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Abstract

Efficient and accurate Chebyshev dual-Petrov-Galerkin methods for solving first-order

equation, third-order equation, third-order KdV equation and fifth-order Kawahara equa-

tion are proposed. Some Sobolev bi-orthogonal basis functions are constructed which lead

to the diagonalization of discrete systems. Accordingly, both the exact solutions and the

approximate solutions are expanded as an infinite and truncated Fourier-like series, respec-

tively. Numerical experiments illustrate the effectiveness of the suggested approaches.
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1. Introduction

Spectral methods are based on orthogonal polynomial/function approximations, which pos-

sess the high-order accuracy and have gained more and more popularity during the past few

decades, see [2, 4, 5, 8, 10, 24, 25] and the references therein. The Fourier trigonometric poly-

nomials eikx, k ∈ Z are the most desirable basis, which are orthogonal with respect to each

other under certain Sobolev inner product involving derivatives, thus the corresponding alge-

braic system is diagonal. This fact together with the availability of the fast Fourier transform

(FFT) makes the Fourier spectral method be an ideal approximation approach for differential

equations with periodic boundary conditions. If a Fourier method is applied to a non-periodic

problem, it inevitably induces the so-called Gibbs phenomenon, and reduces the global conver-

gence rate to O(N−1). Consequently, one should not apply a Fourier method to problems with

non-periodic boundary conditions. Instead, the Chebyshev spectral methods [4, 11–13, 17] are

of our greatest interests due to the FFT for Chebyshev polynomials.

Standard Chebyshev spectral methods have been extensively investigated for solving second-

order and fourth-order differential equations (see, e.g., [22]). For the one-dimensional fourth-

order linear equation, Shen [22] presented a basis

ϕk(x) = Tk(x)−
2(k + 2)

k + 3
Tk+2(x) +

k + 1

k + 3
Tk+4(x), 0 ≤ k ≤ N − 4,

with Tk(x) being the kth Chebyshev polynomial. Note that the matrix with the term (∂2xϕk, ∂
2
x

(ϕlω)) in the resulting linear system is not sparse but possesses special structure, where ω(x)

* Received December 20, 2018 / Revised version received June 3, 2019 / Accepted July 3, 2019 /

Published online October 18, 2019 /
1) Corresponding author.



44 X.H. YU, L.S. JIN AND Z.Q. WANG

is the Chebyshev weight function. Benefiting from these special matrix structures, Shen [22]

further derived some efficient algorithms. However, there is only a limited body of literature on

spectral methods for odd-order equations. This is partly due to the fact that: (i) for the classical

Chebyshev-Galerkin spectral methods, the discrete systems are not sparse and the condition

numbers increase like O(Nk) for the k-order boundary problem, where N is the number of

modes; (ii) for the direct collocation methods, the discrete systems are also not sparse and

the condition numbers increase like O(N2k) for k-order boundary problems, and often exhibit

unstable modes if the collocation points are not properly chosen (see, e.g., [14, 21]).

Since the main differential operators in odd-order differential equations are not symmetric,

it is reasonable to use the Petrov-Galerkin spectral method. Recently, Ma and Sun [18, 19]

developed an efficient Legendre-Petrov-Galerkin and Chebyshev collocation method for the

third-order differential equations. By choosing appropriate basis functions, the resulting linear

system is sparse. Shen [23] proposed a Legendre dual-Petrov-Galerkin spectral method for

the third and higher odd-order equations, and obtained linear systems which are compactly

sparse. Moreover, Shen and Wang [26] presented Legendre and Chebyshev dual-Petrov-Galerkin

spectral methods for the first-order hyperbolic equations, which are always stable without

any restriction on the coefficients, the resulting linear systems are also compactly sparse for

problems with constant coefficients and well conditioned for problems with variable coefficients

by a preconditioning method.

In this paper, we consider the first and third order differential equations by using Cheby-

shev dual-Petrov-Galerkin method. As pointed out in [22], it is very important to choose an

appropriate basis such that the resulting linear system is as simple as possible. Motivated by

the success work in [1, 16, 27], the main purpose of this paper is to construct new Fourier-like

Sobolev bi-orthogonal basis functions [7,20], such that the resulting linear systems are diagonal.

The main advantages of the suggested algorithms include:

• the exact solutions and the approximate solutions can be represented as infinite and

truncated Fourier-like series, respectively;

• the condition numbers of the resulting algebraic systems are always equal to one;

• the computational cost is much less than that of the classical Chebyshev dual-Petrov-

Galerkin method.

The remainder of this paper is organized as follows. In Section 2, we introduce the Chebyshev

polynomials and their basic properties. In Section 3, we construct two kinds of Sobolev bi-

orthogonal Chebyshev polynomials corresponding to the odd-order differential equations, and

propose new Chebyshev dual-Petrov-Galerkin methods. Some numerical results are presented

in Section 4 to demonstrate the effectiveness and accuracy.

2. Notations and Preliminaries

Let I be a certain interval and ω(x) be a weight function in the usual sense. For integer

r ≥ 0, we define the weighted Sobolev spaces Hr
ω(I) as usual, with the inner product (u, v)r,ω,

the semi-norm |v|r,ω and the norm ‖v‖r,ω. We omit the subscript ω(x) whenever ω(x) ≡ 1.

We first recall the Chebyshev polynomials. Let I = (−1, 1) and Tk(x) be the Chebyshev

polynomial of degree k, which is the eigenfunction of the singular Sturm-Liouville problem
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(cf. [25]):

(1− x2)∂2xTk(x) − x∂xTk(x) + k2Tk(x) = 0, k ≥ 0. (2.1)

Denote L2
ω(I) = H0

ω(I). The set of all Chebyshev polynomials forms a complete L2
ω(I)-orthogonal

system with the weight function ω(x) = 1√
1−x2

, namely,

∫

I

Tk(x)Tl(x)ω(x)dx =
ckπ

2
δk,l, k, l ≥ 0, (2.2)

where δk,l is the Kronecker symbol, c0 = 2 and ck = 1 for k ≥ 1. Thus, for any v ∈ L2
ω(I),

v(x) =
∞
∑

k=0

v̂kTk(x), v̂k =
2

ckπ

∫

I

v(x)Tk(x)ω(x)dx.

By virtue of (2.1) and (2.2), we have

∫

I

∂xTk(x)∂xTl(x)
√

1− x2dx =
ckk

2π

2
δk,l, k, l ≥ 0. (2.3)

Moreover, the following recurrence relations are satisfied with T0(x) = 1 and T1(x) = x (cf. [25]),

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1, (2.4a)

2Tk(x) =
1

k + 1
∂xTk+1(x)−

1

k − 1
∂xTk−1(x), k ≥ 2, (2.4b)

(1− x2)∂xTk(x) =
k

2
(Tk−1(x)− Tk+1(x)), k ≥ 1, (2.4c)

∂xTk(x) = 2k
k−1
∑

i=0
i+k odd

1

ci
Ti(x). (2.4d)

Particularly, Tk(−x) = (−1)kTk(x), Tk(±1) = (±1)k and ∂xTk(±1) = (±1)k−1k2 for k ≥ 0.

In order to construct new Chebyshev dual-Petrov-Galerkin spectral method for the first-

order problems defined on I, we need to consider the following two kinds of polynomials,

sk(x) = (1 + x)Tk(x), tk(x) = (1− x)Tk(x), k ≥ 0. (2.5)

Lemma 2.1. For any k ≥ 0, we have

sk(x) =
1 + δk,0

2
Tk+1(x) + Tk(x) +

1

2
Tk−1(x), (2.6)

tk(x) = −1 + δk,0

2
Tk+1(x) + Tk(x)−

1

2
Tk−1(x), (2.7)

∂xsk(x) = (k + 1)Tk(x) + 2k
k−1
∑

i=1

Ti(x) + kT0(x), (2.8)

where Tk(x) ≡ 0 for any k < 0.

Proof. By (2.4) and a direct computation, we can verify easily the result of (2.6)–(2.8) for

k = 0. Next, by (2.4) we deduce that for k ≥ 1,

sk(x) = Tk(x) + xTk(x) =
1

2
Tk+1(x) + Tk(x) +

1

2
Tk−1(x). (2.9)
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This leads to (2.6). Similarly, we can derive the result of (2.7). Moreover, by (2.9) and (2.4d),

we have for k ≥ 1,

∂xsk(x) =
1

2
∂xTk+1(x) + ∂xTk(x) +

1

2
∂xTk−1(x)

=(k + 1)

k
∑

i=0
i+k even

1

ci
Ti(x) + 2k

k−1
∑

i=0
i+k odd

1

ci
Ti(x) + (k − 1)

k−2
∑

i=0
i+k even

1

ci
Ti(x)

=(k + 1)Tk(x) + 2k
k−2
∑

i=0
i+k even

1

ci
Ti(x) + 2k

k−1
∑

i=0
i+k odd

1

ci
Ti(x)

=(k + 1)Tk(x) + 2k

k−1
∑

i=1

Ti(x) + kT0(x). (2.10)

This ends the proof. �

Further, in order to design new Chebyshev dual-Petrov-Galerkin spectral method for the

third-order problems, we also need to consider the following two kinds of polynomials,

pk(x) = (1− x)2(1 + x)Tk(x), qk(x) = (1 − x)(1 + x)2Tk(x), k ≥ 0. (2.11)

Clearly, pk(±1) = ∂xpk(1) = 0 and qk(±1) = ∂xqk(−1) = 0 for k ≥ 0.

Lemma 2.2. For any k ≥ 0, we have

pk(x) =
1

8
(1 + δk,0)Tk+3(x) −

1

4
(1 + δk,0)Tk+2(x)−

1

8
(1 + δk,0 − δk,1)Tk+1(x)

+
1

2(1 + δk,1)
Tk(x)−

1

8
(1− δk,2)Tk−1(x) −

1

4
Tk−2(x) +

1

8
Tk−3(x), (2.12)

qk(x) = −1

8
(1 + δk,0)Tk+3(x) −

1

4
(1 + δk,0)Tk+2(x) +

1

8
(1 + δk,0 − δk,1)Tk+1(x)

+
1

2(1 + δk,1)
Tk(x) +

1

8
(1− δk,2)Tk−1(x) −

1

4
Tk−2(x)−

1

8
Tk−3(x). (2.13)

Proof. By (2.4) and a direct computation, we can verify easily the results of (2.12) and

(2.13) for k = 0, 1, 2. Next, by (2.4b), (2.4c) and (2.4a) we deduce that for k ≥ 3,

pk(x) = (1− x)2(1 + x)Tk(x)

=
(1− x)2(1 + x)

2

(

1

k + 1
∂xTk+1(x)−

1

k − 1
∂xTk−1(x)

)

=
1− x

4
(−Tk+2(x) + 2Tk(x)− Tk−2(x))

=
1

4
(−Tk+2(x) + 2Tk(x)− Tk−2(x))

− 1

4

(

−Tk+3(x) + Tk+1(x)

2
+ Tk+1(x) + Tk−1(x) −

Tk−1(x) + Tk−3(x)

2

)

=
1

8
Tk+3(x)−

1

4
Tk+2(x)−

1

8
Tk+1(x) +

1

2
Tk(x)−

1

8
Tk−1(x)

− 1

4
Tk−2(x) +

1

8
Tk−3(x). (2.14)
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This leads to the result of (2.12). Similarly, we obtain the result of (2.13). �

We denote by A = (ak,l)0≤k,l≤N the symmetric matrix with the element ak,l := (pk, ql)ω. By

the Lemma 2.2 and (2.2), we derive readily the nonzero elements ak,l (k ≤ l) of A as following,

ak,k =
(1 + 3δk,0)(2 + δk,1)

128
π +

1

8(1 + 3δk,1)
ckπ − (1− δk,2)

128
ck−1π

+
1

32
ck−2π − 1

128
ck−3π,

ak,k+2 = −7(1 + δk,0) + (1 − δk,0)(1 − δk,1)

128
π − 1

16(1 + δk,1)
ckπ +

1− δk,2

128
ck−1π,

ak,k+4 =
(1 + δk,0)(6 − δk,1)

128
π, ak,k+6 = − (1 + δk,0)

128
π. (2.15)

Lemma 2.3. For any k ≥ 0, we have

∂xpk(x) =
(k + 3)(1 + δk,0)

4
Tk+2(x)−

(k + 2)(1 + δk,0)

2
Tk+1(x)

+
1 + δk,1

2
Tk(x) +

k − 2

2
Tk−1(x) −

k − 3

4
Tk−2(x), (2.16)

∂x(qk(x)ω(x)) =
(

− (k + 2)(1 + δk,0)

4
Tk+2(x) −

(k + 1)(1 + δk,0)

2
Tk+1(x)

− δk,1

4
Tk(x) +

k − 1

2
Tk−1(x) +

k − 2

4
Tk−2(x)

)

ω(x). (2.17)

Proof. By (2.4) and a direct computation, we can verify easily the results of (2.16) and

(2.17) for k = 0, 1. Next, by (2.4c) and (2.4a), we deduce that for k ≥ 2,

∂xpk(x) = −2(1− x2)Tk(x) + (1− x)2Tk(x) + (1− x)2(1 + x)∂xTk(x)

=(1− x)

(

−3xTk(x) − Tk(x) +
k

2

(

Tk−1(x)− Tk+1(x)
)

)

=(1− x)

(

k − 3

2
Tk−1(x) − Tk(x) −

k + 3

2
Tk+1(x)

)

=
k + 3

4
Tk+2(x) −

k + 2

2
Tk+1(x) +

1

2
Tk(x) +

k − 2

2
Tk−1(x)−

k − 3

4
Tk−2(x), (2.18)

and

∂x(qk(x)ω(x)) = (1 + x)
(

− 2xTk(x) + Tk(x) + (1− x2)∂xTk(x)
)

ω(x)

=(1 + x)

(

−k + 2

2
Tk+1(x) + Tk(x) +

k − 2

2
Tk−1(x)

)

ω(x)

=

(

−k + 2

4
Tk+2(x)−

k + 1

2
Tk+1(x) +

k − 1

2
Tk−1(x) +

k − 2

4
Tk−2(x)

)

ω(x). (2.19)

This ends the proof. �

We denote by B = (bk,l)0≤k,l≤N and C = (ck,l)0≤k,l≤N the matrixes with the elements

bk,l := (pk, ∂x(qlω)) and ck,l := (∂xpk, ∂x(qlω)), respectively. By using (2.12), (2.17) and (2.2),

we can derive the nonzero elements of B as following,

bkk =
(1 + 3δk,0)(2k + 5− (k + 2)δk,1)

32
π − 1

8
ckπ − k − 2

32
ck−1π − k − 3

32
ck−2π,
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bk,k+1 =
π

64

(

8(k + 2)− (k + 3)(1− δk,0)
)

− π

32
(1− δk,1)ck +

π

16
(k − 2)ck−1 −

π

64
(k − 3)ck−2,

bk+1,k = − π

64

(

(3k + 8)(1 + δk,0) + 2(1 + 3δk,0)(1−δk,1)
)

− (k−1)ckπ

8(1 + δk,1)
+

π

64
(k−2)(1−δk,2)ck−1,

bk,k+2 = − π

32
(1 + δk,0)(k + 4 + (k + 2)δk,0) +

π

16
(1 + δk,1)ck +

π

32
(k − 2)ck−1,

bk+2,k = − π

32
(1 + δk,0)(2k + 2− kδk,1) +

(k − 1)ckπ

16(1 + δk,1)
,

bk,k+3 = − π

64
(1 + δk,0)(5k + 11) +

π

32
(1 + δk,1)ck,

bk+3,k =
π

64
(1 + δk,0)(6 + 5k − kδk,1), bk,k+4 = bk+4,k =

π

32
(1 + δk,0),

bk,k+5 =
π

64
(k + 3)(1 + δk,0), bk+5,k = − π

64
(k + 2)(1 + δk,0). (2.20)

Similarly, by (2.16), (2.17) and (2.2), we have

ckk =
π

32

(

(k + 2)(3k + 1)(1 + 3δk,0)− 4δk,1

)

+
π

8
(k − 1)(k − 2)ck−1 −

π

32
(k − 2)(k − 3)ck−2,

ck,k+1 =
π

16

(

2k(1 + δk,1)− (k + 2)(k + 3 + (k + 1)δk,0)
)

+
π

16
(k − 1)(k − 2)ck−1,

ck+1,k =
π

16

(

(k + 2)(k + 3)(1 + δk,0)− 2(k + 1)(1 + 3δk,0)
)

− π

16
(k − 1)(k − 2)ck−1,

ck,k+2 =
π

16

(

k(1 + δk,1)− 2(k + 1)(k + 2)(1 + δk,0)
)

,

ck+2,k = − π

16
(2k2 + 3k + 2)(1 + δk,0),

ck,k+3 =
π

8
(k + 2)(1 + δk,0), ck+3,k = −π

8
(k + 1)(1 + δk,0),

ck,k+4 =
π

32
(k + 2)(k + 3)(1 + δk,0), ck+4,k =

π

32
(k + 1)(k + 2)(1 + δk,0). (2.21)

Lemma 2.4. For any k ≥ 0, we have

∂2xpk(x) =
(k + 2)(k + 3)(1 + δk,0)

2
Tk+1(x) − (k + 1)(k + 2)Tk(x) +

(k + 1)(k + 6)

2
Tk−1(x)

+ 6k

k−2
∑

i=1

(−1)i+k+1Ti(x) + (−1)k+1+δk,13kT0(x). (2.22)

Proof. By (2.4) and a direct computation, we can derive the result of (2.22) for k = 0, 1

easily. Next, by (2.4d) we deduce that for k ≥ 2,

∂xTk(x)

2k
− ∂xTk−1(x)

2(k − 1)
=

k−1
∑

i=0i+k odd

1

ci
Ti(x) −

k−2
∑

i=0i+k even

1

ci
Ti(x)

=

k−1
∑

i=1

(−1)i+k+1Ti(x) + (−1)k+1 1

2
T0(x). (2.23)

Therefore, by (2.16), (2.4b), (2.4d) and (2.23), we have for k ≥ 2,

∂2xpk(x) =
k+3

4

(

2(k+2)Tk+1(x) +
k+2

k
∂xTk(x)

)
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− k + 2

2

(

2(k+1)Tk(x) +
k+1

k − 1
∂xTk−1(x)

)

+
1

2
∂xTk(x)

+
k − 2

2
∂xTk−1(x) −

k − 3

4

(

k − 2

k
∂xTk(x)− 2(k − 2)Tk−1(x)

)

=
1

2
(k + 2)(k + 3)Tk+1(x) − (k + 1)(k + 2)Tk(x)

+
1

2
(k − 2)(k − 3)Tk−1(x) + 3k

(

∂xTk(x)

k
− ∂xTk−1(x)

k − 1

)

=
1

2
(k + 2)(k + 3)Tk+1(x) − (k + 1)(k + 2)Tk(x) +

1

2
(k + 1)(k + 6)Tk−1(x)

+ 6k

k−2
∑

i=1

(−1)i+k+1Ti(x) + (−1)k+13kT0(x). (2.24)

This ends the proof. �

We denote by D = (dk,l)0≤k,l≤N the matrix with the element dkl = (∂xpk, ∂
2
x(qlω)). By

using (2.22), (2.17), (2.2) and integration by parts, we can obtain the nonzero elements of D as

following,

dkk =
π

8
(k + 1)(k + 2)((k + 3)(1 + 3δk,0)− δk,1)

− π

8
(k2 − 1)(k + 6)ck−1 +

π

4
3k(k − 2)ck−2,

dk,k+1 =
π

8

(

(k + 2)(k + 3)δk,0 + 2k(k + 1)(k + 2)
)

− π

16
(k2 − 1)(k + 6)ck−1,

dk+1,k = − π

16

(

3k(k + 2)(k + 3)(1 + δk,0)− (k + 2)(k + 7)δk,1

)

+
3π

2
(k2 − 1)ck−1 −

3π

4
(k + 1)(k − 2)ck−2,

dk,k+2 = −π
8
(k + 1)(k + 2)(3 + (k + 3)δk,0),

dk+2,k =
π

8

(

3k(k + 3)(1 + δk,0)− 6(k + 2)δk,1

)

− 3π

2
(k − 1)(k + 2)ck−1

+
3π

4
(k2 − 4)ck−2,

dk,k+3 = − π

16
(k + 1)(k + 2)(k + 3)(1 + δk,0),

dk+3,k =
π

16

(

k(k2 − 9k − 34)(1 + δk,0) + 12(k + 3)δk,1

)

+
3π

2
(k − 1)(k + 3)ck−1 −

3π

4
(k − 2)(k + 3)ck−2. (2.25)

3. Chebyshev Dual-Petrov-Galerkin Methods

In this section, we propose new Chebyshev dual-Petrov-Galerkin methods for solving the

odd-order equations. The main idea is to find bi-orthogonal polynomials with respect to the

bilinear forms, such that both the exact solution and the approximate solution can be expressed

explicitly.
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3.1. First-order equation

To illustrate the attractive properties of new Chebyshev dual-Petrov-Galerkin method, we

first consider the following first-order linear hyperbolic equation (cf. [26]):







ut + aux = f, (x, t) ∈ I × (0, T ],

u(−1, t) = c(t), t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ī ,

(3.1)

where a is a positive constant. Since the non-homogeneous boundary condition u(−1, t) = c(t)

can be easily homogenized by subtracting a simple linear function from the exact solution, we

shall only consider, without loss of generality, the case c(t) = 0. The existence and uniqueness

of the solution for (3.1) can be found in [9]. Moreover, the dual-Petrov-Galerkin method is

always stable without any sign restriction on the coefficient a as shown in [26].

Let PN (I) be the space of all polynomials of degree ≤ N . We define

X(I) = {u ∈ H1
ω(I) : u(−1) = 0}, XN (I) = X(I) ∩ PN (I), (3.2a)

X∗(I) = {u ∈ H1
ω(I) : u(1) = 0}, X∗

N (I) = X∗(I) ∩ PN (I), (3.2b)

and denote by τ the time step size, M = [T
τ
] and u(k)(x) = u(x, kτ), k = 0, 1, · · · ,M . Then a

standard centered difference scheme in time is given by



















u(k+1)(x)− u(k)(x)

τ
+ a

∂xu
(k+1)(x) + ∂xu

(k)(x)

2
=
f (k+1)(x) + f (k)(x)

2
,

u(k)(−1) = 0, k = 0, 1, · · · ,M,

u(0)(x) = u0(x), x ∈ I.

(3.3)

A weak formulation of (3.3) is to find u(k+1) ∈ X(I) such that

Aa(u
(k+1), v) := 2(u(k+1), v)ω + aτ(∂xu

(k+1), v)ω = (g(k), v)ω, ∀v ∈ X∗(I), (3.4a)

where

g(k)(x) = τf (k+1)(x) + τf (k)(x) + 2u(k)(x)− aτ∂xu
(k)(x). (3.4b)

The Chebyshev dual-Petrov-Galerkin scheme for (3.4) is to find u
(k+1)
N ∈ XN (I) such that

Aa(u
(k+1)
N , φ) = (g

(k)
N , φ), φ ∈ X∗

N(I), (3.5a)

where

g
(k)
N (x) = τf (k+1)(x) + τf (k)(x) + 2u

(k)
N (x)− aτ∂xu

(k)
N (x). (3.5b)

To propose efficient Chebyshev dual-Petrov-Galerkin approximation scheme for (3.5), we

need to construct two kinds of basis functions {ϕk} and {ψk}, which are bi-orthogonal with

respect to the bilinear operator Aa(·, ·).

Lemma 3.1. Let ϕk ∈ Xk+1(I) and ψk ∈ X∗
k+1(I) be the bi-orthogonal Chebyshev polynomials

such that ϕk − sk ∈ Xk(I), ψk − tk ∈ X∗
k(I) and

Aa(ϕk, ψl) = σkδk,l, ∀k, l ≥ 0. (3.6)
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Then we have

ϕk(x) = sk(x) + ek,1ϕk−1(x) + ek,2ϕk−2(x), (3.7a)

ψk(x) = tk(x) + fk,1ψk−1(x) + fk,2ψk−2(x), (3.7b)

where ϕk(x) = ψk(x) ≡ 0, σk = 0 for k < 0, ek,i = fk,i = 0 for k < i, and

σk = −1 + 3δk,0
4

π +
aτk + aτ + 2

2
ckπ − 2aτk + δk,1 + 1

4(1 + δk,1)
ck−1π

− ek,1fk,1σk−1 − ek,2fk,2σk−2, (3.8a)

ek,1 =
1

σk−1

(

−aτ(k − 1)

4
π + ek,2fk−1,1σk−2

)

, ek,2 =
1 + δk,2

4σk−2
π, (3.8b)

fk,1 =
1

σk−1

(

aτk

4
ck−1π + ek−1,1fk,2σk−2

)

, fk,2 =
1 + δk,2

4σk−2
π. (3.8c)

Proof. Let

ϕk(x) = sk(x) +

k
∑

i=1

ek,iϕk−i(x), ψk(x) = tk(x) +

k
∑

i=1

fk,iψk−i(x). (3.9)

Then, by (2.7), (2.8) and (2.2), we deduce that for any 0 ≤ l ≤ k − 3,

(∂xsk, tl)ω = 0.

Hence, by (3.4), (2.6) and (2.2), we further derive that for any 0 ≤ l ≤ k − 3,

Aa(sk, ψl) = 2(sk, ψl)ω + aτ(∂xsk, ψl)ω = 0. (3.10)

On the other hand, by (3.9) and (3.6) we get that for 0 ≤ l ≤ k − 3,

Aa(sk, ψl) = Aa(ϕk −
k

∑

i=1

ek,iϕk−i, ψl) = −ek,k−lσl. (3.11)

Thus, ek,k−l = 0 for any 0 ≤ l ≤ k − 3. This means

ϕk(x) = sk(x) + ek,1ϕk−1(x) + ek,2ϕk−2(x). (3.12)

Similarly, we deduce that

ψk(x) = tk(x) + fk,1ψk−1(x) + fk,2ψk−2(x). (3.13)

It remains to confirm the coefficients ek,i, fk,i and σk. By (3.4), (2.6)–(2.8) and (2.2) we

know that

Aa(sk, tk−2) = 2(sk, tk−2)ω + aτ(∂xsk, tk−2)ω = −1 + δk,2

4
π. (3.14)

On the other hand, by (3.4), (3.12), (3.13) and (3.6) we get

Aa(sk, tk−2)

=A(ϕk − ek,1ϕk−1 − ek,2ϕk−2, ψk−2 − fk−2,1ψk−3 − ek−2,2ψk−4)

=− ek,2σk−2. (3.15)
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Thus ek,2 =
1 + δk,2

4σk−2
π. Similarly, we have

Aa(sk, tk−1) = −ek,1σk−1 + ek,2fk−1,1σk−2 =
π

4
aτ(k − 1),

Aa(sk, tk) = σk + ek,1fk,1σk−1 + ek,2fk,2σk−2

= −π
4

(

1 + 3δk,0

)

+
π

2

(

aτk + aτ + 2
)

ck −
π

4

2aτk + δk,1 + 1

(1 + δk,1)
ck−1,

Aa(sk, tk+1) = −fk+1,1σk + ek,1fk+1,2σk−1 = −π
4
aτ(k + 1)ck,

Aa(sk, tk+2) = −fk+2,2σk = −π
4
(1 + δk,0).

These give the results of (3.8).

Obviously, XN (I) = {ϕk(x) : 0 ≤ k ≤ N − 1} and X∗
N (I) = {ψk(x) : 0 ≤ k ≤ N − 1}. Thus

the variational formulation (3.5) together with the biorthogonality of {ϕk(x)} and {ψk(x)}
leads to the following main theorem in this subsection.

Theorem 3.1. Let u
(k+1)
N (x) be the solution of (3.5). Then we have

u
(k+1)
N (x) =

N−1
∑

l=0

û
(k+1)
l ϕl(x), û

(k+1)
l =

1

σl
Aa(u

(k+1)
N , ψl) =

1

σl
(g

(k)
N , ψl), l ≥ 0. (3.16)

Remark 3.1. The convergence of a semi-discrete Chebyshev dual-Petrov-Galerkin scheme for

problem (3.1) can be found in [26], which states

‖u− uN‖L∞(0,T ;L2
ω0

(I)) + ‖u− uN‖L2(0,T ;L2
ω1

(I))

≤cN1−r
(

‖∂t∂r−1
x u‖L2(0,T ;L2

ωr−5/2,r−5/2
) + ‖∂rxu‖L∞(0,T ;L2

ωr−3/2,r−3/2
(I))

)

,

where uN is the numerical solution of the semi-discrete Chebyshev dual-Petrov-Galerkin scheme,

ω0(x) = (1− x)
1

2 (1 + x)−
3

2 , ω1(x) = (1− x)−
1

2 (1 + x)−
5

2 and ωα,β(x) = (1− x)α(1 + x)β .

3.2. Third-order equation

We next consider the following third-order equation (cf. [23]):

{

αu − βux − γuxx + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0,
(3.17)

where α, β, γ are given constants. Without loss of generality, we consider only homogeneous

boundary conditions, since the nonhomogeneous boundary conditions u(−1) = c1, u(1) = c2

and ux(1) = c3 can be handled easily by considering v = u− û, where û is the unique quadratic

polynomial satisfying the nonhomogeneous boundary conditions.

Define

V (I) = {u ∈ H1
ω(I) : u(±1) = ux(1) = 0}, VN (I) = V (I) ∩ PN (I),

V ∗(I) = {u ∈ H1
ω(I) : u(±1) = ux(−1) = 0}, V ∗

N (I) = V ∗(I) ∩ PN (I).
(3.18)

A weak formulation of (3.17) is to find u ∈ V (I) such that

(αu− βux − γuxx + uxxx, v)ω = (f, v)ω , ∀v ∈ V ∗(I). (3.19)
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The Chebyshev dual-Petrov-Galerkin scheme for (3.19) is to find uN ∈ VN (I) such that

Aα,β,γ(uN , φ) :=α(uN , φ)ω + β(uN , ∂x(φω)) + γ(∂xuN , ∂x(φω))

+ (∂xuN , ∂
2
x(φω)) = (f, φ)ω , ∀φ ∈ V ∗

N (I). (3.20)

To propose an efficient approximation scheme for (3.20), we need to construct two kinds of

basis functions {Φk} and {Ψk}, which are bi-orthogonal with respect to the bilinear operator

Aα,β,γ(·, ·).

Lemma 3.2. Let Φk ∈ Vk+3(I) and Ψk ∈ V ∗
k+3(I) be the bi-orthogonal Chebyshev polynomials

such that Φk − pk ∈ Vk+2(I), Ψk − qk ∈ V ∗
k+2(I) and

Aα,β,γ(Φk,Ψl) = ηkδk,l, ∀k, l ≥ 0. (3.21)

Then we have

Φk(x) = pk(x) +

6
∑

i=1

gk,iΦk−i(x), Ψk(x) = qk(x) +

6
∑

i=1

hk,iΨk−i(x), (3.22)

where Φk(x) ≡ Ψk(x) ≡ 0, ηk = 0 for k < 0, gk,i = hk,i = 0 for k < i, and

ηk = αakk + βbkk + γckk + dkk −
6

∑

i=1

gk,ihk,iηk−i, (3.23a)

gk,1 =
1

ηk−1

(

− βbk,k−1 − γck,k−1 − dk,k−1 +
6

∑

i=2

gk,ihk−1,i−1ηk−i

)

, (3.23b)

gk,2 =
1

ηk−2

(

− αak,k−2 − βbk,k−2 − γck,k−2 − dk,k−2 +
6

∑

i=3

gk,ihk−2,i−2ηk−i

)

, (3.23c)

gk,3 =
1

ηk−3

(

− βbk,k−3 − γck,k−3 − dk,k−3 +
6

∑

i=4

gk,ihk−3,i−3ηk−i

)

, (3.23d)

gk,4 =
1

ηk−4

(

− αak,k−4 − βbk,k−4 − γck,k−4 +
6

∑

i=5

gk,ihk−4,i−4ηk−i

)

, (3.23e)

gk,5 =
1

ηk−5
(−βbk,k−5 + gk,6hk−5,1ηk−6), gk,6 =

−αak,k−6

ηk−6
, (3.23f)

hk,1 =
1

ηk−1

(

− βbk−1,k − γck−1,k − dk−1,k +

6
∑

i=2

hk,igk−1,i−1ηk−i

)

, (3.23g)

hk,2 =
1

ηk−2

(

− αak−2,k − βbk−2,k − γck−2,k − dk−2,k +

6
∑

i=3

hk,igk−2,i−2ηk−i

)

, (3.23h)

hk,3 =
1

ηk−3

(

− βbk−3,k − γck−3,k − dk−3,k +

6
∑

i=4

hk,igk−3,i−3ηk−i

)

, (3.23i)

hk,4 =
1

ηk−4

(

− αak−4,k − βbk−4,k − γck−4,k +

6
∑

i=5

hk,igk−4,i−4ηk−i

)

, (3.23j)

hk,5 =
1

ηk−5
(−βbk−5,k + hk,6gk−5,1ηk−6), hk,6 =

−αak−6,k

ηk−6
. (3.23k)
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Proof. Let

Φk(x) = pk(x) +

k
∑

i=1

gk,iΦk−i(x), Ψk(x) = qk(x) +

k
∑

i=1

hk,iΨk−i(x). (3.24)

Then, by (3.20), (2.15), (2.20), (2.21), (2.25) and integration by parts, we deduce that for any

0 ≤ l ≤ k − 7,

Aα,β,γ(pk,Ψl)

=α(pk,Ψl)ω + β(pk, ∂x(Ψlω)) + γ(∂xpk, ∂x(Ψlω)) + (∂xpk, ∂
2
x(Ψlω)) = 0. (3.25)

On the other hand, by (3.24) and (3.21) we get that for 0 ≤ l ≤ k − 7,

Aα,β,γ(pk,Ψl) = Aα,β,γ(Φk −
k

∑

i=1

gk,iΦk−i,Ψl) = −gk,k−lηl. (3.26)

Hence, gk,k−l = 0 for any 0 ≤ l ≤ k − 7. This means

Φk(x) = pk(x) +

6
∑

i=1

gk,iΦk−i(x).

Similarly, we deduce that

Ψk(x) = qk(x) +

6
∑

i=1

hk,iΨk−i(x).

It remains to confirm the coefficients gk,i, hk,i and ηk. By (3.20), (2.15), (2.20), (2.21) and

(2.25) we know that

Aα,β,γ(pk, qk−6)

=α(pk, qk−6)ω + β(pk, ∂x(qk−6ω)) + γ(∂xpk, ∂x(qk−6ω)) + (∂xpk, ∂
2
x(qk−6ω))

=αak,k−6. (3.27)

On the other hand, by (3.21) and (3.22) we get

Aα,β,γ(pk, qk−6)

=Aα,β,γ

(

Φk −
6

∑

i=1

gk,iΦk−i,Ψk−6 −
6

∑

i=1

hk−6,iΨk−6−i

)

= −gk,6ηk−6. (3.28)

Thus gk,6 =
−αak,k−6

ηk−6
. Similarly, we have

Aα,β,γ(pk, qk−5) = −gk,5ηk−5 + gk,6hk−5,1ηk−6 = βbk,k−5,

Aα,β,γ(pk, qk−4) = −gk,4ηk−4 +

6
∑

i=5

gk,ihk−4,i−4ηk−i = αak,k−4 + βbk,k−4 + γck,k−4,

Aα,β,γ(pk, qk−3) = −gk,3ηk−3 +

6
∑

i=4

gk,ihk−3,i−3ηk−i = βbk,k−3 + γck,k−3 + dk,k−3,

Aα,β,γ(pk, qk−2) = −gk,2ηk−2 +

6
∑

i=3

gk,ihk−2,i−2ηk−i
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= αak,k−2 + βbk,k−2 + γck,k−2 + dk,k−2,

Aα,β,γ(pk, qk−1) = −gk,1ηk−1 +

6
∑

i=2

gk,ihk−1,i−1ηk−i = βbk,k−1 + γck,k−1 + dk,k−1,

Aα,β,γ(pk, qk) = ηk +

6
∑

i=1

gk,ihk,iηk−i = αakk + βbkk + γckk + dkk,

Aα,β,γ(pk, qk+1) = −hk+1,1ηk +

5
∑

i=1

gk,ihk+1,1+iηk−i = βbk,k+1 + γck,k+1 + dk,k+1,

Aα,β,γ(pk, qk+2) = −hk+2,2ηk +

4
∑

i=1

gk,ihk+2,2+iηk−i

= αak,k+2 + βbk,k+2 + γck,k+2 + dk,k+2,

Aα,β,γ(pk, qk+3) = −hk+3,3ηk +

3
∑

i=1

gk,ihk+3,3+iηk−i = βbk,k+3 + γck,k+3 + dk,k+3,

Aα,β,γ(pk, qk+4) = −hk+4,4ηk +

2
∑

i=1

gk,ihk+4,4+iηk−i = αak,k+4 + βbk,k+4 + γck,k+4,

Aα,β,γ(pk, qk+5) = −hk+5,5ηk + gk,1hk+5,6ηk−1 = βbk,k+5,

Aα,β,γ(pk, qk+6) = −hk+6,6ηk = αak,k+6.

These lead to the desired results in (3.23). �

Obviously, VN (I) = {Φk(x) : 0 ≤ k ≤ N − 3} and V ∗
N (I) = {Ψk(x) : 0 ≤ k ≤ N − 3}. Thus

by (3.19) and (3.20) and the biorthogonality of {Φk(x)} and {Ψk(x)}, we obtain the following

main theorem in this subsection.

Theorem 3.2. Let u(x) and uN(x) be the solutions of (3.19) and (3.20), respectively. Then

both u(x) and uN(x) have the explicit representations in {Φk(x)},

u(x) =

∞
∑

k=0

ûkΦk(x), uN (x) =

N−3
∑

k=0

ûkΦk(x), (3.29a)

ûk =
1

ηk
Aα,β,γ(u,Ψk) =

1

ηk
(f,Ψk)ω , k ≥ 0. (3.29b)

Remark 3.2. According to Theorem 2.2 of [23], for any α, β ≥ 0 and − 1
3 < γ < 1

6 , there exists

a unique solution for the system (3.20), satisfying

α‖u− uN‖ω−1,1 +N−1‖∂x(u − uN)‖ω−1,0

≤ c(1 + |γ|N)N−m‖∂mx u‖ωm−2,m−1, m ≥ 1,

where ωa,b(x) = (1− x)a(1 + x)b.

3.3. Application to the KdV equation

There exist a large body of literature on the theoretical and numerical results of the KdV

type equations (see, e.g., [3,6,19] and the references therein). As an example of Chebyshev dual-

Petrov-Galerkin method for nonlinear problems, we consider the third-order KdV equation on
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a finite interval (cf. [23]):







ǫut + νux + µuux + uxxx = f, (x, t) ∈ I × (0, T ],

u(±1, t) = ux(1, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ I.

(3.30)

Denote by τ the time step size, M =
[

T
τ

]

and u(k)(x) = u(x, kτ), k = 0, 1, · · · ,M. Then a

standard centered difference scheme in time is given by







































ǫ
u(k+1) − u(k)

τ
+ ν

u
(k+1)
x + u

(k)
x

2
+ µ

u(k+1)u
(k+1)
x + u(k)u

(k)
x

2

+
u
(k+1)
xxx + u

(k)
xxx

2
=
f (k+1) + f (k)

2
, x ∈ I, k = 0, 1, · · · ,M,

u(k)(±1) = u
(k)
x (1) = 0, k = 0, 1, · · · ,M,

u(0)(x) = u0(x), x ∈ I.

(3.31)

A weak formulation of (3.31) is to find u(k+1) ∈ V (I) such that

(2ǫu(k+1) + ντ∂xu
(k+1) + τ∂3xu

(k+1), v)ω = (g(k), v)ω, ∀v ∈ V ∗(I), (3.32)

where

g(k) =τf (k+1) + τf (k) + 2ǫu(k) − ντ∂xu
(k) − µτ(u(k+1)∂xu

(k+1)

+ u(k)∂xu
(k))− τ∂3xu

(k).

The Chebyshev dual-Petrov-Galerkin scheme for (3.32) is to find u
(k+1)
N ∈ VN (I) such that

Bǫ,ν,µ(u
(k+1)
N , v)

:=2ǫ(u
(k+1)
N , v)ω − ντ(u

(k+1)
N , ∂x(vω)) + τ(∂xu

(k+1)
N , ∂2x(vω))

=(g
(k)
N , v)ω , ∀v ∈ V ∗

N (I), (3.33)

where

g
(k)
N =τf (k+1) + τf (k) + 2ǫu

(k)
N − ντ∂xu

(k)
N − µτ(u

(k+1)
N ∂xu

(k+1)
N

+ u
(k)
N ∂xu

(k)
N )− τ∂3xu

(k)
N .

Let Φk and Ψk be the bi-orthogonal Chebyshev polynomials as defined in Lemma 3.2 with

α = 2ǫ
τ
, β = −ν and γ = 0. It is clear that

Bǫ,ν,µ(Φk,Ψl) = τAα,β,0(Φk,Ψl) = τηkδk,l, ∀k, l ≥ 0, (3.34)

Theorem 3.3. Let u
(k+1)
N (x) be the solution of (3.33). Then we have

u
(k+1)
N (x) =

N−3
∑

l=0

û
(k+1)
l Φl(x), (3.35a)

where

û
(k+1)
l =

1

τηl
Bǫ,ν,µ(u

(k+1)
N ,Ψl) =

1

τηl
(g

(k)
N ,Ψl), l ≥ 0. (3.35b)
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4. Numerical Experiments

In this section, we examine the effectiveness and accuracy of the Chebyshev dual-Petrov-

Galerkin spectral method for solving the odd-order equations.

Let xN,k = − cos (2k+1)π
2N+2 , 0 ≤ k ≤ N be the zeros of the Chebyshev polynomials TN+1(x),

and ωN,k = π
N+1 , 0 ≤ k ≤ N stand for the corresponding weights of the Chebyshev-Gauss

quadrature. The discrete L2
ω(I) and L

∞(I) errors are measured by

EN,1 =

( N
∑

k=0

(u(xN,k)− uN(xN,k))
2ωN,k

)
1

2

, EN,2 = max
0≤k≤N

|u(xN,k)− uN(xN,k)|.

4.1. First-order equation

We first use (3.16) to solve problem (3.1) with a = 1 and take the exact solution

u(x, t) = (1 + x) sin(kx+ t), (4.1)

which oscillates seriously for large k. In Fig. 4.1, we plot the log10 of the discrete L2
ω(I) errors

vs. N with k = 4 and τ = 0.1, 0.01, 0.001, 0.0001. Clearly, the numerical errors decay rapidly

as N increases and τ decreases. In Fig. 4.2, we plot the log10 of the discrete L2
ω(I) errors vs

N with k = 20 and τ = 0.1, 0.01, 0.001, 0.0001, which shows that our new spectral approach

still works well even for the solutions oscillating seriously. In Fig. 4.3, we plot the values of

discrete L2
ω(I) and L

∞(I) errors for 0 ≤ t ≤ 100 with k = 20 and τ = 0.0001. It demonstrates

the stability of long-time calculations of the suggested Chebyshev spectral approach (3.16).
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Fig. 4.1. The discrete L2
ω(I) errors with the

exact solution (4.1) and k = 4.
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Fig. 4.2. The discrete L2
ω(I) errors with the

exact solution (4.1) and k = 20.

4.2. Third-order equation

We next use (3.27) to solve problem (3.17) with α = β = γ = 1 and take the exact solution

u(x) = (1 + x)(1 − x)2 sin(kx), (4.2)

which also oscillates seriously for large k. In Fig. 4.4, we plot the log10 of the discrete L2
ω(I) and

L∞(I) errors vs. N with k = 10. The near straight lines indicate a geometric convergence rate.

In Fig. 4.5, we also compare the discrete L2
ω(I) errors of our new method with the classical
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Chebyshev dual-Petrov-Galerkin method for k = 20. Clearly, the numerical errors are almost

the same. The main reason is that the approximation spaces of these two methods are exactly

the same.
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Fig. 4.3. Stability of (3.16) with the exact so-

lution (4.1) and k = 20, τ = 0.0001.
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Fig. 4.4. The discrete errors with the exact

solution (4.2) and k = 10.
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Fig. 4.5. Numerical comparison of our method

with the classical method.
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Fig. 4.6. The discrete L2
ω(I) errors with the

exact solution (4.3) and k = 10.

We now use (3.35) to solve the third-order KdV equation (3.30) with ǫ = ν = µ = 1 and

take the exact solution

u(x, t) = (1 + x)(1 − x)2 sin(kx + t), (4.3)

which oscillates seriously for large k. In Fig. 4.6, we plot the log10 of the discrete L2
ω(I) errors

vs. N with τ = 0.1, 0.01, 0.001, 0.0001 and k = 10. Clearly, a geometric convergence rate is

observed. It also indicates that the smaller the time step size τ , the smaller the numerical errors

would be. In Fig. 4.7, we plot the values of discrete L2
ω(I) and L

∞(I) errors for 0 ≤ t ≤ 100

with k = 10 and τ = 0.0001. It demonstrates the stability of long-time calculation of our new

Chebyshev spectral approach (3.35).
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Fig. 4.7. Stability of (3.35) with the exact so-

lution (4.3) and k = 10, τ = 0.0001.
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Fig. 4.8. Comparison of the CPU time (the

unit is seconds).

4.3. An extension to the fifth-order equation

The suggested methods can also be extended to the fifth-order equation. For instance, let

us consider the solitary wave solutions of the following Kawahara equation (cf. [15, 28]),

ut + uux + uxxx − uxxxxx = 0, u(x, 0) = uex(x, 0), x ∈ (−∞,+∞), (4.4)

where

uex(x, t) =
105

169
sech4

(

1

2
√
13

(x− 36t

169
− x0)

)

is an exact soliton solution of (4.4).

In order to apply the dual-Petrov-Galerkin method, we fix x0 = 0 and restrict problem

(4.4) to the finite interval [−L,L] with L sufficiently large such that the solution uex(±L, t),
∂xuex(±L, t) and ∂2xuex(L, t) are essentially zero for t ∈ [0, T ] (where T is given). As in [28],

we apply the scaling (x̃, t̃) = (L−1x, L−1t), and for the sake of simplicity, we still use (x, t) to

denote (x̃, t̃). Then, we are led to consider the following scaled Kawahara equation:



















ut + uux +
1
L2uxxx − 1

L4uxxxxx = 0, x ∈ I = (−1, 1),

u(±1, t) = ux(±1, t) = uxx(1, t) = 0,

u(x, 0) = 105
169 sech

4( L

2
√
13
x).

(4.5)

Denote by τ the time step size, M =
[

T
τ

]

and u(k)(x) = u(x, kτ). The second-order Crank-

Nicolson leap-frog scheme in time of (4.5) is given by































1
2τ (u

(k+1) − u(k−1)) + u(k)∂xu
(k) + 1

2L2 (∂
3
xu

(k+1) + ∂3xu
(k−1))

− 1
2L4 (∂

5
xu

(k+1) + ∂5xu
(k−1)) = 0, x ∈ I, k = 1, · · · ,M,

u(k)(±1) = u
(k)
x (±1) = u

(k)
xx (1) = 0, k = 1, · · · ,M,

u(0)(x) = 105
169 sech

4( L

2
√
13
x), x ∈ I.

(4.6)

In order to apply the dual-Petrov-Galerkin method for the spatial discretization of (4.6), we
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choose the basis functions ϕi ∈ PN (I) and ψj ∈ PN (I), such that

ϕi(±1) = ∂xϕi(±1) = ∂2xϕi(1) = 0,

ψj(±1) = ∂xψj(±1) = ∂2xψj(−1) = 0,

(ϕi +
τ
L2 ∂

3
xϕi − τ

L4 ∂
5
xϕi, ψj)ω = ηiδi,j , ∀i, j ≥ 0.

To shorten the length of the paper, we omit specific details. In Table 4.1, we take L = 200

and N = 500 in our dual-Petrov-Galerkin scheme, and list the L2-errors at different times with

two different time steps. In Table 4.2, we also list the corresponding numerical results given

in [28] with L = 200 and N = 1000. It can be observed that we get almost the same numerical

results as in [28] with only half of the basis functions.

Table 4.1: L2-errors with L = 200 and N = 500.

Time L2-errors with τ = 10−4 L2-errors with τ = 2× 10−4

0.5 3.445e-07 1.378e-06

1.0 5.956e-07 2.382e-06

2.0 1.150e-06 4.601e-06

3.0 1.829e-06 7.317e-06

4.0 2.981e-06 1.173e-05

Table 4.2: L2-errors given in [28] with L = 200 and N = 1000.

Time L2-errors with τ = 10−4 L2-errors with τ = 2× 10−4

0.5 3.440e-07 1.374e-06

1.0 5.926e-07 2.358e-06

2.0 1.104e-06 4.389e-06

4.0 2.147e-06 8.494e-06

Table 4.3: Condition numbers of the classical Chebyshev dual-Petrov-Galerkin method.

Matrices N = 20 N = 40 N = 60 N = 80 N = 100

α(pk, ql)ω 2.1425e+05 8.4529e+06 8.1079e+07 4.1712e+08 1.5081e+09

β(pk, ∂x(qlω)) 7.2978e+04 2.0854e+06 1.5369e+07 6.4014e+07 1.9432e+08

γ(∂xpk, ∂x(qlω)) 3.0807e+04 5.1311e+05 2.6905e+06 8.7219e+06 2.1702e+07

(∂xpk, ∂
2
x(qlω)) 1.5696e+03 1.5886e+04 6.0025e+04 1.5242e+05 3.1217e+05

A(pk, ql) 1.5597e+03 1.5757e+04 5.9601e+04 1.5148e+05 3.1044e+05

Table 4.4: Condition numbers of our Chebyshev dual-Petrov-Galerkin method.

Matrices N = 20 N = 40 N = 60 N = 80 N = 100

α(Φk,Ψl)ω 1.4185e+05 6.0063e+06 5.9768e+07 3.1486e+08 1.1580e+09

β(Φk, ∂x(Ψlω)) 2.5813e+03 3.3275e+04 1.5946e+05 4.9417e+05 1.1977e+06

γ(∂xΦk, ∂x(Ψlω)) 1.0592e+02 3.6569e+02 7.9066e+02 1.3843e+03 2.1490e+03

(∂xΦk, ∂
2
x(Ψlω)) 1.3826e+00 1.3842e+00 1.3846e+00 1.3848e+00 1.3848e+00

A(Φk,Ψl) 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00



Efficient and Accurate Chebyshev Dual-Petrov-Galerkin Method 61

4.4. Comparisons of condition numbers and computational costs

To demonstrate the essential superiority of our new Chebyshev dual-Petrov-Galerkinmethod

to the classical Chebyshev dual-Petrov-Galerkin method, we examine the issues on the 2-norm

condition numbers for the resulting algebraic systems and the computational costs.

For the classical Chebyshev dual-Petrov-Galerkin method, the basis functions are chosen as

{pk(x)}N−3
k=0 and {qk(x)}N−3

k=0 for problem (3.17). The corresponding matrices have off-diagonal

entries. In Tables 4.3 and 4.4, we list the condition numbers of two kinds of numerical methods

for problem (3.17) with α = β = γ = 1. Notice that the condition numbers of the mass

matrices are almost the same, but the condition numbers of the total matrices are very different.

Particularly, the condition numbers of the total matrices for the classical Chebyshev dual-

Petrov-Galerkin method increase asymptotically as O(N3), while the condition numbers of

the total matrices for our Chebyshev dual-Petrov-Galerkin method with respect to the basis

functions { 1√
ηk
Φk(x)}N−3

k=0 and { 1√
ηk
Ψk(x)}N−3

k=0 are always equal to 1.

In Fig. 4.8, we consider the problem (3.1) with N = 60, T = 100 and τ = 0.0001 and

compare the computation costs of our method with that of the classical Chebyshev dual-Petrov-

Galerkin spectral method. Clearly, our method costs much less CPU time.
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