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Abstract

Here we consider the numerical approximations of the 2D simplified Ericksen-Leslie

system. We first rewrite the system and get a new system. For the new system, we propose

an easy-to-implement time discretization scheme which preserves the sphere constraint at

each node, enjoys a discrete energy law, and leads to linear and decoupled elliptic equations

to be solved at each time step. A discrete maximum principle of the scheme in the finite

element form is also proved. Some numerical simulations are performed to validate the

scheme and simulate the dynamic motion of liquid crystals.
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1. Introduction

Here we consider the 2D simplified Ericksen-Leslie system which models the hydrodynamics

of nematic liquid crystals. The system is a simplified version of the Ericksen-Leslie system

introduced by Ericksen [12] and Leslie [20]. Since the full Ericksen-Leslie system is too compli-

cated, Lin [21] proposed this simplified version in 1989. The model is derived as the following

coupled system:

dt + (u · ∇)d = ∆d+ |∇d|2d, (1.1)

|d| = 1, (1.2)

ut + u · ∇u+∇P = ∆u−∇ · ((∇d)T∇d), (1.3)

∇ · u = 0. (1.4)

Here, Ω is a bounded domain in R
2, the given time T > 0. u,d : Ω × [0, T ] → R

2 are the

fluid velocity and the mean orientation of the molecules respectively, P : Ω× [0, T ] → R is the

fluid pressure. Equation (1.3) is the Navier-Stokes equation [31] coupled with the extra term
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∇ · ((∇d)T∇d), and equation (1.1) is the harmonic map heat flow with the convection term

(u · ∇)d [25].

We will investigate the system with homogeneous Dirichlet boundary conditions for the

velocity field and homogeneous Neumann boundary conditions for the director field:

u = 0,
∂d

∂n
= 0, on ∂Ω× (0, T ), (1.5)

where n denotes the outer normal vector on the boundary.

The initial conditions are used as follows:

d(x, 0) = d0(x), u(x, 0) = u0(x), in Ω, (1.6)

where u0 : Ω → R
2 satisfying ∇ · u0 = 0, and d0 : Ω → R

2 satisfying |d0| = 1 are given

functions. Under the boundary conditions mentioned above, the system (1.1)–(1.4) satisfies the

following energy law:

d

dt

(

1

2
‖u‖2 +

1

2
‖∇d‖2

)

+ ‖∇u‖2 + ‖∆d+ |∇d|2d‖2 = 0, (1.7)

where ‖ · ‖ denotes the L2 norm in Ω.

It requires that d must have the unit length, i.e., |d| = 1 almost everywhere. From the

numerical point of view, this constraint makes it difficult to manage since we can not imply the

sphere constraint at the nodes via interpolation. In addition, the presence of the extra term

∇ · ((∇d)T∇d) causes strong coupling [27]. Hence, a penalty function such as the Ginzburg-

Landau approximation is widely used to overcome these difficulties [22], and the general penalty

version reads as follows:

dt + (u · ∇)d+
1

ǫ2
f(d)−∆d = 0, (1.8)

ut + u · ∇u+∇P = ∆u−∇ ·
(

(∇d)T∇d
)

, (1.9)

∇ · u = 0, (1.10)

where ǫ > 0 is the penalty parameter, f(d) is the Ginzburg-Landau approximation of the

constraint |d| = 1 for small ǫ. The penalty function is the gradient of a scalar-valued function

F (d), i.e., f(d) = ∇dF (d), where,

F (d) =







1

4
(|d|2 − 1)2, if |d| 6 1,

(|d|2 − 1)2, if |d| > 1.
(1.11)

It is still an open problem that whether weak solutions (uǫ,dǫ) of the system (1.8)–(1.10)

with Dirichlet boundary conditions weakly converge to that of the system (1.1)–(1.4) as ǫ → 0

[27]. It has been proved that, up to a subsequence, (uǫ,dǫ) weakly converge to (u,d) which

satisfies a system the same as (1.1)–(1.4) except for an additional measure-valued tensor in the

equation (1.3) [24].

In [22], Lin and Liu proved the global existence of the solution of (1.8)–(1.10) with Dirichlet

boundary conditions in the dimension two and three. Later, Lin and Liu in [23] proved partial

regularity of weak solutions to the system in the dimension three. Since the Ericksen-Leslie

system with |d| = 1 is complicated, it was a challenging problem to prove global existence of



Constraint-Preserving Energy-Stable Scheme for Ericksen-Leslie System 3

solutions to the system (1.1)–(1.4). In the 2D case, the existence was obtained by Lin-Lin-Wang

[25], where the domain should be bounded and smooth. The associated uniqueness problem

was later studied in [26]. In [17], Hong considered the same system but on the whole space R2.

Lin-Lin-Wang and Hong also showed the partial regularity of the global weak solutions, which

are smooth away from possibly finitely many points. In the 3D case, by giving a representation

formula for the solutions of incompressible liquid crystal flow in arbitrary dimensions, Huang [19]

obtained a unique strong global solution to the system (1.1)–(1.4).

Recently, many mathematicians are absorbed in investigating solutions of the Ericksen-

Leslie system. Based on the finite time singularities of the 2D heat flow of harmonic maps [6],

solutions of (1.1)–(1.4) with finite time singularities have been recently constructed in [18],

where the spatial domain is a bounded open set in R
3. The long time behavior of solutions

of (1.1)–(1.4) is concerned in [9, 10]. The behavior of defects is also an important subject in

the study of liquid crystals. The Ericksen-Leslie theory can be used to study the motion of

point defects. Readers can refer to [8] and references therein for more details. Some numerical

simulations of point defects in the Ericksen-Leslie theory can be found in [3, 5, 8, 28, 29].

The sphere constraint |d| = 1 is difficult to achieve at the discrete level, therefore many

numerical studies for the system (1.1)–(1.4) are based on the discretization of the penalized

problem (1.8)–(1.10) (see e.g., [3, 5, 14, 28, 29]). Readers can refer to [1] and references therein

for more details. In order to achieve the sphere constraint, based on a convergent discretization

of the harmonic map heat flow without the convection term [2] (i.e., (1.1) with u = 0), Becker

proposed an energy-stable and constraint-preserving scheme directly discretizing (1.1)–(1.4)

in [3]. However, solvability of the scheme requires restricted mesh parameters. And when

the discrete time and space parameters go to zero, the convergence is an open problem. In

[13], a nonlinear constraint-preserving finite difference scheme for the 2D system (1.1)–(1.4) is

proposed, and the unique solvability is also gained.

The goal of this paper is to design a stabilized, decoupled, constraint-preserving scheme for

the system (1.1)–(1.4) in the dimension two. Inspired by [11, 15, 19], we rewrite the system

(1.1)–(1.4) in the dimension two by denoting d(x, t) = (d1, d2)
T as

d(x, t) = (cos θ(x, t), sin θ(x, t))T ,

where θ(x, t) = argd(x, t) with arg being the argument from the polar coordinates, and get

a new system of functions θ, u and P . Inspired by [7], we design a numerical scheme for the

new system. The main features of our scheme include the following: (i) it satisfies the sphere

constraint for d at each node; (ii) it is unconditionally solvable and satisfies a discrete energy

law; (iii) it leads to decoupled elliptic equations to solve at each time step which is easy to

implement; (iv) it satisfies a discrete maximum principle in the finite element form under some

conditions so that equivalence between the new system and the system (1.1)–(1.4) is ensured

when we perform numerical experiments.

This paper is organized as follows. In Section 2, we rewrite the 2D simplified Ericksen-

Leslie system and derive the energy law. In Section 3, we construct a decoupled, energy stable

numerical scheme for the new system, which satisfies a discrete energy law. In Section 4, we

present the spatial discretization using the finite element method. In Section 5, we prove the

discrete maximum principle of the scheme in the finite element form. In Section 6, we present

some computational experiments to validate the scheme and simulate the dynamic motion of

liquid crystals. Some concluding remarks are given in Section 7.
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2. Alternative Formulation and Energy Law

In this section, we first show that the sphere constraint |d| = 1 is satisfied automatically

due to the equation (1.1) if d is smooth. Then we rewrite the system (1.1)–(1.4), and establish

the new energy law.

Theorem 2.1. Assume that (u,d) is the smooth solution of the following equation:

dt + (u · ∇)d = ∆d+ |∇d|2d, (2.1)

in Ω × (0, T ) with d(x, 0) = d0(x). If the initial condition satisfies |d0| = 1, then |d| = 1 for

all t belonging to (0, T ).

Proof. Multiplying both sides of (2.1) by d, we obtain

1

2

∂

∂t
|d|2 + u · ∇

|d|2

2
= ∆

|d|2

2
− |∇d|2 + |∇d|2|d|2. (2.2)

Thus, changing the formula yields

∂

∂t

|d|2 − 1

2
+ u · ∇

|d|2 − 1

2
= △

|d|2 − 1

2
+ |∇d|2(|d|2 − 1). (2.3)

Denoting v = |d|2−1
2 , we have

∂

∂t
v + u · ∇v = ∆v + 2|∇d|2v. (2.4)

According to the maximum principle [30], |v| 6 |v0|, i.e., ||d|
2 − 1| 6 ||d0| − 1|.

Since |d0| = 1, finally, we obtain |d| = 1. �

Hence, we can write the orientation field vector d in the polar coordinate to rewrite the

system (1.1)–(1.4), i.e.,

d(x, t) = (cos θ(x, t), sin θ(x, t))T ,

where x = (x, y) ∈ Ω ⊂ R
2. Here, θ(x, t) = argd(x, t), arg is the argument from the polar

coordinates and θ(x, t) ∈ [0, 2π). Then

dt = (d1θθt, d2θθt)
T = (− sin θ, cos θ)T θt,

∇d =

[

d1θθx d1θθy
d2θθx d2θθy

]

=

[

− sin θθx − sin θθy
cos θθx cos θθy

]

=

(

− sin θ

cos θ

)

(θx, θy),

|∇d|2 = θ2x + θ2y,

∆d1 = (d1θθx)x + (d1θθy)y = − cos θ|∇θ|2 − sin θ∆θ,

∆d2 = (d2θθx)x + (d2θθy)y = − sin θ|∇θ|2 + cos θ∆θ,

∆d = (∆d1, ∆d2)
T = ∆θ(− sin θ, cos θ)T − (θ2x + θ2y)(cos θ, sin θ)T .

Hence,

∆d+ |∇d|2d

=∆θ(− sin θ, cos θ)T − (θ2x + θ2y)(cos θ, sin θ)T + (θ2x + θ2y)(cos θ, sin θ)T

=∆θ(− sin θ, cos θ)T .
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Moreover, observing that

(∇d)T∆d = (θx, θy)
T∆θ,

we have

∇ · ((∇d)T∇d) = (∇d)T∆d+
1

2
∇(|∇d|2) = (θx, θy)

T∆θ +
1

2
∇(|∇θ|2).

Eq. (1.1) can be rewritten as:

(− sin θ, cos θ)θt + u · ∇θ(− sin θ, cos θ) = ∆θ(− sin θ, cos θ). (2.5)

The whole system (1.1)–(1.4), denoting P̃ = P + 1
2 |∇θ|2 and θ ∈ [0, 2π), reads as:

θt + (u · ∇)θ −∆θ = 0, (2.6)

ut + u · ∇u+∇P̃ −∆u+∆θ∇θ = 0, (2.7)

∇ · u = 0. (2.8)

To these equations we add the following boundary and initial conditions which are derived from

(1.5) and (1.6) respectively:

u = 0, ∇θ · n = 0, on ∂Ω× (0, T ), (2.9)

θ(x, 0) = θ0(x), u(x, 0) = u0(x), in Ω, (2.10)

where u0 : Ω → R
2 satisfying ∇ · u0 = 0, and θ0 : Ω → [0, 2π) are given functions.

The next theorem derives the energy law associated with the system (2.6)–(2.8).

Theorem 2.2. The system (2.6)–(2.8) satisfies the following energy law:

d

dt
E + ‖∆θ‖2 + ‖∇u‖2 = 0, (2.11)

where E = 1
2‖u‖

2 + 1
2‖∇θ‖2.

Proof. We can rewrite (2.7) by using (2.6):

ut + u · ∇u+∇P̃ −∆u+ (θt + (u · ∇)θ)∇θ = 0. (2.12)

Multiplying (2.6) by (−θt) and integrating over Ω , we get

d

dt

(1

2
‖∇θ‖2

)

= −‖θt + (u · ∇)θ‖2 + ((u · ∇)θ, θt + (u · ∇)θ),

where (·, ·) denotes the inner product in Ω. Multiplying (2.12) by u and integrating over Ω ,

we get

d

dt

(1

2
‖u‖2

)

+ ‖∇u‖2 + ((θt + (u · ∇)θ)∇θ, u) = 0.

Combining these two equations above, we can get the energy law:

d

dt

(1

2
‖u‖2 +

1

2
‖∇θ‖2

)

+ ‖θt + (u · ∇)θ‖2 + ‖∇u‖2 = 0.

This completes the proof of the theorem. �
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Remark 2.1. The new system does not need an extra constraint |d| = 1 and it is computa-

tionally cheaper. One only needs to calculate the scalar function θ(x, t) instead of the vector

function d(x, t) which has two components.

Remark 2.2. Due to the definition of function θ(x, t), it is obvious that θ(x, t) ∈ [0, 2π) and

there is a one-to-one correspondence between function d(x, t) and function θ(x, t), so that

system (2.6)–(2.8) is equivalent to system (1.1)–(1.4).

If we assume that u is bounded, according to the maximum principle [30] for equation

(2.6), if the initial data θ0 ∈ [0, 2π), then function θ(x, t) ∈ [0, 2π). Hence, in order to ensure

θ(x, t) ∈ [0, 2π) and obtain the equivalence between the two systems, we only need to let

θ0 ∈ [0, 2π).

Remark 2.3. The penalized system (1.8)–(1.10) can describe the cases where the orientation

field d has singular points, which are defined as the points where |d| = 0 [3]. However, the

system (2.6)–(2.8) is not suitable to describe these singular points since |d| ≡ 1.

3. Energy Stable Scheme

This section is devoted to constructing a decoupled energy-stable scheme for the system

(2.6)–(2.8) and proving the discrete energy law. Our numerical scheme reads as follows.

Algorithm 3.1.

Given the initial conditions θ0, u0 and P 0, having computed for θn, un, Pn

and P̃n = Pn + 1
2 |∇θn|2 for n > 0, we compute θn+1, un+1, Pn+1 by

Step 1.

θn+1 − θn

δt
+ (un

∗ · ∇)θn = ∆θn+1, (3.1)

where

un
∗ = un − δt

[

θn+1 − θn

δt
+ (un

∗ · ∇)θn
]

∇θn. (3.2)

Step 2.

ũn+1 − un
∗

δt
+ (un · ∇)ũn+1 −∆ũn+1 +∇P̃n = 0, (3.3)

ũn+1|∂Ω = 0. (3.4)

Step 3.

un+1 − ũn+1

δt
+∇(P̃n+1 − P̃n) = 0, (3.5)

∇ · un+1 = 0, (3.6)

un+1 · n|∂Ω = 0. (3.7)

And

Pn+1 = P̃n+1 −
1

2
|∇θn+1|2. (3.8)



Constraint-Preserving Energy-Stable Scheme for Ericksen-Leslie System 7

Remark 3.1. We use the pressure-correction scheme [16] to decouple the computation of the

pressure from that of the velocity.

Remark 3.2. We introduce un
∗ to decouple the equation (2.6). It can be computed directly

from (3.2), i.e.,

un
∗ = (I + δt∇θn(∇θn)T )−1[un − (θn+1 − θn)∇θn]. (3.9)

It is easy to see that the matrix I + δt∇θn(∇θn)T is invertible. A similar term was used in [7]

for a phase-field vesicle membrane model.

Remark 3.3. The scheme (3.1)–(3.7) is a totally decoupled linear scheme and is first order in

time. (3.1) can be transformed into a second order elliptic equation which is shown in Section

4. Step 3 can be transformed into a Poisson equation for P̃n+1− P̃n. Hence, at each time step,

we only need to solve three decoupled elliptic equations.

Remark 3.4. We can prove that the above scheme is unconditionally energy stable, see (3.10).

Here we establish the discrete energy law which exactly mimics the differential energy law

(2.11).

Theorem 3.1. The scheme (3.1)–(3.7) is stable, with the following discrete energy dissipation

law:

En+1 +
δt2

2
‖∇P̃n+1‖2 + δt‖

θn+1 − θn

δt
+ (u∗ · ∇)θn‖2 + δt‖∇ũn+1‖2

≤ En +
δt2

2
‖∇P̃n‖2, (3.10)

where En = 1
2‖u

n‖2 + 1
2‖∇θn‖2.

Proof. By taking the inner product of (3.1) with (− θn+1−θn

δt
), and using the identity

2(a− b, a) = |a|2 − |b|2 + |a− b|2,

we obtain

1

2δt
(‖∇θn+1‖2 − ‖∇θn‖2 + ‖∇θn+1 −∇θn‖2)

= −‖
θn+1 − θn

δt
+ (un

∗ · ∇)θn‖2 +
(

un
∗ · ∇θn,

θn+1 − θn

δt
+ (un

∗ · ∇)θn
)

. (3.11)

We derive from (3.2) that

un
∗ − un

δt
= −

(

θn+1 − θn

δt
+ un

∗ · ∇θn
)

∇θn. (3.12)

Then by taking the inner product of (3.12) with un
∗ , we obtain

1

2δt
(‖un

∗‖
2 − ‖un‖2 + ‖un

∗ − un‖2) = −

(

(
θn+1 − θn

δt
+ un

∗ · ∇θn)∇θn, un
∗

)

. (3.13)

By the same way as (3.3) with ũn+1, we obtain

1

2δt
(‖ũn+1‖2 − ‖un

∗‖
2 + ‖ũn+1 − un

∗‖
2) + ‖∇ũn+1‖2 + (∇P̃n, ũn+1) = 0. (3.14)
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Similarly, taking the inner product of (3.5) with un+1, we obtain

1

2δt
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0. (3.15)

To deal with the pressure term, we take the inner product of (3.5) with δt∇P̃n to derive

1

2
δt(‖∇P̃n+1‖2 − ‖∇P̃n‖2 − ‖∇P̃n+1 −∇P̃n‖2) = (∇P̃n, ũn+1). (3.16)

We also derive from (3.5) directly that

1

2
δt‖∇P̃n+1 −∇P̃n‖2 =

1

2δt
‖un+1 − ũn+1‖2. (3.17)

Combining all the identities above, we obtain

1

2δt
(‖∇θn+1‖2 + ‖un+1‖2) +

1

2
δt‖∇P̃n+1‖2 −

1

2δt
(‖∇θn‖2 + ‖un‖2)−

1

2
δt‖∇P̃n‖2

= −
1

2δt
(‖∇θn+1 −∇θn‖2 + ‖ũn+1 − un

∗‖
2 + ‖un

∗ − un‖2)

−‖
θn+1 − θn

δt
+ un

∗ · ∇θn‖2 − ‖∇ũn+1‖2. (3.18)

Then we can get the energy law (3.10). �

4. Spatial Discretization

We use the finite element method for the spatial discretization here.

4.1. Weak forms

We rewrite the equation (3.2) as follows:

un
∗ = (An)−1[un − (θn+1 − θn)∇θn] (4.1)

with

An = I + δt∇θn(∇θn)T ,

where I is the unit matrix. So the equation can be transformed into:

∆θn+1 +
{

[(An)−1∇θn] · ∇θn −
1

δt

}

θn+1

= θn[(An)−1∇θn] · ∇θn + [(An)−1un] · ∇θn −
1

δt
θn. (4.2)

Denote

an = [(An)−1∇θn] · ∇θn −
1

δt
,

bn = θn[(An)−1∇θn] · ∇θn + [(An)−1un] · ∇θn −
1

δt
θn.

By simple calculation, we can get |An| = δt|∇θn|2 + 1,

(An)−1 =
1

δt|∇θn|2 + 1
[I + δt(θny ,−θnx)

T (θny ,−θnx)]. (4.3)
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Then we have

an = [(An)−1∇θn] · ∇θn −
1

δt
=

(

1

δt|∇θn|2 + 1
∇θn

)

· ∇θn −
1

δt

=
|∇θn|2

δt|∇θn|2 + 1
−

1

δt
=

|∇θn|2 + 1
δt

− 1
δt

δt|∇θn|2 + 1
−

1

δt

=
1

δt
−

1

δt(δt|∇θn|2 + 1)
−

1

δt
= −

1

δt(δt|∇θn|2 + 1)
. (4.4)

Obviously, an < 0. And we have

bn = anθn + [(An)−1un] · ∇θn

= anθn +

{

1

δt|∇θn|2 + 1
[I + δt(θny ,−θnx)

T (θny ,−θnx)]u
n

}

· ∇θn

= anθn +
1

δt|∇θn|2 + 1
un · ∇θn. (4.5)

The weak form of (4.2) can be obtained by taking the inner product of both sides with a

trial function and using the integration by parts:

Find θn+1 ∈ H1(Ω), such that for any φ ∈ H1(Ω),

−(∇θn+1, ∇φ) + (anθn+1, φ) = (bn, φ). (4.6)

For the equation (3.3), the corresponding weak formulation reads as follows. Find ũn+1 ∈

(H1
0 (Ω))

2, such that for any v ∈ (H1
0 (Ω))

2,

(

1

δt
ũn+1 + (un · ∇)ũn+1, v

)

+ (∇ũn+1, ∇v) =
( 1

δt
un
∗ , v

)

− (∇P̃n, v). (4.7)

For the pressure equation (3.5), the corresponding weak formulation reads as follows. Find

P̃n+1 ∈ H1
c (Ω) , {P : P ∈ H1(Ω),

∫

Ω
Pdx = 0}, such that for any q ∈ H1

c (Ω),

(

∇(P̃n+1 − P̃n), ∇q
)

= −
1

δt
(∇ · ũn+1, q). (4.8)

Remark 4.1. It is easy to prove that the above scheme avoids an inf-sup condition for the

velocity and pressure [4].

4.2. Finite element approximation

Let Sh ⊂ H1(Ω) and Mh ⊂ L2
0(Ω) be the finite-dimensional subspaces constructed by the

piecewise linear functions, where L2
0(Ω) , {q ∈ L2(Ω),

∫

Ω qdx = 0}. Let S0
h ⊂ H1

0 (Ω) and

Vuh
= (S0

h)
2.

Thus, we rewrite the equations in finite element forms.
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Step 1.

Find θn+1
h ∈ Sh, such that for any φ ∈ Sh,

−(∇θn+1
h , ∇φ) + (anhθ

n+1
h , φ) = (bnh , φ), (4.9)

∇θn+1
h · n|∂Ω = 0, (4.10)

where

anh = [(An
h)

−1∇θnh ] · ∇θnh −
1

δt
,

bnh = θnh [(A
n
h)

−1∇θnh ] · ∇θnh + [(An
h)

−1un
h] · ∇θnh −

1

δt
θnh

with An
h = I + δt∇θnh(∇θnh)

T .

Step 2.

Find ũn+1
h ∈ Vuh

, such that for any v ∈ Vuh
,

(

1

δt
ũn+1
h + (un

h · ∇)ũn+1
h , v

)

+ (∇ũn+1
h , ∇v) =

( 1

δt
un
∗h, v

)

− (∇P̃n
h , v),(4.11)

ũn+1
h |∂Ω = 0, (4.12)

where un
∗h = (An

h)
−1[un

h − (θn+1
h − θnh)∇θnh ].

Step 3.

Find P̃n+1
h ∈ Mh, such that for any q ∈ Mh,

(

∇(P̃n+1
h − P̃n

h ), ∇q
)

= −
1

δt
(∇ · ũn+1

h , q), (4.13)

∇P̃n+1
h · n|∂Ω = 0. (4.14)

Then, we can obtain,

un+1
h = ũn+1

h − δt∇(P̃n+1
h − P̃n

h ), (4.15)

Pn+1
h = P̃n+1

h −
1

2
|∇θn+1

h |2. (4.16)

Since each step in the scheme consists of a linear elliptic equation, the scheme is uniquely

solvable.

Remark 4.2. Actually, θnh should take values within [0, 2π) for any n > 1. We omit this

constraint in this section for simplicity. In Section 5, we prove that under some conditions,

θnh ∈ [0, 2π) for any n > 1 if θ0 ∈ [0, 2π), which shows that the constraint is satisfied.

5. Discrete Maximum Principle

In this section, we show that under some conditions, the above scheme in finite element form

satisfies that θnh ∈ [0, 2π), if θ0 ∈ [0, 2π), for any n ≥ 1. According to Remark 2.2, it ensures
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the equivalence between system (2.6)–(2.8) and system (1.1)–(1.4) when performing numerical

experiments. It is easy to see that, by mathematical induction, we only need to prove that

θn+1
h ∈ [0, 2π), if θnh ∈ [0, 2π), for any n ≥ 0.

Assume that we use P1−P1 element for the velocity and pressure, and linear element for the

function θ(x, t), since the scheme avoids an inf-sup condition for the velocity and pressure. As

in Section 4, denote {φi}
Nb

i=1 as the piecewise linear basis for Sh. Having computed for θnh , u
n
h,

Pn
h and P̃n

h = Pn
h + 1

2 |∇θnh |
2 for n > 0, we need to find θn+1

h ∈ Sh, such that for any φi ∈ Sh,

−(∇θn+1
h , ∇φi) + (anhθ

n+1
h , φi) = (bnh, φi), 1 ≤ i ≤ Nb, (5.1)

where anh, b
n
h and An

h are the same as those in Section 4. Namely,

An
h = I + δt∇θnh(∇θnh)

T ,

(An
h)

−1 =
1

δt|∇θnh |
2 + 1

[

I + δt(θnhy,−θnhx)
T (θnhy,−θnhx)

]

,

anh = −
1

δt(δt|∇θnh |
2 + 1)

,

bnh = anhθ
n
h +

1

δt|∇θnh |
2 + 1

un
h · ∇θnh .

Denote θnh =
∑Nb

j=1 x
n
j φj , then ∇θnh =

∑Nb

j=1 x
n
j ∇φj , (5.1) can be rewritten as

Nb
∑

j=1

[

−

∫

Ω

∇φj · ∇φidx+

∫

Ω

anhφjφidx

]

xn+1
j

=

Nb
∑

j=1

[
∫

Ω

anhφjφidx+

∫

Ω

( 1

δt|∇θnh |
2 + 1

un
h · ∇φj

)

φidx

]

xn
j . (5.2)

Therefore, (5.1) can be transformed into a linear equation

Mxn+1 = Cxn, (5.3)

where M = {mij}
Nb

i,j=1, C = {cij}
Nb

i,j=1 and xn = (xn
1 , · · · , x

n
Nb

)T . Here,

mij = −

∫

Ω

∇φj · ∇φidx+

∫

Ω

anhφjφidx,

cij =

∫

Ω

anhφjφidx+

∫

Ω

(

1

δt|∇θnh |
2 + 1

un
h · ∇φj

)

φidx.

We first describe a lemma of our main result in this section, which is inspired by Lemma

3.1.1 from [33].

Lemma 5.1. Let A = {aij}
n
i,j=1, C = {cij}

n
i,j=1 be n× n matrices satisfying the conditions

(1)
∑n

j=1 aij =
∑n

j=1 cij < 0 for i = 1, · · · , n,

(2) cij ≤ 0 for i, j = 1, · · · , n,

(3) aij ≥ 0 for i = 1, · · · , n, j 6= i,
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and assume that a n-dimensional vector w′ satisfies the linear equation

Aw′ = Cw, (5.4)

where w is a n-dimensional vector. Then each component w′
i(i = 1, · · · , n) of w′ is estimated

by

w′
i ≥ min

j=1,··· ,n
wj , w′

i ≤ max
j=1,··· ,n

wj , (5.5)

where wj denotes the j-th component of w.

Proof. Assume that minj=1,··· ,n w
′
j = w′

i. The i-th equation of (5.4) is written as

aiiw
′
i =

∑

j 6=i

(−aij)w
′
j +

n
∑

j=1

cijwj .

Since the coefficients of w′
j and wj in the terms on the right-hand side of this equality are

non-positive from the conditions (2) and (3), it holds that

aiiw
′
i ≤

(

−
∑

j 6=i

aij

)

w′
i +

( n
∑

j=1

cij

)

min
j=1,··· ,n

wj .

Namely,

( n
∑

j=1

aij

)

w′
i ≤

( n
∑

j=1

cij

)

min
j=1,··· ,n

wj .

Since
∑n

j=1 aij =
∑n

j=1 cij < 0, then we have w′
i ≥ minj=1,··· ,n wj , i.e., minj=1,··· ,n w

′
j ≥

minj=1,··· ,n wj . Thus w′
i ≥ minj=1,··· ,nwj for each i = 1, · · · , n. The latter half can be proved

in the same manner.

Here, we consider the bounded domain Ω ⊆ R
2. Let Th = {e} be a triangulation of Ω

consisting of Ne elements. The piecewise linear finite element space Sh is defined as

Sh = {wh ∈ C(Ω̄); wh is linear in each e ∈ Th}.

We denote Pi(i = 1, · · · , Nb) as the mesh nodes, and denote

Ωi = {e ∈ Th; Pi is one of the vertexes of element e},

Ni = number of elements in Ωi, N = max
i

Ni,

he
i = length of the edge opposite to the vertex Pi in element e, he = max

Pi∈e
he
i , h = max

e∈Th

he,

Se = area of element e, Smax = max
e∈Th

Se, Smin = min
e∈Th

Se.

Denote the matrix M = {mij}
Nb

i,j=1 as M = M(1) + M(2) with M(1) = {m
(1)
ij }Nb

i,j=1 and

M(2) = {m
(2)
ij }Nb

i,j=1, where

m
(1)
ij = −

∫

Ω

∇φj · ∇φidx, m
(2)
ij =

∫

Ω

anhφjφidx.
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The lumped mass method is employed here by replacing the mass matrix M(2) by the diagonal

matrix M̄(2), where m̄
(2)
jj =

∑Nb

k=1 m
(2)
jk .

Thus we get to study the linear equation

M̄xn+1 = Cxn, (5.6)

where M̄ = M(1) + M̄(2) = {m̄ij}
Nb

i,j=1, i.e.,

m̄ij = m
(1)
ij = −

∫

Ω

∇φj · ∇φidx, for i 6= j,

m̄ii = −

∫

Ω

|∇φi|
2dx+

Nb
∑

j=1

∫

Ω

anhφjφidx.

For the linear equation (5.6), since

Nb
∑

j=1

(∇φj , ∇φi) = (∇1h, ∇φi) = 0,

where 1h is the constant function whose value is equal to unity, it holds that

Nb
∑

j=1

m̄ij =

Nb
∑

j=1

(

−

∫

Ω

∇φj · ∇φidx+

∫

Ω

anhφjφidx

)

=

Nb
∑

j=1

∫

Ω

anhφjφidx,

Nb
∑

j=1

cij =

Nb
∑

j=1

(
∫

Ω

anhφjφidx+

∫

Ω

(
1

δt|∇θnh |
2 + 1

un
h · ∇φj)φidx

)

=

Nb
∑

j=1

∫

Ω

anhφjφidx.

And anh = − 1
δt(δt|∇θn

h
|2+1) < 0 implies that

Nb
∑

j=1

m̄ij =

Nb
∑

j=1

cij < 0, for i = 1, · · · , Nb. (5.7)

For i 6= j,

m̄ij = m
(1)
ij = −

∫

Ω

∇φj · ∇φidx.

It has been proved that [32] if the triangulation Th is of Delaunay type, (∇φj ,∇φi) ≤ 0, for

i 6= j, i.e.,

m̄ij ≥ 0, for i 6= j. (5.8)

For the matrix C, since we use the P1 element for the velocity, denote un
h =

∑Nb

k=1 u
n
hkφk,

where un
hk = (un

1hk, un
2hk)

T . Then

cij =

∫

Ω

anhφjφidx+

∫

Ω

1

δt|∇θnh |
2 + 1

( Nb
∑

k=1

un
1hkφkφjx +

Nb
∑

k=1

un
2hkφkφjy

)

φidx

, c
(1)
ij + c

(2)
ij . (5.9)

For c
(2)
ij with i 6= j, we have

c
(2)
ij =

∑

e∈Ωi∩Ωj

∫

e

1

δt|∇θnh |
2 + 1

[ Nb
∑

k=1

(un
1hkφkφjx + un

2hkφkφjy)

]

φidx.
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For e ∈ Ωi ∩Ωj , assume that the vertexes of e are Pi, Pj and Pm, i 6= j, due to 1
δt|∇θn

h
|2+1 ≤ 1,

it holds that

c
(2)
ij =

∑

e∈Ωi∩Ωj

∫

e

1

δt|∇θnh |
2 + 1

[

∑

l=i,j,m

(un
1hlφlφjx + un

2hlφlφjy)

]

φidx

≤
∑

e∈Ωi∩Ωj

∫

e

∣

∣

∣

∣

∑

l=i,j,m

(un
1hlφlφjx + un

2hlφlφjy)φi

∣

∣

∣

∣

dx

≤
∑

e∈Ωi∩Ωj

∫

e

∑

l=i,j,m

|un
1hl||φjx|φlφi + |un

2hl||φjy |φlφidx.

By simple calculation, we have,

∫

e

φlφidx =

{

Se

12 , for l = j or m,
Se

6 , for l = i.
(5.10)

And in the element e,

|∇φj | =
1

2Se

hj . (5.11)

Hence, |φjx| ≤ |∇φj | =
1

2Se
hj , |φjy | ≤ |∇φj | =

1
2Se

hj. Since there exists two elements in

Ωi ∩ Ωj , it holds that,

c
(2)
ij ≤

∑

e∈Ωi∩Ωj

[

∑

l=i,j,m

(|un
1hl|+ |un

2hl|)
Se

6
×

1

2Se

hj

]

≤
∑

e∈Ωi∩Ωj

1

2
he max

k=1,...,Nb

{|un
1hk|, |u

n
2hk|}

≤ h max
k=1,...,Nb

{|un
1hk|, |u

n
2hk|}. (5.12)

For c
(2)
ii , assume that e ∈ Ωi and the vertexes of e are Pi, Pl and Pm. Then we have

c
(2)
ii =

∑

e∈Ωi

∫

e

1

δt|∇θnh |
2 + 1

[

∑

q=i,l,m

(un
1hqφqφix + un

2hqφqφiy)

]

φidx

≤
∑

e∈Ωi

∫

e

∣

∣

∣

∣

∑

q=i,l,m

(un
1hqφqφix + un

2hqφqφiy)φi

∣

∣

∣

∣

dx

≤
∑

e∈Ωi

∑

q=i,l,m

(|un
1hq|+ |un

2hq|)×
Se

6
×

1

2Se

hi

≤
∑

e∈Ωi

1

2
he max

k=1,...,Nb

{|un
1hk|, |u

n
2hk|}

≤
N

2
h max

k=1,...,Nb

{|un
1hk|, |u

n
2hk|}. (5.13)

For c
(1)
ij with i 6= j,

c
(1)
ij =

∫

Ω

−
1

δt(δt|∇θnh |
2 + 1)

φjφidx

=
∑

e∈Ωi∩Ωj

∫

e

−
1

δt(δt|∇θnh |
2 + 1)

φjφidx.
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For the element e ∈ Ωi ∩Ωj , assume that the vertexes of e are Pi, Pj and Pm as before. Due to

θnh =
∑Nb

k=1 x
n
kφk, ∇θnh =

∑Nb

k=1 x
n
k∇φk, Eq. (5.10) and (5.11), it holds that

|∇θnh |
2
∣

∣

∣

e
= |xn

i ∇φi + xn
j ∇φj + xn

m∇φm|2
∣

∣

∣

e

≤ 2
(

|xn
i ∇φi|

2 + |xn
j ∇φj |

2 + |xn
m∇φm|2

)

∣

∣

∣

e

= 2

(

|xn
i |

2(
1

2Se

hi)
2 + |xn

j |
2(

1

2Se

hj)
2 + |xn

m|2(
1

2Se

hm)2
)

∣

∣

∣

e

≤ 2Xn(
1

2Se

)2(h2
i + h2

j + h2
k)

≤
3h2

eX
n

2S2
e

≤
3h2Xn

2S2
min

,

where Xn , maxk=1,...,Nb
|xn

k |
2. And then

c
(1)
ij ≤

∑

e∈Ωi∩Ωj

∫

e

−
1

δt(δt 3h
2Xn

2S2
min

+ 1)
φjφidx

=
∑

e∈Ωi∩Ωj

−
2S2

min

δt(3h2δtXn + 2S2
min)

·
1

12
Se

≤
∑

e∈Ωi∩Ωj

−
2S2

min

δt(3h2δtXn + 2S2
min)

·
1

12
Smin.

Since there exists two elements in Ωi ∩Ωj ,

c
(1)
ij ≤ −

2S2
min

δt(3h2δtXn + 2S2
min)

·
1

6
Smin = −

S3
min

3δt(3h2δtXn + 2S2
min)

. (5.14)

Similarly, for i = j, since Ni ≥ 1,

c
(1)
ii ≤

∑

e∈Ωi

∫

e

−
1

δt(δt 3h
2Xn

2S2
min

+ 1)
φ2
i dx =

∑

e∈Ωi

−
2S2

min

δt(3h2δtXn + 2S2
min)

·
1

6
Se

≤
∑

e∈Ωi

−
S3
min

3δt(3h2δtXn + 2S2
min)

= −
NiS

3
min

3δt(3h2δtXn + 2S2
min)

≤ −
S3
min

3δt(3h2δtXn + 2S2
min)

. (5.15)

Combine Eq. (5.12)–(5.15), and due to the fact thatN ≥ 2, it holds that, for i, j = 1, . . . , Nb,

cij = c
(1)
ij + c

(2)
ij

≤ −
S3
min

3δt(3h2δtXn + 2S2
min)

+
N

2
h max

k=1,...,Nb

{|un
1hk|, |u

n
2hk|}.

Assume that θnh ∈ [0, 2π), i.e., xn
k = θnh(Pk) ∈ [0, 2π), for k = 1, · · · , Nb. Then it holds that

Xn = maxk=1,...,Nb
|xn

k |
2 = (2π)2 = 4π2, and

cij ≤ −
S3
min

3δt(3h2δt · 4π2 + 2S2
min)

+
N

2
h max

k=1,...,Nb

{|un
1hk|, |u

n
2hk|}

= −
S3
min

6δt(6π2h2δt+ S2
min)

+
N

2
h max

k=1,...,Nb

{|un
1hk|, |u

n
2hk|}. (5.16)
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Therefore, cij ≤ 0, i, j = 1, · · · , Nb, under the condition that

max
k=1,...,Nb

{|un
1hk|, |u

n
2hk|} ≤

S3
min

3Nhδt(6π2h2δt+ S2
min)

. (5.17)

Our main result is stated in the following theorem.

Theorem 5.1. For the linear equation (5.6), if the triangulation Th is of Delaunay type, under

the condition (5.17), M̄ = {m̄ij}
Nb

i,j=1 and C = {cij}
Nb

i,j=1 satisfy the conditions

(1)
∑Nb

j=1 m̄ij =
∑Nb

j=1 cij < 0 for i = 1, · · · , Nb,

(2) cij ≤ 0 for i, j = 1, · · · , Nb,

(3) m̄ij ≥ 0 for i = 1, · · · , Nb, j 6= i.

If xn = (xn
1 , · · · , x

n
Nb

)T satisfies xn
i ∈ [0, 2π), for i = 1, · · · , Nb, then xn+1

i ∈ [0, 2π), where

xn+1
i denotes the i-th component of xn+1.

Proof. From (5.7) and (5.8), conditions (1) and (3) follow at once. From (5.16), condition

(2) is satisfied if (5.17) holds true. The rest of the proof is similar to that of Lemma 5.1. �

Remark 5.1. In Theorem 5.1, we prove that θn+1
h ∈ [0, 2π), if θnh ∈ [0, 2π), for any n ≥ 0,

under conditions that the triangulation Th is of Delaunay type and Eq. (5.17) holds true.

Remark 5.2. Since Smin = O(h2), assume that δt = O(hα), Eq. (5.17) can be rewritten as

max
k=1,...,Nb

{|un
1hk|, |u

n
2hk|} ≤ O

( 1

3N(6π2h2α−3 + hα−1)

)

.

In order to make sure that the analysis is applicable for non-trivial cases when h → 0, the

condition that α ≥ 3
2 should hold true.

Remark 5.3. Condition (5.17) requires that un
h should take values satisfying

max
k=1,...,Nb

{|un
1hk|, |u

n
2hk|} ≤

S3
min

3Nhδt(6π2h2δt+ S2
min)

,

to make sure that θnh ∈ [0, 2π), for any n ≥ 0. However, it is actually not necessary in specific

numerical experiments since the estimate of θnh and ∇θnh here is coarse. In this paper, we

choose the suitable mesh size and time step when performing numerical experiments, so that

the discrete maximum principle is satisfied, i.e., the function θnh ∈ [0, 2π). Evidence for the

discrete maximum principle of the numerical solutions is provided in Section 6.

6. Numerical Experiments

In this section, we will show numerical experiments to validate the scheme constructed above.

We simulate the smooth solutions of (1.1)–(1.4) by solving (2.6)–(2.8) and the numerical results

are in good qualitative agreement with those obtained in [3]. We use the piecewise linear element

for the function θ(x, t) and the P1 −P1 element for the velocity and pressure, since the scheme

avoids an inf-sup condition for the velocity and pressure. All our experiments are computed on
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the domain Ω = (0, 1)2 and Th is a uniform triangulation, where each element is an isosceles

right triangle. According to the analysis in Section 5, we choose the suitable mesh size and

time step, so that the discrete maximum principle is satisfied, i.e., the function θnh ∈ [0, 2π) in

all the numerical experiments. Evidence for the discrete maximum principle is also shown in

this section.

We consider the system (2.6)–(2.8) with the initial conditions:

u0 ≡ 0, d0 = (cos(a), sin(a))T , a = 2π(cos(x)− sin(y)), (6.1)

i.e.,

θ0 =











2π + a, if cos(x)− sin(y) < 0,

0, if cos(x) − sin(y) = 1,

a, else.

We choose the mesh size h = 1/50, and the time step size δt = 0.001. The numerical results of

d are shown in Fig. 6.1.

The maximum and minimum values of the numerical solutions θnh are plotted as functions of

n to validate the discrete maximum principle. It is shown in Figs. 6.2 and 6.3 that θnh ∈ [0, 2π)

for n = 0, . . . , 1000 and when n ≥ 400, the maximum and minimum values of θnh almost remain

the same, which indicates that the system almost reaches a steady state. Thus, it is reasonable

to conclude that θnh ∈ [0, 2π) for all n ∈ N.

In order to measure the time error, we choose the reference solution as the numerical approx-

imation computed on the discrete parameters (h, δt) = (0.02, 0.0005). In Figs. 6.6 and 6.7, we

plot the L2 errors of the velocity, pressure, and the function θ between the numerical solution

and the reference solution at t = 1 with different time step size δt = 0.005, 0.01, 0.02, 0.04 and
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Fig. 6.1. Numerical results of d.
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Fig. 6.2. The maximum values of θnh for different n (left) and the local magnification (right).
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Fig. 6.4. The maximum values of θnh for different δt (left) and the local magnification (right).

0.05. The maximum and minimum values of the numerical solutions θnh are plotted in Figs.

6.4 and 6.5 as an evidence to validate the discrete maximum principle for these different time

steps. The numerical results show that scheme (3.1)–(3.7) is first-order accurate in time for all

variables.

7. Conclusions and Remarks

In this paper, we rewrite the 2D simplified Ericksen-Leslie system (1.1)–(1.4) and propose

a new system (2.6)–(2.8). We construct a time discretization numerical scheme for the new

system. The scheme is the first constraint-preserving, decoupled and energy-stable scheme for
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Fig. 6.6. L2 errors of the function θ(left) and pressure(right).
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Fig. 6.7. L2 errors of the velocity (u = (u1, u2)).

the 2D simplified Ericksen-Leslie system so far. The scheme is quite easy to implement. One

only needs to solve linear and decoupled elliptic equations at each time step. It also satisfies

the discrete maximum principle, which ensures the equivalence between system (2.6)–(2.8)

and system (1.1)–(1.4) when performing numerical experiments. Numerical experiments are

presented to validate the scheme and simulate the dynamic motion of liquid crystals.
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