀ph ∈ Ph, (3.43)

‖p− J2hp‖0 ≤ Ch2‖p‖2, ∀p ∈ H2(Ω). (3.44)

Based on the above interpolation postprocessing operators Π2h and J2h, we can get the

following superconvergence results.

Theorem 3.2. Under the conditions of Theorem 3.1, for n = 1, . . . , N , we have

|un −Π2hU
n
h |1 ≤ C(h2 + τ), τ

n
∑

i=1

‖pi − J2hP
i
h‖

2
0 ≤ C(h4 + τ2).

Proof. It follows from properties (3.39)-(3.41) and Theorem 3.1 that

|un −Π2hU
n
h |1

≤|un −Π∗
2hu

n|1 + |Π∗
2hu

n −Π2hΠhu
n|1 + |Π2hΠhu

n −Π2hU
n
h |1

≤Ch2‖un‖3 + 0 + C‖Πhu
n −Un

h ‖h ≤ C(h2 + τ).

Similarly, the result for τ
∑n

i=1 ‖p
i − J2hP

i
h‖

2
0 can be derived by (3.42)-(3.44). The proof is

complete. �
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4. Numerical Examples

In this section, some numerical results are provided to confirm the theoretical analysis.

Example 4.1. The viscosity coefficient ν = 1. The boundary/inital conditions and the source

term f are chosen according to the exact solutions

u1 = e−t(x2
1 − 2x3

1 + x2
1)(4x

3
2 − 6x2

2 + 2x2),

u2 = −e−t(x4
2 − 2x3

2 + x2
2)(4x

3
1 − 6x2

1 + 2x1),

p = 10e−t(2x1 − 1)(2x2 − 1).

The final time is set T = 1.0 and the domain Ω = (0, 1)2. A regular triangulation with

M + 1 nodes in both horizontal and vertical directions is made for the domain Ω.

In order to demonstrate the error estimates in Theorems 3.1 and 3.2, we choose τ = O(h2)

and list the numerical results with respect to t = 0.1, 0.6, 1.0 in Tables 4.1-4.3, respectively. It

Table 4.1: The numerical errors at t = 0.1 of Example 4.1.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −Un
h ‖h 1.5917e-02 8.0380e-03 4.0274e-03 2.0149e-03

Rate / 0.98568 0.99700 0.99915

‖Πhu
n −Un

h ‖h 2.7549e-03 7.7676e-04 1.8784e-04 4.9497e-05

Rate / 1.8264 2.0480 1.9241

‖un −Π2hU
n
h ‖1 5.0596e-03 1.2856e-03 3.1505e-04 8.0154e-05

Rate / 1.9766 2.0288 1.9748

‖pn − Pn
h ‖0 5.4990e-01 2.6876e-01 1.3356e-01 6.6682e-02

Rate / 1.0329 1.0088 1.0021

‖Jhp
n − Pn

h ‖0 1.4260e-01 3.6042e-02 8.9144e-03 2.2528e-03

Rate / 1.9842 2.0154 1.9844

‖pn − J2hP
n
h ‖0 1.8945e-01 4.7656e-02 1.1841e-02 2.9784e-03

Rate / 1.9911 2.0089 1.9911

Table 4.2: The numerical errors at t = 0.6 of Example 4.1.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −Un
h ‖h 9.6578e-03 4.8755e-03 2.4427e-03 1.2221e-03

Rate / 0.98615 0.99705 0.99915

‖Πhu
n −Un

h ‖h 1.7073e-03 4.7445e-04 1.1447e-04 3.0144e-05

Rate / 1.8474 2.0512 1.9250

‖un −Π2hU
n
h ‖1 3.0916e-03 7.8184e-04 1.9142e-04 4.8692e-05

Rate / 1.9834 2.0302 1.9750

‖pn − Pn
h ‖0 3.3353e-01 1.6301e-01 8.1008e-02 4.0444e-02

Rate / 1.0329 1.0088 1.0021

‖Jhp
n − Pn

h ‖0 8.6491e-02 2.1860e-02 5.4069e-03 1.3664e-03

Rate / 1.9842 2.0154 1.9844

‖pn − J2hP
n
h ‖0 1.1491e-01 2.8905e-02 7.1817e-03 1.8065e-03

Rate / 1.9911 2.0089 1.9911
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Table 4.3: The numerical errors at t = 1.0 of Example 4.1.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −Un
h ‖h 6.4633e-03 3.2659e-03 1.6372e-03 8.1915e-04

Rate / 0.98477 0.99622 0.99906

‖Πhu
n −Un

h ‖h 1.0250e-03 2.7257e-04 6.9173e-05 1.7358e-05

Rate / 1.9109 1.9784 1.9946

‖un −Π2hU
n
h ‖1 1.9991e-03 4.9681e-04 1.2390e-04 3.0953e-05

Rate / 2.0086 2.0036 2.0010

‖pn − Pn
h ‖0 2.2345e-01 1.0923e-01 5.4300e-02 2.7110e-02

Rate / 1.0325 1.0084 1.0021

‖Jhp
n − Pn

h ‖0 5.7482e-02 1.4370e-02 3.5926e-03 8.9815e-04

Rate / 2.0000 2.0000 2.0000

‖pn − J2hP
n
h ‖0 7.6642e-02 1.9161e-02 4.7901e-03 1.1975e-03

Rate / 2.0000 2.0000 2.0000
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Fig. 4.1. The graphics on mesh 64× 64 at t = 1.0 of Example 4.1.
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Fig. 4.2. The graphics on mesh 64× 64 at t = 1.0 of Example 4.1.
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Fig. 4.3. The graphics on mesh 64× 64 at t = 1.0 of Example 4.1.

can been see that the convergence rates of order O(h2) for the velocity u are in good agreement

with the theoretical analysis. Moreover, the convergence rates are of orderO(h2) for the pressure

p in L∞ × L2-norm, although the theoretical analysis was given only in the L2 × L2-norm. At

the same time, we also present the graphics of the exact and numerical solutions at t = 1.0 on

mesh 64× 64 (see Figs. 4.1-4.3).

Example 4.2. This is a lid-driven cavity flow problem. The classical problem of the closed

cavity driven by the motion of a leaky lid has been used rather extensively as a validation test

case by many authors [37, 38]. In this problem, a unit velocity is specified along the entire top

surface and zero velocity on the other surfaces as shown in Fig. 4.4.

u1 = 1, u2 = 0

u1 = 0

u2 = 0

u1 = 0

u2 = 0

u1 = 0, u2 = 0

Fig. 4.4. Model description of Example 4.2.

We consider the flow for different Reynolds numbers on a fixed mesh with h = 1/64. For

low Reynolds number (Re = 1), the flow has only vortex located above the center. When the

Reynolds number increases, the flow pattern starts to form reverse circulation cells in two lower

corners (see Fig. 4.5), which shows that the results obtained herein are in good agreement with

the phenomenon discussed in [38–40].
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Fig. 4.5. Velocity fields of Example 4.2.
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