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Abstract. In this work we introduce PRIN-3D (PRoto-code for Internal flows mod-
eled by Navier-Stokes equations in 3-Dimensions), a new high level algebraic lan-
guage (Matlab R⃝) based code, by discussing some fundamental aspects regarding
its basic solving kernel and by describing the design of an innovative advection
scheme. The main focus was on designing a memory and computationally efficient
code that, due to the typical conciseness of the Matlab coding language, could al-
low for fast and effective implementation of new models or algorithms. Innovative
numerical methods are discussed in the paper. The pressure equation is derived
with a quasi-segregation technique leading to an iterative scheme obtained within
the framework of a global preconditioning procedure. Different levels of paral-
lelization are obtainable by exploiting special pressure variable ordering patterns
that lead to a block-structured Poisson-like matrix. Moreover, the new advection
scheme has the potential of a controllable artificial diffusivity. Preliminary results
are shown including a fully three-dimensional internal laminar flow evolving in a
relatively complex geometry and a 3D methane-air flame simulated with the aid of
libraries based on the Flamelet model.
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1 Introduction

The vast majority of present CFD codes have been developed in what would be con-
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sidered nowadays as low-level programming languages like C or Fortran. This allows
for faster performances, and sometimes, for the creation of machine specific highly ef-
ficient executables. On the other hand, high-level or very high-level languages allow
for higher level of abstraction from machine language. Important features include run-
time interpretation and debugging, handling of more generic data structures, sym-
bolic math toolboxes and intermediate code files. The well known drawbacks fall into
the class of the so called abstraction penalties: slower execution speed, higher memory
consumption, larger binary program size [4]. However, as computational resources
get more sophisticated but yet more available and affordable, newly developed high-
level programming languages become faster and easier to use and have the potential
to be considered a valid candidate for code developing.

In order to design a CFD code that would enable the user to perform several tasks
ranging from algebraic analysis of the equations’ structure to modular implementa-
tion of virtually any kind of fluid dynamic model, it is therefore convenient to adopt
high-level algebraic languages (like Python, Scilab, Octave, etc). For our purposes we
considered Matlab R⃝ as being the most appropriate option. This choice was made con-
sidering the opportunities that this kind of programming language offers in terms of
easy user interfacing, fast libraries, packages integration (i.e., NAG, LAPACK, UMF-
PACK, etc) and increasing usage of natively multi-threaded functions (such as the
fftw-based FFT). In comparison with low-level programming languages (like C or For-
tran) many pre-compiled subroutines are available to the user and a very high-level of
abstraction from the details of the computer is possible with, for instance, structures,
cell-arrays and object oriented programming. The most important feature of Matlab
remains its natural and native handling of fundamental linear algebra objects like ma-
trices, and the extensive amount of libraries and functions available for a lot of simple
and complex algebraic operations such as matrix multiplication, inversion or eigen-
values extraction. Moreover, Matlab has been developing parallelization capabilities
(distributed and shared memory) by providing specifically designed toolboxes (MPI
based) and packages (like Star-P R⃝).

The choice of algebraic solving strategies is strongly dependant on the choice of the
Navier-Stokes solver which is determined by the class of fluid dynamic problems one
intends to solve. A first general distinction may be made among fully implicit, semi-
implicit and fully explicit time discretization strategies. For steady laminar flows the
transient evolution from an initial condition is usually not being resolved and large
time-steps are used when possible; this requires methods that penalize time accu-
racy but that are, possibly, unconditionally stable in time allowing to reach steady
state in the least amount of computational time. The best choice in this case would
be SIMPLE-based solving techniques like PISO, SIMPLEC [2] in which both diffusive
and (linearized) convective terms are treated implicitly allowing to remove CFL time
constraints as well as viscous ones. For eddy resolving turbulent flow simulations
the constraints on the time-step are determined by the need to accurately resolve the
time scale of the smallest resolved eddies. The required time step is typically smaller
than what determined by viscous and CFL constraints and, therefore, fully implicit
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schemes are a rather inconvenient choice for these type of simulations. Classic pro-
jection methods with semi-implicit time discretization and pseudo-pressure correc-
tion [6] typically represent the best choice in these cases.

Another crucially important step in the design of a CFD code is the choice of the
convection scheme, which can also be problem-dependant. In laminar flows, where
spatial grid requirements are not so demanding, large cell-size based Reynolds num-
bers may, however, cause stability problems. Great effort has been devoted in liter-
ature into designing stable but yet accurate convection schemes which could mini-
mize the error due to the added artificial viscosity but at the same time accurately
reconstruct the dynamics of advective transport of species and the velocity field itself.
A large contribution comes from the research in compressible flow. In such context,
due to the difficulties of the analysis for the multidimensional system, it is a common
practice to test advection schemes and their properties in 1D. In the last four decades
-after Godunovs theorem- the attempts to conjugate high order schemes with more
advanced properties, like the stability and/or entropic ones, have been directed to
less ambitious goals (e.g., monotonic, TVD, TVB, Muscl, ENO, WENO, etc), but more
robust for the multidimensional extension [8]. The early Von Neumann ideas of using
conservative schemes and adding a proper amount of artificial viscosity are still effec-
tively implemented even if such numerical diffusion effects are introduced in a non
explicit and non stationary way. Flux and slope limiters as well as solution adapted
reconstruction are the main ingredients of most popular codes. For turbulent flows
other constraints have to be met by convection scheme: large effort, for example, has
been done design discrete energy conserving schemes [13] on non-uniform grids as
well [16].

In this paper we describe the basic steps leading to the design of a 3D Navier-
Stokes code. We decided to write from scratch a new numerical code called PRIN-3D
(PRoto-code for Internal flows modeled by Navier-Stokes equations in 3-Dimensions)†.
The purpose in mind was designing a flexible code (sometimes referred to as proto-
code) with turbulent and reactive capabilities and oriented to the study of new mathe-
matical and numerical models and to the development or optimization of new numer-
ical algorithms. The code is tailored to the general structure of the mathematical mod-
els that we want to solve (in particular the incompressible and the slightly compress-
ible Navier-Stokes model) but also flexible enough to easily implement new models
by exploiting the fast built-in functions present in Matlab. The focus is also on the de-
sign of advanced semi-implicit numerical solvers with pressure segregation by means
of preconditioning techniques explained in Section 2, and the design of a memory and
computational efficient version of it described in Section 2.1. In Section 2.2 we describe
the new advection scheme in which we combine a Lagrangian prediction (based on a
solution adapted reconstruction) for the set up of low and high order Richtmyer-Lax-
Wendroff fluxes obtaining a new scheme, successfully checked for both 1D scalar case
and 3D Navier-Stokes equations. In Section 3 we show the results from two simula-

†The code is opensource and downloadable at http://sourceforge.net/projects/prin-3d/.
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tions. The first one is a laminar flow with fully three-dimensional boundary conditions
meant to show the flexibility of the code. The second is a combustion simulation, fully
three-dimensional as well, which shows good agreement with experimental data.

2 Solving kernel

In this section we are presenting the structure of PRIN-3D’s linear solver for the system
of equations, resulting from the discretization of the unsteady incompressible Navier-
Stokes partial differential equations. This represents the basic solving kernel for every
incompressible or even slightly compressible model being resolved. An implicit time
discretization for the diffusive part, weighing with θ the unknowns at time n + 1 and
with (1 − θ) the known values at time n, is adopted (the most common choice for the
value of θ is 1/2 and this leads to the Cranck-Nicolson scheme with a truncation error
e = O(∆t2) +O(∆x2)). All the non linear terms are treated explicitly. The pressure
gradient time collocation is intended at the time t(n+1) to stress the fact that the vector
field ∂Pn+1/∂xj has to correct the divergence of the finally computed field at time
t(n+1). In incompressible flows pressure has no thermodynamical meaning and its
collocation in time has no physical meaning.

Introducing a spatial discretization as well, the whole problem-in a Cartesian Or-
thogonal reference system- can be restated in terms of the following algebraic opera-
tors

F vn+1
j + Gj p n+1 = qj, j = 1, 2, 3,

Di vi
n+1 = g.

Pressure nodes p and velocity nodes vj are located respectively at the centre and at
the vertices of cubic control volumes (partially staggered variable colocation). The
computational grid is a 3D block-structured grid obtained by a staircase approxima-
tion of the user-defined boundary geometry and the mesh is uniform in all directions
with ∆x = ∆y = ∆z. The partially-staggered option appears to be a fair trade off be-
tween fully collocated and fully staggered variable arrangement. The symbology can
be further more condensed in the following manner(

F G
D 0

)(
v
p

)n+1

=

(
q
g

)
, (2.1)

where F is a block-diagonal elliptic operator
( F 0 0

0 F 0
0 0 F

)
, G is a column operator

(
G1
G2
G3

)
,

D is a row operator ( D1 D2 D3 ), while

v =

v1
v2
v3

 and q =

q1
q2
q3

 .
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In order to solve the system (2.1), a possible choice is to consider a classic Richard-
son iteration scheme with the following left preconditioner

P =

(
F 0
D −I

)
, (2.2)

that can be interpreted in terms of a Chorin-like projection method. In fact, for every
iterative step(

F 0
D −I

)(
v
p

)n+1, iter+1

= −
(

0 −G
0 I

)(
v
p

)n+1, iter

+

(
q
g

)
, (2.3)

an intermediate velocity field is computed (momentum equations are solved with no
the pressure-gradient term on the left-hand side) and then the new pressure field is,
with virtually no cost, obtained from the computation of the divergence of such field.
Supposing such method to be convergent, the final solution will satisfy the following
preconditioned system (see [1, 5, 10])(

F−1 0
DF−1 −I

)(
F G
D 0

)(
v
p

)n+1

=

(
q′

g′

)
, (2.4)

that with simple algebraic manipulation can be rewritten as(
I F−1G
0 DF−1G

)(
v
p

)n+1

=

(
F−1q

DF−1q − g

)
. (2.5)

This is the typical structure of a segregated system where the coupling between the
velocity and pressure variables in the computations has been weakened (i.e., the op-
erator becomes block triangular). As a matter of fact, the segregation procedure can
also be suggested by the usage of the Theorem on the Inverse Problem of Vector Field
Calculus [9]. This gives a fair interpretation of the pressure field as a scalar function
that provides the divergence correction for the velocity field‡ and, thus, has to satisfy
the classic pressure-segregation or Poisson’s equation

DF−1Gpn+1 = DF−1q − g. (2.6)

This process involves the computation of the inverse F−1 or of the group F−1G. Since
the coefficient matrix of the linear system of Eqs. (2.1) remains unchanged throughout
the whole computation (advection term is estimated with explicit techniques such as
predictor-corrector), such inverse could be precomputed and stored in memory. This
option is clearly not recommendable since if the matrices F−1 and F−1G were directly
computed, both would turn out to be completely full and their storage would be dra-
matically demanding on memory resources. No sparse memory storage is therefore
possible. However, only by solving exactly (2.6), in which DF−1G is completely full
as well, we can enforce the divergence-free constraint on the updated velocity field.

‡This interpretation is exact when using a fully explicit time advancement.
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2.1 Sparse approximate inverse: quasi-segregated discrete equations

As previously stated, performing the full segregation process, by means of direct solv-
ing, is too expensive especially in the 3D case (see [3, 7]). A smarter choice, therefore,
would be to adopt the following series expansions of the inverse of F

F−1 =
(

I − νθ∆t ∇̂2)−1
= I +

∞

∑
n=1

(
νθ∆t ∇̂2)n,

where ∇̂ is the discrete Laplace operator applied to velocity variables. The same ex-
pression is valid for the matrix blocks present in the diagonal of the inverse of F . Such
approximation converges only if

νθ∆tρ(∇̂2) < 1,

where ρ(∇̂2) indicates the spectral radius of ∇̂2. The series can be truncated at the
N-th order thus obtaining the following approximate inverse operator

F̃−1
N = I + (νθ∆t ∇̂2) + (νθ∆t ∇̂2)2 + · · ·+ (νθ∆t ∇̂2)N , (2.7)

with an obvious reduction of the sparsity for larger values of N. Instead of using
the full inverse of F, the approximate N-th order inverse (2.7) is adopted for each of
the three diagonal blocks of F−1, yielding the following sparse approximate block
diagonal matrix

F̃−1
N =

F̃−1
N 0 0
0 F̃−1

N 0
0 0 F̃−1

N

 . (2.8)

Before proceeding any further, it is important to (numerically) analyze and possibly
control the error due to the adoption of the sparse approximate inverse form (2.7)
instead of the full inverse one,

F−1 =
[

I − (νθ∆t ∇̂2)
]−1

.

Let D be an n-by-n matrix so that D/h2 is the numerical approximation on uniform
mesh, with

∆x = ∆y = ∆z = h,

of the discrete Laplacian ∇̂ operator with homogeneous Dirichlet boundary condi-
tions. The operator F will then be (I − βD) with

β =
νθ∆t

h2 .

The error of a first order (i.e., N = 1) sparse approximate inverse defined as

||(I + β∇̂2)− (I − β∇̂2)−1||
||(I − β∇̂2)−1||

,
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increases with the matrix size but it is an almost quadratic function of β for large
values of n. To control such error, a value of βmax = 0.02 has been chosen. For a
given mesh size, viscosity and θ, it will be an upper bound for the time step interval
∆t, apart from other constraints given, for example, by the CFL condition. Moreover,
such a small value of βmax was needed in order to contain losses in accuracy.

The segregation process (2.4) is now repeated by using the approximate inverse
(2.8) instead of the actual F−1 Bearing in mind that

F̃−1
N F = I − BN = I − (νθ∆t ∇̂2)N+1, (2.9)

this yields (
I −BN F̃−1

N G
−DBN DF̃−1

N G

)(
v
p

)n+1

=

(
F̃−1

N q
DF̃−1

N q − g

)
. (2.10)

The pressure variables in this system are quasi-segregated (not fully segregated as in
the (2.5) system) since BN is different from zero but of the (N + 1)th order in ∆t (for
fixed ν and θ). Every term with BN can be either neglected or brought to the right-
hand side, therefore starting the following iterative method which will be denoted
with the i iterative counter:(

I F̃−1
N G

0 DF̃−1
N G

)(
v
p

)n+1,i+1

=

(
BN 0
DBN 0

)(
v
p

)n+1,i

+

(
F̃−1

N q
DF̃−1

N q − g

)
. (2.11)

The system of Eqs. (2.11) is clearly block-triangular and when solving for the vn+1,i+1

unknowns, the following pressure-segregation equation has to be solved first

DF̃−1
N Gpn+1,i+1 = DBNvn+1,i +DF̃−1

N q − g. (2.12)

Moreover, it is possible to split each approximate inverse operator F̃−1
N into two parts

I + F1 and F2, as follows

F̃−1
N = I +

Nlhs

∑
n=1

(νθ∆t ∇̂2)n +
N

∑
n=Nlhs+1

(νθ∆t ∇̂2)n = I + F1 + F2.

With such splitting, Eq. (2.12) is ready to be solved with an iterative method. The order
of the I + F1 term to be left on the left-hand side of the equation is determined by Nlhs,
and this leads to the following ”nested” iterative scheme indicated with the counter k:

D(I +F1)Gpn+1,i+1,k+1 = −DF2Gpn+1,i+1,k +DBNvn+1,i +DF̃−1
N q − g. (2.13)

If Nlhs = 0 (i.e., F1 = 0), the Eq. (2.13) has the same coefficient matrix of the pressure
equation in an explicit time discretization. The higher the value of Nlhs the less sparse
will the coefficient matrix D(I + F1)G be. Choosing Nlhs ≥ 1 gives a bi-harmonic
nature to such equation [15], reducing the pressure checkerboard effect, while, on the
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(a) (b)
Figure 1: Matrix pattern visualization of D(I +F1)G with Nlhs = 0 (a) and with Nlhs = 1 (b).

other hand, increasing the memory and computational demands for solving such sys-
tem (see Figs. 1(a) and (b)).

The Galerkin matrix
( F G
D 0

)
to be solved is illustrated in Fig. 3. In this case a sequen-

tial variable ordering (shown in Fig. 2) has been adopted and, for expositive purposes,
a coarse mesh (384 pressure nodes) is used.

Performing the previously described solving procedure with such variable order-
ing, the pattern of the final pressure equation’s coefficient matrix for Nlhs = 0 and
Nlhs = 1 (with N ≥ 1) will respectively be as in Figs. 1(a) and (b).

Apparently there is no further possible nested iterative cycle that could be ex-
ploited to solve Eq. (2.13). Let’s analyze the stencil of an internal equation given by the
matrix D(I +F1)G (that, for the sake of simplicity will be chosen with Nlhs = 0) which
is shown in Fig. 4. The idea is to look for alternative pressure variable orderings so that
the elliptic operator D(I +F1)G exhibits a block-structured pattern. This will make it
possible to introduce another nested iterative cycle on Eq. (2.13) apart from allowing
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Figure 2: Lexicographic variable ordering.
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Figure 3: Matrix pattern visualization of the Galerkin matrix corresponding to lexicographic ordering.

a parallel resolution for such equation. The alternative pressure variable ordering that
are being examined are the following:

1. Two pressure ”colors” (classic 3D red-black ordering), Fig. 5(a), yielding patterns as
shown in Figs. 7(a) and (b),

2. Three pressure ”colors”, Fig. 5(b), yielding patterns as shown in Figs. 8(a) and (b),

3. Four pressure ”colors”, Fig. 6, yielding patterns as shown in Figs. 9(a) and (b).

All of the pressure orderings from 2 to 4 make it possible to set up a further iterative
nested cycle (with counter l). Two strategies have been pursued: a block Gauss-Seidel
or SOR method for a non-parallel solving technique and a block Gauss-Jacobi method
which allows parallel computing on clusters or on multi-threaded single machine.

Figure 4: Stencil of numerical operator D(I + F1)G with Nlhs = 0. The weights are repeated identically
for every cube face (isotropic elliptic operator), the central weight is +1.5.
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Figure 5: Two colors pressure variable ordering (red-black) (a); Three colors pressure variable ordering (b).

 12

105

202

299

  9

106

203

300

 10

107

204

297

 11

108

201

298

  7

104

197

294

  8

101

198

295

  5

102

199

296

  6

103

200

293

  2

 99

196

289

  3

100

193

290

  4

 97

194

291

  1

 98

195

292

Figure 6: Four colors pressure variable ordering.

(a) (b)
Figure 7: Pattern visualization (two colours) of D(I +F1)G with Nlhs = 0 (a), with Nlhs = 1 (b).
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(a) (b)
Figure 8: Pattern visualization (three colours) of D(I +F1)G with Nlhs = 0 (a), with Nlhs = 1 (b).

(a) (b)
Figure 9: Pattern visualization (four colours) of D(I +F1)G with Nlhs = 0 (a), with Nlhs = 1 (b).

2.2 Treatment of non-linear terms: multilevel Lagrangian conservative
scheme

The non-linear terms have been treated in a fully explicit way, as already mentioned.
Many advection schemes are available in the code among which an innovative and
completely original scheme, the Multilevel Lagrangian Conservative Scheme (MLCS)
that is certainly worth discussing in its essential aspects (more details can be found
in [17]). For clarity purposes we will refer to a simple 1D advection problem in the
present section. The MLCS scheme is based on the Richtmyer scheme but with the
possibility to control the artificial viscosity present in the scheme. The first step con-
sists in interpolating with a given order the nodal values of the transported component
of momentum u from the first grid (grid 1) to a second, finer, grid (grid 2) (indicated
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n+1

n

xixi-1 x i+1

Figure 10: Illustration of the MLCS steps.

respectively with full dots and crosses in Fig. 10. Once the values of u are available on
the finer grid we can estimate the time integral of the flux of u on the cell faces. Let’s
consider the time integration of the flux on the face between the cell i and i − 1. Such
integral is carried out by means of Gaussian integration in time of the analytical flux
f (u) at this location leading to the following expression for the time averaged flux

f̃ =
1

∆t

∫ tn+1

tn
f (ui− 1

2
)dt ≃ 1

2

[
f (un+ 3−

√
3

6
i− 1

2
) + f (un+ 3+

√
3

6
i− 1

2
)

]
= F̃. (2.14)

This approximation is third order accurate in time. The values of the velocity at the
Gauss points in time are calculated as follows:

un+ 3±
√

3
6

i− 1
2

= un

(
xi− 1

2
− 3 ±

√
3

6
∆t u∗

i− 1
2

)
,

with
u∗

i− 1
2
=

1
2
(ui−1 + ui).

The values of

un
(

xi− 1
2
− 3 ±

√
3

6
∆t u∗

i− 1
2

)
,

are obtained with a nearest value interpolation from the array of interpolated veloci-
ties on the grid 2, providing the correct amount of artificial viscosity while preserving
a high-order spatial and temporal resolution. By increasing the order of such interpo-
lation we can reduce the magnitude of the added artificial viscosity.

3 Results

Three-dimensional geometry handling is one of the toughest steps in a CFD code de-
sign. An effort has been made to guarantee the maximum of flexibility with respect to
the user’s demands in within a not too limited class of 3D domains. The actual ver-
sion of the code is intended to handle a specific class of three-dimensional domains,
right prisms. The user defines a basic 2D polygon and the height of the prism which
extends over the third dimension.

As described above the computational grid is a 3D block-structured grid obtained
by a staircase approximation of the user defined boundary geometry and the mesh is
evenly spaced (∆x = ∆y = ∆z).
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Boundary Conditions (BC) available for the velocity’s components u, v, w are
Dirichlet (for all faces) and Extrapolation (for Outflow faces only) (Pressure Inlet and
Neumann BC are supported in the code but not yet completely tested). It is also pos-
sible to assign lid driven faces or even swirled ones. Dirichlet and Neumann BC are
available for transported scalars and other model-related quantities such as Turbulent
Energy K, Energy Dissipation rate ε and Mixture Fraction Z.

In this section we show the results from two simulations: a laminar flow with fully
three-dimensional boundary conditions meant to show the flexibility of the code; fully
three-dimensional methane-air flame, which shows good agreement with experimen-
tal data.

3.1 Fully 3D

The boundary conditions consist of two Dirichlet outflows with circular plug flow
velocity profiles, one with negative V component the other with W positive compo-
nent, and one inflow where a negative U component has been assigned as shown in
Fig. 11. The code has automatically checked and readjusted such velocity boundary
conditions in order to satisfy the divergence-free constraint and this was an impor-
tant test for the right-hand side equation generators because the inflow and outflow
conditions are totally three-dimensional. Since this was a simple test with no physical
relevance, a non conservative Lagrangian convective scheme (with 3D linear inter-
polation with low computational cost) has been adopted. Such type of convective
scheme has proven to be less numerically dissipative than a TVD high order flux re-
construction with dimensional splitting. Predictor-Corrector convective schemes with
Lagrangian prediction are also available in the code and could be a better option for
accuracy improvement.

The simulation data are shown in Table 1 where Lx, Ly, Lz are the extensions of
the domain in the x, y, z direction, Nptot and Nv are respectively the total numbers of
pressure cells and velocity nodes and Re is the Reynolds number based on the highest
magnitude boundary velocity and the inflow orifice diameter.

Figure 11: Rappresentation of dirichlet velocity boundary conditions.
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Table 1: General simulation data for Fully3D.

Lx = 0.5 Nv = 110862
Ly = 1 Re = 31.54
Lz = 2 Nptot = 119700

This simulation has been carried out with the second type of pressure variable
ordering because during the testing phase the fourth pressure variable ordering and
block Gauss-Seidel (or SOR) solving were causing oscillations in the pressure field.
Similar effects were found in the flow field, increasing the possibility of arising nu-
merical instabilities. It is possible to notice from Fig. 12 that the pressure iso-surfaces’
values indicate that it decreases downstream (as it should be).

It is interesting to zoom into the inflow area Fig. 13 and notice that there is a stag-
nation point on the wall right in front of the inlet, and that right on the edge of the
inflow orifice there are recirculating streamlines (see Fig. 14).

Figure 12: Post-processing of a fully 3D Incompressible Navier Stokes simulation.

Figure 13: Stagnation point zoom in. Figure 14: Inflow recirculating streamlines.
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3.2 SANTORO 3D flame

The results of a 3D combustion simulation done by adopting the 3D boundary con-
ditions of the experiment in [14] are shown here. The computational domain is a
3D box with a single inflow and outflow face. Axial-symmetric boundary conditions
(as far as the staircase approximation’s limited reconstruction capability is concerned)
are reproduced by using combinations of circular hat functions. On the same inflow
face, starting from its centre, radial functions for the mixture fraction, normal veloc-
ity component, density and dynamic viscosity are assigned, in order to reproduce the
geometry of the coannular burner and the concentric air annulus inflows in [14].

The combustion model used here is based on the Flamelet model [11], [12] which
accounts for the effects on the velocity field of the local interaction between oxidizer
and fuel, by means of mixture fraction transport, from which the scalar dissipation
rate (proportional to the mixture fraction gradient magnitude) is computed. From
these quantities all thermochemical conditions at every point can be determined.

The simulation parameters are shown in Table 2. Npx, Npy, Npz, Nv are, respec-
tively, the number of pressure nodes in the x, y, z direction and the total number of
velocity nodes while Lx, Ly, Lz define the extent of the computational domain in the
x, y, z direction (in meters).

Table 2: 3D Flame simulation data.

Npy = 67 Nv = 392040 Nptot = 200715 Npx = 67
Npz = 91 Lx = 0.11 Ly = 0.11 Lz = 0.15

3.2.1 Plug inflow conditions

As a first simulation attempt, for both fuel and oxidizer’s velocity inflow conditions,
plug profiles have been adopted. Moreover, because of the large number of pressure
cells and of the bulk geometry that leads to a quite filled pseudo-elliptic matrix pat-
tern, a first attempt was made with the four colour pressure variable arrangement (see
Section 2.1 which is the fastest but least stable).

Because of these choices, as it can be seen in Fig. 15, the flame, in its maximum
extension, is shorter than expected and in addition it collapsed due to the known
stability issues associated with the four pressure variable arrangement.

As it can be observed from Figs. 16(a) and (b), the effect of combustion on the flow
is to generate mass flux source cells. This due to the fact that in the reacting cells
temperature rises causing density to drop and particles to be locally pushed away
from the reacting front. In particular, from Fig. 16(b) it is clear how such positive-
divergence front, where non stoichiometric reactions are taking place, stays ahead of
the actual flame surface.

Table 3: 3D Flame simulation data-Plug Flow.

ReFUEL = 63.59 ReFUELcell = 9.56 ReOX = 109.94 ReOXcell = 16.53
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Figure 15: Santoro 3D flame Z profile.

(a) (b)
Figure 16: Santoro 3D flame. Mass flux source cells (a). Santoro 3D flame. Chemical reaction front (b).

3.2.2 Poiseuille inflow conditions

Observing that in [14] is specified that fuel and oxidizer supply ducts are long enough
to obtain fully developed flows, it was decided to impose, for both fuel and oxidizer
inlet velocities, Poiseuille flow conditions as shown in Fig. 17.

In terms of radial coordinate (r) such inlet conditions are:

wFUEL = 1 − r2

R2
1

,

for the fuel, and

wAIR = R2
2 − r2 + (R2

2 − R2
1)

ln (R2/r)
ln (R1/R2)

,
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Figure 17: Santoro 3D flame. Poiseuille inflow conditions.

(a) (b)
Figure 18: Santoro 3D flame. Density profile and velocity vectors slice (a). Temperature iso-surfaces (b).

for the oxidizer, where R1 and R2 are respectively the inner and outer radius of the air
annulus.

For the same net flow rate of the previous case, such profiles have higher maximum
velocities than the plug ones and a longer flame is obtained (as expected). A slice of
the velocity vector field and the density distribution is shown Fig. 18(a). We can notice
the higher value of the density of the surrounding air and its gradual transition to
the low value of methane inside the flame, through the flame surface. In Fig. 18(b)
temperature iso-surfaces close to the maximum value are shown and they provide a
good indication of the size of the flame and of the stoichiometric front.

The temperature distribution at Z = 0.0762m is shown in Fig. 19(b) together with

Table 4: 3D Flame simulation data.

ReFUEL = 127.18 ReFUELcell = 19.12 ReOX = 164.91 ReOXcell = 24.80
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Figure 19: Santoro 3D flame. Temperature distribution at Z = 0.0762m plane. Experimental position of
the stoichiometric value of the mixture fraction (in between two dashed circles), isoline of stoichiometric
value of mixture fraction predicted by PRIN-3D (solid circle).

the available experimental data at this location [14]. The dashed circles define the
circular annulus in which the experimental position of the stoichiometric value of the
mixture fraction falls. The solid circle is the isoline of the mixture fraction predicted
by our simulation at the same value.

4 Conclusions

PRIN-3D is a high level algebraical proto-code designed to assist in the study of old
and new mathematical and numerical models and to the development or optimiza-
tion of new numerical algorithms. Its numerical solving kernel is based on the quasi-
segregation of pressure elliptic equation and subsequent resolution by means of nested
iterative processes with parallel capabilities. A wide variety of convective numerical
schemes are also implemented for the treatment of the non-linear terms of the N. S.
Equations ranging from simple -non resource demanding- Lagrangian to an original,
more sophisticated Multilevel Lagrangian Conservative Scheme just recently devel-
oped [17].

Some preliminary, but non trivial, numerical tests show good agreement with
available experimental data.
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