
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 3, No. 4, pp. 401-419

DOI: 10.4208/aamm.10-m1006
August 2011

Superconvergence of Mixed Methods for Optimal
Control Problems Governed by Parabolic Equations

Xiaoqing Xing and Yanping Chen∗

School of Mathematical Sciences, South China Normal University, Guangzhou 510631,
Guangdong, China

Received 7 May 2010; Accepted (in revised version) 22 December 2010

Available online 10 July 2011

Abstract. In this paper, we investigate the superconvergence results for optimal
control problems governed by parabolic equations with semidiscrete mixed finite
element approximation. We use the lowest order mixed finite element spaces to
discrete the state and costate variables while use piecewise constant function to
discrete the control variable. Superconvergence estimates for both the state variable
and its gradient variable are obtained.
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1 Introduction

Optimal control problems [33] have been extensively utilized in many aspects of the
modern life such as social, economic, scientific and engineering numerical simula-
tion. Due to the wide application of these problems, it must be solved successfully
with efficient numerical methods. Among these numerical methods, finite element
discretization of the state equation is widely applied though other methods are also
used. There have been extensive studies in convergence of finite element approxima-
tion of optimal control problems, see, for example [1, 2, 10–13, 15, 24, 29, 30, 37, 38, 45].
A systematic introduction of finite element method for PDEs and optimal control can
be found in, for example, [16, 28, 42], and [44].

Many researchers have made a lot of works on some topics of finite element meth-
ods for optimal control problems. In particular, for optimal control problem governed
by linear elliptic state equations, there are two early papers on the numerical approxi-
mation for linear-quadratic control-constrained problems by Falk [23] and Geveci [26].
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More recently, Arnautu and Neittaanmäki [3] contributed further error estimates to
this class of problems. Moreover, we refer to Casas [7] who proves convergence re-
sults for optimal control problems governed by linear elliptic equations with control
in the coefficient. Most recently, C. Meyer and A. Rösch have studied the supercon-
vergence property for linear-quadratic optimal control problem in [41], W. B. Liu and
N. N. Yan [35] and [34] have derived a posteriori error estimates for finite element
approximation of convex optimal control problems and boundary control problems
respectively.

For optimal control problem governed by linear parabolic state equations, a pri-
ori error estimates of finite element approximation were studied in, for example [30]
and [32]. A posteriori error estimates for this problem were discussed by W. B. Liu
and N. N. Yan [36]. Notice that all the above works are mainly focused on standard
finite element methods.

But the mixed finite element method is much more important for a certain class of
problems which contains the gradient of the state variable in the objective functional.
Thus the accuracy of gradient is of great importance in numerical approximation of the
state equations. When it comes to these problems, it is advantageous to apply mixed
finite element methods with which both the state variable and its gradient variable
can be approximated with the same accuracy. Although mixed finite element methods
has been extensively used in engineering numerical simulations, it has not been fully
utilized in computational optimal control problems yet. Particularly, there has not
been much work on theoretical analysis of mixed finite element approximation for
parabolic optimal control problem in the literature although there are some papers
about the mixed finite element methods for parabolic equation, for example, see [8, 9,
14, 21] and [25]. In [8] and [21], the authors derived superconvergence for the mixed
finite element approximations to parabolic problems.

Superconvergence results are important from an application point of view since,
under reasonable assumptions on the grid and with additional smoothness of the so-
lution, they provide higher accuracy. There has been much work on superconver-
gence of elliptic problems for the rectangular or quadrilateral finite element partition
by mixed methods, see [18–20], and [22]. But for optimal control problems governed
by parabolic equations there exist no superconvergence results of mixed methods. In
our priori work [46], we have established the L2-error estimates for this optimal con-
trol problems. We can see that the L2-error both for the control and the state is of
O(h).

In this paper, we will prove superconvergence results on rectangular domain for
the optimal control problems governed by parabolic equation using mixed methods.
More precisely, we shall prove that the finite element solution is superclose to a cer-
tain projection of the exact solution. The paper is organized as follows: in Section 2,
we construct the discrete scheme of this problem by using mixed finite element meth-
ods and give its equivalent optimality conditions. Then, we present some preliminary
results in Section 3. The main theorems on superconvergence of this paper are formu-
lated in Section 4. Finally, in Section 5, we make a conclusion and state some future
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works.
The optimal control problem that we shall study in details reads:

min
u∈K

{1
2

∫ T

0

(
∥p − pd∥

2 + ∥y − yd∥2 + ∥u∥2)dt
}

, (1.1a)

yt(x, t)− div
(

A(x)grady(x, t)
)
= f + Bu(x, t), x ∈ Ω, t ∈ (0, T], (1.1b)

subject to the following conditions:

y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T], (1.2a)
y(x, 0) = y0(x), x ∈ Ω, (1.2b)

which can be written in the form of the first order system

yt(x, t) + divp(x, t) = f + Bu(x, t), x ∈ Ω, (1.3a)
p(x, t) = −A(x)grady(x, t), x ∈ Ω, (1.3b)
y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T], (1.3c)
y(x, 0) = y0(x), x ∈ Ω, (1.3d)

where Ω⊂R2 is a smooth and bounded domain. In the following, we assume that
the solutions hold for ∀t∈(0, T). Let B be a linear continuous operator from L2(Ω) to
L2(Ω). Assume that A(x)=(aij(x))2×2 with aij(x)∈C∞(Ω̄) is a symmetric matrix and
for any vector X∈R2, there is a constant c>0, such that

X t AX ≥ c∥X∥2
R2 .

Here, K denotes the admissible set of the control variable, defined by

K =
{

ũ(x, t) ∈ L2(Ω) : ũ(x, t) ≥ 0, ∀t ∈ [0, T]
}

. (1.4)

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with
a norm ∥ · ∥m,p given by

∥ϕ∥p
m,p = ∑

|α|≤m
∥Dαϕ∥p

Lp(Ω)
,

a semi-norm | · |m,p given by

|ϕ|pm,p = ∑
|α|=m

∥Dαϕ∥p
Lp(Ω)

.

We set
Wm,p

0 (Ω) =
{

ϕ ∈ Wm,p(Ω) : ϕ|∂Ω = 0
}

.

For p=2, we denote

Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω),



404 X. Xing and Y. Chen / Adv. Appl. Math. Mech., 3 (2011), pp. 401-419

and
∥ · ∥m = ∥ · ∥m,2, ∥ · ∥ = ∥ · ∥0,2.

Let J=[0, T], we denote by Ls(J; Wm,p(Ω)) the Banach space of all Ls integrable func-
tions from J into Wm,p(Ω) with norm

∥ϕ∥Ls(J;Wm,p(Ω)) =
( ∫ T

0
∥ϕ∥s

Wm,p(Ω)dt
) 1

s
,

for s∈[1, ∞) and the standard modification for s=∞. In the rest of the paper, we write
Ls(J; Wm,p(Ω)) as Ls(J; Wm,p) for simplicity.

2 Mixed methods of optimal control problems

In this section, we study the mixed finite element approximation of the problems
(1.1a)-(1.2b).

First, we introduce the co-state parabolic equation

−zt(x, t)− div
(

A(x)(gradz(x, t) + p(x, t)− pd)
)
= y(x, t)− yd, x ∈ Ω, t ∈ [0, T), (2.1)

with the conditions

z(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T), (2.2a)
z(x, T) = 0, x ∈ Ω. (2.2b)

Next, we will make some assumptions on the known functions in the control problem
and the exact solution of (1.1b) and (2.1):

yd ∈ L2(J; H1(Ω)), pd ∈ L2(J; H2(Ω)), (2.3a)

y, z ∈ L2(J; H2(Ω)), p, q ∈ L2(J; H2(Ω)). (2.3b)

Let
V = L2(J; H(div; Ω)),

with
H(div; Ω) =

{
v ∈ (L2(Ω))2, divv ∈ L2(Ω)

}
, W = L2(J; L2(Ω)),

then we can rewrite the problems (1.1a)-(1.2b) in the following weak form: find (p, y, u)
∈V × W × K, such that

min
u∈K

{1
2

∫ T

0

(
∥p − pd∥

2 + ∥y − yd∥2 + ∥u∥2)dt
}

, (2.4a)

(A−1 p, v)− (y, divv) = 0, ∀v ∈ V , (2.4b)
(yt, w) + (divp, w) = ( f + Bu, w), ∀w ∈ W, (2.4c)

where (·) denotes the inner product in L2(Ω).
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Similarly as in [33], we can prove that the convex control problems (2.4a)-(2.4c)
has a unique solution (p, y, u) , and that a triplet (p, y, u) is the solution of (2.4a)-(2.4c)
if and only if there exists a co-state (q, z)∈V × W such that (p, y, q, z, u) satisfies the
following optimality conditions for t∈J:

(A−1 p, v)− (y, divv) = 0, ∀v ∈ V , (2.5a){
(yt, w) + (divp, w) = ( f + Bu, w), ∀w ∈ W,
y(x, 0) = y0(x), x ∈ Ω,

(2.5b)

(A−1q, v)− (z, divv) = −(p − pd, v), ∀v ∈ V , (2.5c){
−(zt, w) + (divq, w) = (y − yd, w), ∀w ∈ W,
z(x, T) = 0, x ∈ Ω,

(2.5d)

(u + B∗z, ũ − u) ≥ 0, ∀ũ ∈ K. (2.5e)

In fact, for t∈[0, T], if we set

q = −A(gradz + p − pd),

in (2.1), we can see that

A−1q + gradz = −p − pd, (2.6a)
− zt + divq = y − yd. (2.6b)

Multiplying both sides of (2.6a) by v∈V and noting that

(A−1q, v)− (z, divv) = −(p − pd, v).

Multiplying both sides of (2.6b) by w∈W, we can have

−(zt, w) + (divq, w) = (y − yd, w).

Next, as we all know in [33], the control u∈K is optimal if and only if

(J′(u), ũ − u) ≥ 0, ∀v ∈ K,

where

J(u) = min
u∈K

{1
2

∫ T

0

(
∥p − pd∥

2 + ∥y − yd∥2 + ∥u∥2)dt
}

.

In fact,

(J′(u), ũ) =
∫ T

0

[
(p − pd, p′(u)ũ) + (y − yd, y′(u)ũ) + (u, ũ)

]
dt

=
∫ T

0

[
− (A−1q, p′(u)ũ) + (z, div(p′(u)ũ))− (zt, y′(u)ũ)

+ (divq, y′(u)ũ) + (u, ũ)
]
dt

=
∫ T

0

[
− (y′(u)ũ, divq) + (Bũ, z)− (y′t(u)ũ, z)− (zt, y′(u)ũ)

+ (divq, y′(u)ũ) + (u, ũ)
]
dt

=
∫ T

0
(B∗z + u, ũ)dt.
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So, for t∈[0, T],

J(u) = min
v∈K

J(v) ⇔ (J′(u), ũ − u) ≥ 0, ∀ũ ∈ K ⇔ (B∗z + u, ũ − u) ≥ 0, ∀ũ ∈ K.

Thus, we have proved that the optimal control problems has a unique optimal solu-
tion.

In the following we construct the mixed finite element approximation for the con-
trol problem (2.4a)-(2.4c). Let T h denotes a quasi-uniform (in the sense of [27]) par-
tition of Ω. Here h is the maximum diameter of the element T in T h. Let Sh ×
Rh⊂H(div, Ω)× L2(Ω) denote the finite dimensional spaces. Now, set

V h = L2(J; Sh), Wh = L2(J; Rh), Kh =
{

ũh ∈ Wh : ũh|T = const, T ∈ T h}.

The finite element approximation of the problem (2.4a)-(2.4c) is to find (ph, yh, uh)∈Vh ×
Wh × Kh such that

min
uh∈Kh

{1
2

∫ T

0

(
∥ph − pd∥

2 + ∥yh − yd∥2 + ∥uh∥2)dt
}

, (2.7a)

(A−1 ph, vh)− (yh, divvh) = 0, ∀vh ∈ V h, (2.7b)
(yh,t, wh) + (divph, wh) = ( f + Buh, wh), ∀wh ∈ Wh, (2.7c)
yh(x, 0) = y0h(x), x ∈ Ω, (2.7d)

where y0h(x)=Phy0(x) is the L2(Ω)-projection (to be defined below) into the finite
dimensional space Wh of the initial data function y0(x).

To ensure the existence and convergence of the solution of the above formulation,
we assume that

divV h ⊂ Wh.

Then, we define the standard L2(Ω)-orthogonal projection Ph : W → Wh which satis-
fies: for any w∈W

(w − Phw, wh) = 0, ∀wh ∈ Wh. (2.8)

We also consider the projection [43] Πh : V → V h, which satisfies: for any q∈V ,(
div(q − Πhq), wh

)
= 0, ∀wh ∈ Wh. (2.9)

For the projection defined above, we have the following relations (see [6,17] and [31]):

div ◦ Πh = Ph ◦ div, (2.10a)

∥q − Πhq∥0,r ≤ Ch|q|1,r, for q ∈ (W1,r(Ω))2, r > 1, (2.10b)

∥div(q − Πhq)∥−s ≤ Ch1+s|divq|1, s = 0, 1, for all divq ∈ H1(Ω), (2.10c)

∥ϕ − Phϕ∥−s ≤ Ch1+s|ϕ|1, s = 0, 1, for ϕ ∈ H1(Ω). (2.10d)

Examples of spaces of piece-wise polynomials that satisfy the conditions stated
above are the triangular and rectangular Raviart-Thomas elements from Raviart and
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Thomas [43] and BDM elements from Brezzi, Douglas and Marini [5] (for other exam-
ples see Brezzi and Fortin [6]). For triangles and rectangles with one curved boundary
see Douglas and Roberts [17]. Our goal is to prove superconvergence estimates for the
mixed finite element approximations using elements of order k=0.

Similarly, the control problem (2.7a)-(2.7d) again has a unique solution (ph, yh, uh)
and that a triplet (ph, yh, uh) is the solution of (2.7a)-(2.7d) if and only if there exists a
co-state (qh, zh)∈V h ×Wh such that (ph, yh, qh, zh, uh) satisfies the following optimality
conditions:

(A−1 ph, vh)− (yh, divvh) = 0, ∀vh ∈ V h, (2.11a){
(yh,t, wh) + (divph, wh) = ( f + Buh, wh), ∀wh ∈ Wh,
yh(x, 0) = y0h(x), x ∈ Ω,

(2.11b)

(A−1qh, vh)− (zh, divvh) = −(ph − pd, vh), ∀vh ∈ V h, (2.11c){
−(zh,t, wh) + (divqh, wh) = (yh − yd, wh), ∀wh ∈ Wh,
zh(x, T) = 0, x ∈ Ω,

(2.11d)

(uh + B∗zh, ũh − uh) ≥ 0, ∀ũh ∈ Kh. (2.11e)

In the rest of the paper, we shall use some intermediate variables. For any control
function ũ∈K, we first define the state solution (p(ũ), y(ũ), q(ũ), z(ũ)) associated with
ũ that satisfies

(A−1 p(ũ), v)− (y(ũ), divv) = 0, ∀v ∈ V , (2.12a){
(yt(ũ), w) + (divp(ũ), w) = ( f + Bũ, w), ∀w ∈ W,
y(ũ)(x, 0) = y0(x), x ∈ Ω,

(2.12b)

(A−1q(ũ), v)− (z(ũ), divv) = −(p(ũ)− pd, v), ∀v ∈ V , (2.12c){
−(zt(ũ), w) + (divq(ũ), w) = (y(ũ)− yd, w), ∀w ∈ W,
z(ũ)(x, T) = 0, x ∈ Ω.

(2.12d)

Then, we define the discrete state solution (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) associated with
ũ∈K that satisfies

(A−1 ph(ũ), vh)− (yh(ũ), divvh) = 0, ∀vh ∈ V h, (2.13a){
(yh,t(ũ), wh) + (divph(ũ), wh) = ( f + Bũ, wh), ∀wh ∈ Wh,
yh(ũ)(x, 0) = y0h(x), x ∈ Ω,

(2.13b)

(A−1qh(ũ), vh)− (zh(ũ), divvh) = −(ph(ũ)− pd, vh), ∀vh ∈ V h, (2.13c){
−(zh,t(ũ), wh) + (divqh(ũ), wh) = (yh(ũ)− yd, wh), ∀wh ∈ Wh,
zh(ũ)(x, T) = 0, x ∈ Ω.

(2.13d)

Thus, as we defined, the exact solution and its approximation can be written in the
following way:

(p, y, q, z) = (p(u), y(u), q(u), z(u)),
(ph, yh, qh, zh) = (ph(uh), yh(uh), qh(uh), zh(uh)).
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3 Some preliminary results

In this section, we will present some preliminary results for the intermediate solutions.
To obtain the superconvergence results, we also need the following assumptions:

1. The continuous linear operator B can be expressed as B=α(x)∈W1,∞(Ω);

2. For any t∈[0, T], set Ω+={∪e : u|e > 0}, Ω0={∪e : u|e = 0}, and Ωb=Ω \ (Ω+ ∪
Ω0). We assume that meas(Ωb) ≤ Ch.

Then, assume that the partition T h=T h
0 + T h

1 . Here T h
0 consists of rectangles e with

sides parallel to the coordinate axes such that

dist(e, ∂Ω) ≥ ch, c = const > 0,

T h
1 consists of triangles and/or rectangles with at most one curved side that is part of

the boundary ∂Ω. The grid is assumed to be quasiuniform. The construction of the
spaces V h and Wh uses Raviart-Thomas elements for rectangles in T h

0 and Douglas-
Roberts rectangles or triangles (with at most one curved side on the boundary) in T h

1 .
According to Douglas and Roberts [17], the spaces V h and Wh defined in this way sat-
isfy the properties (2.10a) and (2.10d) and the projection operators are defined element
by element. Next, we give an important Lemma which can be similarly proved as [8].

Lemma 3.1. Assume the partition T h is quasi-regular. If p̃∈(H2(Ω))2 and A is a symmetric
and positive matrix, then there exists a constant C>0, such that for any vh∈V h

(A−1(p̃ − Πh p̃), vh) ≤ Ch
3
2 ∥p̃∥2∥vh∥.

Proof. Since

(A−1(p̃ − Πh p̃), vh) = ∑
e∈T h

0

∫
T

A−1(p̃ − Πh p̃)vhdx + ∑
e∈T h

1

∫
T

A−1(p̃ − Πh p̃)vhdx

=I0 + I1.

It has been shown Ewing and Lazarov in [21] that for rectangular elements e∈T h
0∫

e
A−1(p̃ − Πh p̃)vhdx ≤ Ch2∥p̃∥H2(e)∥vh∥.

Therefore, the first term I0 is estimated by

|I0| ≤ Ch2∥p̃∥H2(Ω)∥vh∥.

Note that the second term involves only elements in a strip of width O(h) near the
boundary ∂Ω. Using the well known inequality

∥p̃∥H1(∂Ω) ≤ Ch
1
2 ∥p̃∥H2(Ω),
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and the approximation property of finite element space V h, we have

|I1| ≤ Ch ∑
e∈T h

1

∥p̃∥H1(e)∥vh∥L2(e) ≤ Ch
3
2 ∥p̃∥H2(Ω)∥vh∥.

From the estimate of above, we can easily obtain that

(A−1(p̃ − Πh p̃), vh) ≤ Ch
3
2 ∥p̃∥2∥vh∥.

So, the proof is completed. �
In the following, we will give some lemmas in order to obtain the main results.

Lemma 3.2. Let zh(Phu) be the discrete solution of (2.13a)-(2.13d) with ũ=Phu, then we
have ∫ T

0
(zh − zh(Phu), B(Phu − uh))dt ≤ 0. (3.1)

Proof. Along with the definition of the discrete state solution in (2.13a)-(2.13d),
we choose ũ=Phu and with the relations (2.11a)-(2.11d), we obtain the following error
equations:

(A−1(ph − ph(Phu)), vh)− (yh − yh(Phu), divvh) = 0, (3.2a)
(yh,t − yh,t(Phu), wh) + (div(ph − ph(Phu)), wh) = (B(uh − Phu), wh), (3.2b)

(A−1(qh − qh(Phu)), vh)− (zh − zh(Phu), divvh) = −(ph − ph(Phu), vh), (3.2c)
− (zh,t − zh,t(Phu), wh) + (div(qh − qh(Phu)), wh) = (yh − yh(Phu), wh), (3.2d)

for any vh∈V h and wh∈Wh. In above equations, we choose wh=zh − zh(Phu) in the sec-
ond equation, vh=ph − ph(Phu) in the third equation, wh=yh − yh(Phu) in the fourth
equation and vh=qh − qh(Phu) in the first equation, then we can deduce that

(zh − zh(Phu), B(Phu − uh))

=− (yh,t − yh,t(Phu), zh − zh(Phu))− (div(ph − ph(Phu)), zh − zh(Phu))

=(yh − yh(Phu), zh,t − zh,t(Phu))− (A−1(qh − qh(Phu)), ph − ph(Phu))

− (ph − ph(Phu), ph − ph(Phu))− d
dt
(yh − yh(Phu), zh − zh(Phu))

=(div(qh − qh(Phu)), yh − yh(Phu))− (yh − yh(Phu), yh − yh(Phu))

− (A−1(qh − qh(Phu)), ph − ph(Phu)− (ph − ph(Phu), ph − ph(Phu))

− d
dt
(yh − yh(Phu), zh − zh(Phu))

=− (yh − yh(Phu), yh − yh(Phu))− (ph − ph(Phu), ph − ph(Phu))

− d
dt
(yh − yh(Phu), zh − zh(Phu)). (3.3)
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Note that

yh(x, 0)− yh(Phu)(x, 0) = 0, zh(x, T)− zh(Phu)(x, T) = 0,

then, by integrating (3.3) in time, we can see that∫ T

0
(zh − zh(Phu), B(Phu − uh))dt

=−
∫ T

0

[
(yh − yh(Phu), yh − yh(Phu))− (ph − ph(Phu), ph − ph(Phu))

]
dt ≤ 0, (3.4)

which implies (3.1). �

Lemma 3.3. Let (ph(Phu), yh(Phu), qh(Phu), zh(Phu)) and (ph(u), yh(u), qh(u), zh(u)) be
the discrete solution of (2.13a)-(2.13d) with ũ=Phu and ũ=u, respectively. Then we have

∥yh(Phu)− yh(u)∥L∞(J;L2) + ∥ph(Phu)− ph(u)∥L2(J;L2) ≤ Ch2, (3.5a)

∥zh(Phu)− zh(u)∥L∞(J;L2) + ∥qh(Phu)− qh(u)∥L2(J;L2) ≤ Ch2. (3.5b)

Proof. First, we choose ũ=Phu and ũ=u in (2.13a)-(2.13d) respectively, then we
obtain the following error equations

(A−1(ph(Phu)− ph(u)), vh)− (yh(Phu)− yh(u), divvh) = 0, (3.6a)
(yh,t(Phu)− yh,t(u), wh) + (div(ph(Phu)− ph(u)), wh) = (B(Phu − u), wh), (3.6b)

(A−1(qh(Phu)− qh(u)), vh)− (zh(Phu)− zh(u), divvh) = −(ph(Phu)− ph(u), vh), (3.6c)
− (zh,t(Phu)− zh,t(u), wh) + (div(qh(Phu)− qh(u)), wh) = (yh(Phu)− yh(u), wh), (3.6d)

for any vh∈V h and wh∈Wh. Then we estimate (3.5a) and (3.5b) in the following two
parts respectively.
Part I. Choose

vh = ph(Phu)− ph(u) and wh = yh(Phu)− yh(u),

in (3.6a) and (3.6b) respectively and adding the two equations

1
2

d
dt
∥yh(Phu)− yh(u)∥2 + (A−1(ph(Phu)− ph(u)), ph(Phu)− ph(u))

=(B(Phu − u), yh(Phu)− yh(u)). (3.7)

Then, we estimate the right side of (3.7).

|(B(Phu − u), yh(Phu)− yh(u))| =|((α(x)− Ph(α(x)))(Phu − u), yh(Phu)− yh(u))|
≤Ch2∥yh(Phu)− yh(u)∥, (3.8)

then using ϵ-Cauchy inequality and the assumption on A(x), we can see that

1
2

d
dt
∥yh(Phu)− yh(u)∥2 + c∥ph(Phu)− ph(u)∥

2 ≤ Ch4 + ∥yh(Phu)− yh(u)∥2. (3.9)
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Notice that
yh(Phu)(x, 0)− yh(u)(x, 0) = 0,

then, integrating (3.9) in time and applying Gronwall’s inequality, it can be seen that

∥yh(Phu)− yh(u)∥L∞(J;L2) + ∥ph(Phu)− ph(u)∥L2(J;L2) ≤ Ch2. (3.10)

Part II. Choose

vh = qh(Phu)− qh(u) and wh = zh(Phu)− zh(u),

in (3.6c) and (3.6d) respectively and adding the two equations

− 1
2

d
dt
∥zh(Phu)− zh(u)∥2 + (A−1(qh(Phu)− qh(u)), qh(Phu)− qh(u))

=− (ph(Phu)− ph(u), qh(Phu)− qh(u)) + (yh(Phu)− yh(u), zh(Phu)− zh(u)), (3.11)

then, using ϵ-Cauchy inequality we have

− 1
2

d
dt
∥zh(Phu)− zh(u)∥2 +

c
2
∥qh(Phu)− qh(u)∥

2

≤C
(
∥ph(Phu)− ph(u)∥

2 + ∥yh(Phu)− yh(u)∥2 + ∥zh(Phu)− zh(u)∥2
)

. (3.12)

Notice that
zh(Phu)(x, T)− zh(u)(x, T) = 0,

then integrating (3.12) in time and applying the result obtained in part I, we can easily
derive that

∥zh(Phu)− zh(u)∥L∞(J;L2) + ∥qh(Phu)− qh(u)∥L2(J;L2) ≤ Ch2, (3.13)

where we have used Gronwall’s inequality. Thus, the Lemma has been completed. �
Then, we will give the following superconvergence results for the intermediate

solutions which are very important for our following work.

Lemma 3.4. For any ũ∈K, let

(p(ũ), y(ũ), q(ũ), z(ũ)) ∈ (V × W)2 and (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) ∈ (V h × Wh)
2,

be the solutions of (2.12a)-(2.12d) and (2.13a)-(2.13d) respectively. If the intermediate solu-
tion satisfies

p(ũ), q(ũ) ∈ (H2(Ω))2,

then

∥Phy(ũ)− yh(ũ)∥L∞(J;L2) + ∥Πh p(ũ)− ph(ũ)∥L2(J;L2) ≤ Ch
3
2 , (3.14a)

∥Phz(ũ)− zh(ũ)∥L∞(J;L2) + ∥Πhq(ũ)− qh(ũ))∥L2(J;L2) ≤ Ch
3
2 . (3.14b)
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Proof. From (2.12a)-(2.12d) and (2.13a)-(2.13d), we have the following error equa-
tions,

(A−1(p(ũ)− ph(ũ)), vh)− (y(ũ)− yh(ũ), divvh) = 0, (3.15a)
(yt(ũ)− yh,t(ũ), wh) + (div(p(ũ)− ph(ũ)), wh) = 0, (3.15b)

(A−1(q(ũ)− qh(ũ)), vh)− (z(ũ)− zh(ũ), divvh) = −(p(ũ)− ph(ũ), vh), (3.15c)
− (zt(ũ)− zh,t(ũ), wh) + (div(q(ũ)− qh(ũ)), wh) = (y(ũ)− yh(u), wh), (3.15d)

for any vh∈V h and wh∈Wh. Using the definition of Πh and Ph, we can rewrite the
above equations as follows:

(A−1(Πh p(ũ)− ph(ũ)), vh)− (Phy(ũ)− yh(ũ), divvh)

= (A−1(Πh p(ũ)− p(ũ)), vh), (3.16a)
((Phy)t(ũ)− yh,t(ũ), wh) + (div(Πh p(ũ)− ph(ũ)), wh) = 0, (3.16b)

(A−1(Πhq(ũ)− qh(ũ)), vh)− (Phz(ũ)− zh(ũ), divvh)

= (A−1(Πhq(ũ)− q(ũ)), vh)− (p(ũ)− ph(ũ), vh), (3.16c)
− ((Phz)t(ũ)− zh,t(ũ), wh) + (div(Πhq(ũ)− qh(ũ)), wh)

= (Phy(ũ)− yh(ũ), wh), (3.16d)

for any vh∈V h and wh∈Wh.
In the following, we only prove the first estimate (3.14a), the second can be ob-

tained similarly.
Let vh=Πh p(ũ)− ph(ũ) in (3.16a) and wh=Phy(ũ)− yh(ũ) in (3.16b), then adding

the two equations

(A−1(Πh p(ũ)− ph(ũ)), Πh p(ũ)− ph(ũ)) +
1
2

d
dt
∥Phy(ũ)− yh(ũ)∥2

=(A−1(Πh p(ũ)− p(ũ)), Πh p(ũ)− ph(ũ)). (3.17)

From Lemma 3.1, we know that

(A−1(Πh p(ũ)− p(ũ)), Πh p(ũ)− ph(ũ)) ≤ Ch
3
2 ∥p(ũ)∥2∥Πh p(ũ)− ph(ũ)∥,

and note that
Phy(ũ)(x, 0) = yh(ũ)(x, 0),

then integrating (3.17) in time, applying Gronwall’s lemma and using ϵ-Cauchy in-
equality, we then have the following estimate

∥Phy(ũ)− yh(ũ)∥L∞(J;L2) + ∥Πh p(ũ)− ph(ũ)∥L2(J;L2) ≤ Ch
3
2 . (3.18)

So, the proof is completed. �
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4 Superconvergence of optimal control problem

Now, we are able to formulate the main theorem on superconvergence. We first prove
the superconvergence result for the control variable, more precisely, we show that its
discrete solution is superclose (in order h3/2) to its L2-projection.

Theorem 4.1. Assume that the regularity condition (2.3a)-(2.3b) hold and the control satisfy

u + B∗z ∈ W1,∞(Ω).

Then, we have

∥Phu − uh∥L2(J;L2) ≤ Ch
3
2 . (4.1)

Proof. We choose ũ=uh in (2.5e) and ũh=Phu in (2.11e) to get the following two
inequalities:

(u + B∗z, uh − u) ≥ 0, (4.2a)
(uh + B∗zh, Phu − uh) ≥ 0. (4.2b)

Note that
uh − u = uh − Phu + Phu − u,

in (4.2a) and add the two inequalities above, we have

(uh + B∗zh − u − B∗z, Phu − uh) + (u + B∗z, Phu − u) ≥ 0. (4.3)

Now, we can see that

∥Phu − uh∥2 =(Phu − uh, Phu − uh)

≤(Phu − u, Phu − uh) + (B∗zh − B∗z, Phu − uh) + (u + B∗z, Phu − u)
=(B∗zh − B∗z, Phu − uh) + (u + B∗z, Phu − u). (4.4)

We then estimate the two terms on the right side of (4.4). For the first term, we note
that it can be decomposed into the following four parts:

(B∗zh − B∗z, Phu − uh)

=(B∗zh − B∗zh(Phu), Phu − uh) + (B∗zh(Phu)− B∗zh(u), Phu − uh)

+ (B∗zh(u)− B∗Phz, Phu − uh) + (B∗Phz − B∗z, Phu − uh)

=
4

∑
i=1

Ii. (4.5)

For the last term I4, obviously we have

I4 = ((α(x)− Ph(α(x))) · (Phz − z), Phu − uh) ≤ Ch2∥Phu − uh∥, (4.6)
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then, we combine Lemma 3.2-Lemma 3.4 and (4.5), (4.6) to deduce that∫ T

0
(B∗zh − B∗z, Phu − uh)dt ≤ Ch3 + ϵ

∫ T

0
∥Phu − uh∥2dt, (4.7)

where we have used ϵ-Cauchy inequality.
For the second term at the right side of (4.4), note that

(u + B∗z, Phu − u) =
∫

Ω+
∪

Ω0 ∪
Ωb
(u + B∗z)(Phu − u)dx. (4.8)

Obviously,
(Phu − u)|Ω0 = 0.

From (2.5e), if we choose ũ=2u, then we get

(u + B∗z, u) ≥ 0,

so we have pointwise a.e. u + B∗z≥0. On the other hand, if we choose

ũ =

{
0, x ∈ Ω+,
u, x ∈ Ω\Ω+,

(4.9)

we will easily obtain that
(u + B∗z, u)Ω+ ≤ 0.

Therefore,
(u + B∗z)|Ω+ = 0.

Then,

(u + B∗z, Phu − u) =(u + B∗z, Phu − u)Ωb

=(u + B∗z − Ph(u + B∗z), Phu − u)Ωb

≤Ch2∥u + B∗z∥1,Ωb∥u∥1,Ωb

≤Ch2∥u + B∗z∥1,∞∥u∥1,∞meas(Ωb)

≤Ch3. (4.10)

Now, integrating (4.4) with time, we have that∫ T

0
∥Phu − uh∥2dt ≤

∫ T

0
(B∗zh − B∗z, Phu − uh)dt +

∫ T

0
(u + B∗z, Phu − u)dt, (4.11)

then insert (4.7) and (4.10) into (4.11), it can be easily obtained that

∥Phu − uh∥L2(J;L2) ≤ Ch
3
2 . (4.12)

Thus, we completed the proof. �
In the following, we will establish the superconvergence results for state and co-

state variables.
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Theorem 4.2. Assume that the regularity conditions (2.3a)-(2.3b) hold and the control satisfy

u + B∗z ∈ W1,∞(Ω).

Then, we have

∥Phy − yh∥L∞(J;L2) + ∥Πh p − ph∥L2(J;L2) ≤ Ch
3
2 , (4.13a)

∥Phz − zh∥L∞(J;L2) + ∥Πhq − qh∥L2(J;L2) ≤ Ch
3
2 . (4.13b)

Proof. From (2.5a)-(2.5d) and (2.11a)-(2.11d), we have the following error equations:

(A−1(p − ph), vh)− (y − yh, divvh) = 0, (4.14a)
(yt − yh,t, wh) + (div(p − ph), wh) = (B(u − uh), wh), (4.14b)

(A−1(q − qh), vh)− (z − zh, divvh) = −(p − ph, vh), (4.14c)
− (zt − zh,t, wh) + (div(q − qh), wh) = (y − yh, wh), (4.14d)

for any vh∈V h and wh∈Wh. By using the definition (2.8) and (2.9) of projection Ph and
Πh respectively, we can rewrite the above equations as follows:

(A−1(Πh p − ph), vh)− (Phy − yh, divvh) = (A−1(Πh p − p), vh), (4.15a)
((Phy)t − yh,t, wh) + (div(Πh p − ph), wh) = (B(u − Phu), wh) + (B(Phu − uh), wh), (4.15b)

(A−1(Πhq − qh), vh)− (Phz − zh, divvh) = (A−1(Πhq − q), vh)− (p − ph, vh), (4.15c)
− ((Phz)t − zh,t, wh) + (div(Πhq − qh), wh) = (Phy − yh, wh), (4.15d)

for any vh∈V h and wh∈Wh.
Part I. Taking vh=Πh p − ph in the first equation and wh=Phy − yh in the second , then
adding the two equations,

(A−1(Πh p − ph), Πh p − ph) + ((Phy)t − yh,t, Phy − yh)

=(A−1(Πh p − p), Πh p − ph) + (B(u − Phu), Phy − yh) + (B(Phu − uh), Phy − yh). (4.16)

Now, we estimate the three terms at the right side of above equation. By Lemma 3.1
and ϵ-Cauchy inequality, we have

(A−1(Πh p − p), Πh p − ph) ≤ Ch2∥p∥2∥Πh p − ph∥ ≤ ϵ∥Πh p − ph∥
2 + Ch4, (4.17)

similar to (4.6), we have

(B(u − Phu), Phy − yh) =((α(x)− Ph(α(x))) · (u − Phu), Phy − yh)

≤Ch2∥u∥1∥Phy − yh∥
≤∥Phy − yh∥2 + Ch4, (4.18)

and

(B(Phu − uh), Phy − yh) ≤ C(∥Phu − uh∥2 + ∥Phy − yh∥2). (4.19)



416 X. Xing and Y. Chen / Adv. Appl. Math. Mech., 3 (2011), pp. 401-419

Therefore, inserting (4.17)-(4.19) in (4.16) we have

c∥Πh p − ph∥
2 +

1
2

d
dt
∥Phy − yh∥2 ≤ C

(
∥Phu − uh∥2 + ∥Phy − yh∥2)+ Ch4. (4.20)

Integrating (4.20) in time and notice that

Phy(x, 0)− yh(x, 0) = 0,

using Gronwall’s inequality and the results of Theorem 4.1, we can easily obtain that

∥Phy − yh∥L∞(J;L2) + ∥Πh p − ph∥L2(J;L2) ≤ Ch
3
2 . (4.21)

Part II. Choosing vh=Πhq− qh in (4.15c) and wh=Phz− zh in (4.15d) respectively, then
adding the two equations to obtain

(A−1(Πhq − qh), Πhq − qh)− (Phzt − zh,t, Phz − zh)

=(A−1(Πhq − q), Πhq − qh)− (p − ph, Πhq − qh) + (Phy − yh, Phz − zh). (4.22)

Now, we bound each terms at the right side of above equation. Similar to (4.17), we
have

(A−1(Πhq − q), Πhq − qh) ≤ Ch2∥Πhq − qh∥ ≤ ϵ∥Πhq − qh∥
2 + Ch4. (4.23)

For the second term, using ϵ-Cauchy inequality and Lemma 3.1 with A=I, we have

(p − ph, Πhq − qh) =(p − Πh p, Πhq − qh) + (Πh p − ph, Πhq − qh)

≤C(h2 + ∥Πh p − ph∥)∥Πhq − qh∥
≤C(h4 + ∥Πh p − ph∥

2) + ϵ∥Πhq − qh∥
2, (4.24)

finally,

(Phy − yh, Phz − zh) ≤∥Phy − yh∥∥Phz − zh∥
≤C(∥Phy − yh∥2 + ∥Phz − zh∥2). (4.25)

Combing (4.22)-(4.25),

c∥Πhq − qh∥
2 − 1

2
d
dt
∥Phz − zh∥2

≤C
(
h4 + ∥Πh p − ph∥

2 + ∥Phy − yh∥2 + ∥Phz − zh∥2). (4.26)

Integrating (4.26) in time and notice that

Phz(x, T)− zh(x, T) = 0,

using Gronwall’s inequality and the results obtained in Part I, we can see that

∥Phz − zh∥L∞(J;L2) + ∥Πhq − qh∥L2(J;L2) ≤ Ch
3
2 . (4.27)

So, we completed the proof. �



X. Xing and Y. Chen / Adv. Appl. Math. Mech., 3 (2011), pp. 401-419 417

5 Conclusions and future works

In this paper, we give the superconvergence estimate with space discretization of
parabolic optimal control problem by using mixed finite element methods. For the
full-discretization, see [36, 39, 40]. In [39] and [40], the authors derived a priori error
analysis for linear parabolic optimal control problems.

In our future work, we will consider the full discretization for the superconver-
gence of parabolic control problem with mixed finite element methods.
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